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Adaptive Filters 
 

Adaptive filters are capable of performance superior to that of the 
filters discussed thus far. However, the price paid for improved 
filtering power is an increase in filter complexity. 
 

Adaptive, local noise reduction filter 
 

The simplest statistical measures of a random variable are its 
mean and variance, which are reasonable parameters for an 
adaptive filter. 
 

The mean gives a measure of average intensity in the region 
over which the mean is computed, and the variance gives a 
measure of contrast in that region. 
 

The response of a filter, which operates on a local region xyS , at 

any point ( , )x y  is to be based on four quantities: 
 

(a) ( , )g x y , the value of the noisy image at ( , )x y ; 
 

(b) 
2
hs , the variance of the noise corrupting ( , )f x y  to form 

g( , )x y ; 
 

(c) Lm , the local mean of the pixels in xyS ; 
 

(d) 2
Ls , the local variance of the pixels in xyS . 

 
We want to have the following behaviours for the filter: 

 

1. If 
2
hs  is zero, the filter should just return the value of g( , )x y .  

 

This is the zero-noise case in which g( , )x y  is equal to ( , )f x y . 
 

2. If the local variance, 2
Ls , is high relative to 

2
hs , the filter 

should return a value close to g( , )x y .   
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A high local variance typically is associated with edges, 
which should be preserved. 

 

3. If the two variances are equal, we want the filter to return 
the arithmetic mean value of the pixels in xyS .  

 

This condition occurs when the local area has the same 
properties as the overall image, and local noise is to be 
reduced simply by averaging. 

 
Based on these assumptions, an adaptive expression for obtaining 
(̂ , )f x y  may be written as 

 

[ ]g g
2

2(̂ , ) ( , ) ( , ) L
L

f x y x y x y m
hs

s
= - - .   (5.3-12) 

 

The only quantity needed to be estimated is the variance of the 

overall noise,
2
hs , and other parameters can be computed from 

the pixels in xyS . 
 

A tacit assumption in (5.3-12) is 
2 2

Lhs s£ , which is reasonable 

because xyS  is a subset of g( , )x y . In practice, however, it is 
possible for this condition to be violated. So, a test should be 
performed in implementation so that the ratio is set to 1 if 

2 2
Lhs s>  occurs. 
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Example 5.4: Illustration of adaptive, local noise-reduction filtering 
 

Figure 5.13 (a) shows an image corrupted by additive Gaussian 
noise of zero mean and a variance of 1000 . 
 

Figure 5.13 (b) is the result of applying an arithmetic mean filter 
of size 7 7´  to Figure 5.13 (a). 
 

Figure 5.13 (c) shows the result of applying a geometric mean 
filter of size 7 7´  to Figure 5.13 (a). 
 

Figure 5.13 (d) shows the result of using the adaptive filter  
 

[ ]g g
2

2(̂ , ) ( , ) ( , ) L
L

f x y x y x y m
hs

s
= - -   (5.3-12) 

 

with 
2 1000hs = . 

 

 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Winter Term, 2021-22) 
 

263

Adaptive median filter 
 
The median filter discussed previously performs well if the spatial 
density of the impulse noise is not large ( aP  and bP  are less than 
0.2 ).  
 

The adaptive median filtering can handle impulse noise with 
probabilities larger than these.  
 

Unlike other filters, the adaptive median filter changes the size of 
xyS  during operation, depending on certain conditions. 

 

Consider the following notations: 
 

min  minimum intensity value in xyz S=  

max  maximum intensity value in xyz S=  
 median of intensity values in med xyz S=  

 intensity value at coordinates ( , )xyz x y=  

max  maximum allowed size of xyS S=  
 

The adaptive median filtering algorithm works in two stages: 
 

min

max

max

Stage A:   A1

              A2

              If A1 0 AND A2 0, go to stage B

              Else increase the window size

              If window size  repeat stage A

              E

med

med

z z

z z

S

= -

= -

> <

£

lse output medz

 

 

min

max

Stage B:   B1

              B2

              If B1 0 AND B2 0, output 

              Else output 

xy

xy

xy

med

z z

z z

z

z

= -

= -

> <  
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Keep in mind that this algorithm has three main purposes: 
 

to remove salt-and-pepper (impulse) noise; 
 

to provide smoothing of other noise that may not be 
impulsive; and 
 

to reduce the distortion of object boundaries. 
 
Example 5.5: Illustration of adaptive median filtering 

 

Figure 5.14 (a) shows an image corrupted by salt-and-pepper 
noise with probabilities 0.25a bP P= = . 
 

Figure 5.14 (b) is the result of applying a 7 7´  median filter. 
Although the noise was effectively removed, the filter caused 
significant loss of the detail in the image. 
 

Figure 5.14 (c) shows the result of using the adaptive median 
filter with max 7S = . It can be observed that with the similar 
noise removal performance, the adaptive median filter did a 
better job of preserving sharpness and detail. 
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5.4 Periodic Noise Reduction by Frequency Domain Filtering 
 

Periodic noise can be analyzed and filtered effectively by using 
frequency domain techniques. 
 
Bandreject Filters 
 
Figure 5.15 shows perspective plots of ideal, Butterworth, and 
Gaussian bandreject filters,  
 

 
 

which were discussed in Section 4.10.1 and are summarized in 
Table 4.6. 
 

 
 
One of the principal applications of bandreject filtering is for noise 
removal in applications where the general location of the noise 
component(s) in the frequency domain is approximately known. 
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Example 5.6: Use of Bandreject filtering for periodic noise removal 
 

Figure 5.16 (a), which is the same as Figure 5.5 (a), shows an 
image corrupted by sinusoidal noise of various frequencies. 
 
The noise components can be seen as symmetric pairs of 
bright dots in the Fourier spectrum shown in Figure 5.16 (b). 
 
Since the component lie on an approximate circle about the 
origin of the transform, so a circularly symmetric bandreject 
filter is a good choice. 
 

 
 
Figure 5.16 (c) shows a Butterworth bandreject filter of order 4. 
 
Figure 5.16 (d) shows the result of filtering Figure 5.16 (a) 
with the filter shown in Figure 5.16 (c). 
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Bandpass Filters 
 

A bandpass filter performs the opposite operation of a bandreject 
filter. 
 

The transfer function ( , )BPH u v  of a bandpass filter is obtained 

from a corresponding bandreject filter transfer function ( , )BRH u v  
by using the equation 
 

( , ) 1 ( , )BP BRH u v H u v= - .    (5.4-1) 
 

Performing straight bandpass filtering on an image is not a common 
procedure because it generally removes too much image detail. 
However, bandpass filtering is useful in isolating the effects on an 
image caused by selected frequency bands. 
 

Example 5.7: Bandpass filtering for extracting noise patterns 
 

The image shown in Figure 5.17 was generated by 
 

(1) using (5.4-1) to obtain the bandpass filter corresponding 
to the bandreject filter used in Figure 5.16; 

 

(2) taking the inverse transform of the bandpass-filtered 
transform. 

 

 
 

Although most image detail was lost, the remained information 
shows the noise pattern, which is quite close to the noise that 
corrupted the image in Figure 5.16.  
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Notch Filters 
 
A notch filter rejects/passes frequencies in predefined 
neighbourhoods about