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The Fourier-Slice Theorem 
 

The relationship relating the 1-D Fourier transform of a projection 
and the 2-D Fourier transform of the region from which the 
projection was obtained is the basis for reconstruction methods 
capable of dealing with the blurring problem. 
 
The 1-D Fourier transform of a projection with respect to r  is 
 

( ) 2( , ) jG e dpwrw q r q r
¥ -

-¥
= ò g ,       (5.11-8) 

 

where  w  is the frequency variable, and this expression is for a 
given value of q . 
 

Substituting  
 

( ) ( , ) ( cos sin )f x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
= + -ò òg ,     (5.11-3) 

 

for ( )r qg ,  results the expression 
 
 

( ) ( ) 2( , ) , cos sin jG f x y x y e dxdydpwrw q d q q r r
¥ ¥ ¥ -

-¥ -¥ -¥
= + -ò ò ò

 
( ) ( ) 2, cos sin jf x y x y e d dxdypwrd q q r r

¥ ¥ ¥ -

-¥ -¥ -¥

é ù= + -ê úë ûò ò ò
( ) ( )2 cos sin, j x yf x y e dxdypw q q¥ ¥ - +

-¥ -¥
= ò ò  (5.11-9) 

 
By letting cosu w q=  and sinv w q= , (5.11-9) becomes 
 

( ) ( ) ( )2

cos ; sin
, , j ux vy

u v
G f x y e dxdyp

w q w q
w q

¥ ¥ - +

-¥ -¥ = =

é ù= ê úë ûò ò  (5.11-10) 

 

We recognize (5.11-10) as the 2-D Fourier transform of ( ),f x y  
evaluated at the values of u  and v  indicated.  
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Equation (5.11-10) leads to 
 

( ) ( )[ ] ( )cos ; sin, , cos , sinu vG F u v Fw q w qw q w q w q= == = , (5.11-11) 
 

which is known as the Fourier-slice theorem (or the projection-
slice theorem).   
 

The Fourier-slice theorem states that the Fourier transform of a 
projection is a slice of the 2-D Fourier transform of the region 
from which the projection was obtained. 
 

This terminology can be explained with Figure 5.41. 
 

 
As Figure 5.41 shows, the 1-D Fourier transform of an arbitrary 
projection is obtained by extracting the values of ( ),F u v  along 
a line oriented at the same angle as the angle used in generating 
the projection. 
 

In principle, we could obtain ( ),f x y  simply by obtaining the 
inverse Fourier transform ( ),F u v , though it is expensive 
computationally with the involvement of inverting a 2-D transform. 
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Reconstruction Using Parallel-Beam Filtered Backprojections 
 

Regarding to the blurred results, fortunately, there is a simple 
solution based on filtering the projections before computing the 
backprojections. 
 

Recall 
 

( )2( , ) ( , ) j t zf t z F e d dp m nm n m n
¥ ¥ +

-¥ -¥
= ò ò ,  (4.5-8) 

 

the 2-D inverse Fourier transform of ( ),F u v is 
 

( )2( , ) ( , ) j ux vyf x y F u v e dudvp¥ ¥ +

-¥ -¥
= ò ò .  (5.11-12) 

 

As in (5.11-10) and (5.11-11), letting cosu w q= and sinv w q= , 
we can express (5.11-12) in polar coordinates: 
 

( )
2

2 cos sin

0 0
( , ) ( cos , sin ) j x yf x y F e d d

p pw q qw q w q w w q
¥ += ò ò  (5.11-13) 

 

Then, using the Fourier-slice theorem, we have 
 

( )
2

2 cos sin

0 0
( , ) ( , ) j x yf x y G e d d

p pw q qw q w w q
¥ += ò ò  . (5.11-14) 

 

Using the fact that ( ) ( ), ,G Gw q p w q+ = - , we can express 
(5.11-14) as 
 

( )2 cos sin

0
( , ) ( , ) j x yf x y G e d d

p pw q qw w q w q
¥ +
-¥

= ò ò  . (5.11-15) 
 

In terms of integration with respect to w , the term cos sinx yq q+  
is a constant, which is recognized as r . Thus, (5.11-15) can be 
written as 
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò  . (5.11-16) 
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Recall  
2( ) ( ) j tf t F e dpmm m

¥

-¥
= ò ,     (4.2-17) 

 

the inner expression in (5.11-16) is a 1-D inverse Fourier transform 
with the added term w .  
 

Based on the discussion in Section 4.7, w is a one-dimensional 
filter function.  
 

 
 
w is not integrable, because its amplitude extends to +¥  in both 

directions, so the inverse Fourier transform is undefined. 
 
In practice, the approach is to window the ramp so it becomes zero 
outside of defined frequency interval, as shown in Figure 5.42 (a). 
 
Figure 5.42 (b) shows its spatial domain representation, obtained 
by computing its inverse Fourier transform. The resulting 
windowed filter exhibits noticeable ringing in the spatial domain. 
As discussed in Chapter 4, windowing with a smooth function 
will help in this situation. 
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An M-point discrete window function used frequently for 
implementation with the 1-D FFT is given by 
 

( )
2

( 1)cos      0 1
1( )

0                              otherwise

c c M
Mh

pw
w

w
ìï + - £ £ -ïï -= íïïïî

  (5.11-17) 

 

When 0.54c = , this function is called the Hamming window. 
 
Figure 5.42 (c) is a plot of the Hamming window, and Figure 
5.42 (d) shows the product of this window and the band-limited 
ramp filter shown in Figure 5.42 (a). 
 
Figure 5.42 (e) shows the representation of the product in the 
spatial domain, obtained by computing the inverse FFT. 
  
Comparing Figure 5.42 (e) and Figure 5.42 (b), we can find that 
ringing was reduced in the window ramp.  
 
On the other hand, because the width of the central lobe in Figure 
5.42 (e) is slightly wider than that of Figure 5.42 (b), we would 
expect backprojections based on a Hamming window to have less 
ringing but be slightly more blurred. 
 
Recalling 

( ) 2( , ) jG e dpwrw q r q r
¥ -

-¥
= ò g ,     (5.11-8) 

 

that ( ) ,G w q  is the 1-D Fourier transform of ( )r qg , , which is a 
single projection obtained at a fixed angle, q . 
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Equation  
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò      (5.11-16) 
 

states that the complete, back-projected image ( ),f x y  is obtained 
as follows: 
 

1. Compute the 1-D Fourier transform of each projection. 
 

2. Multiply each Fourier transform by the filter function w , 
which has been multiplied by a suitable (e.g., Hamming) 
window. 

 

3. Obtain the inverse 1-D Fourier transform of each resulting 
filtered transform. 

 

4. Integrate (sum) all the 1-D inverse transform from Step 3. 
 
This image reconstruction approach is called filtered backprojection. 
 
In practice, because the data are discrete, all frequency domain 
computations are carried out using a 1-D FFT algorithm, and 
filtering is implemented using the same basic procedure explained 
in Chapter 4 for 2-D functions. 
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Example 5.19: Image reconstruction using filtered backprojections 
 

 
 

Figure 5.43 (a) shows the rectangle reconstructed using a ramp 
filter. The most vivid feature of this result is the absence of any 
visually detectable blurring. However, ringing is present, visible 
as faint lines, especially around the corners of the rectangle. 
Figure 5.43 (c) can show these lines in the zoomed section. 
 
Using a Hamming window on the ramp filter helped considerably 
with the ringing problem, at the expense of slight blurring, as 
Figure 5.43 (b) and Figure 5.43 (d) show. 
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The reconstructed phantom images shown in Figure 5.44 are 
from using the un-windowed ramp filter and a Hamming 
window on the ramp filter. 
 
Since the phantom image does not have transitions that are sharp 
and prominent as the rectangle, so ringing is imperceptible in this 
case, though result shown in Figure 5.44 (b) is a slightly smooth 
than that of Figure 5.44 (a). 
 

The discussion has been based on obtaining filtered backprojections 
via an FFT implementation. However, from the convolution theorem 
introduced in Chapter 4, we know that the equivalent results can be 
obtained using spatial convolution. 
 
Note that the term inside the brackets in 
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò      (5.11-16) 
 

is the inverse Fourier transform of the product of two frequency 
domain functions. According to the convolution theorem, they are 
equal to the convolution of the spatial representations (inverse 
Fourier transform) of these two functions. 
 

Let ( )s r  denote the inverse Fourier transform of w , we can 
write (5.11-16) as 
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( )

( ) ( )[ ]

( ) ( )
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0
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j
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s d
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p pwr

r q q
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r q q

p

w w q w q

r r q q

r q q q r r q

¥

-¥ = +

= +

¥

-¥

é ù= ê úë û

=

é ù= + -ê úë û

ò ò

ò

ò ò

★ g ,

g ,
    (5.11-18) 

 

The last two lines of (5.11-18) say the same thing: Individual 
backprojections at an angle q  can be obtained by convolving the 
corresponding projection, ( )r qg , , and the inverse Fourier 

transform of the ramp filter, ( )s r . 
 

With the exception of round off differences in computation, the 
results of using convolution will be identical to the results using FFT. 
 
In general, convolution turns out to be more computationally 
efficient and is used in most of modern CT systems, while 
Fourier transform plays a central role in theoretical formulations 
and algorithm development. 

 
 
 
5.11.6 Reconstruction Using Fan-beam Filtered Backprojections 
 
 
 
 
 
 
 
 
 
 
 


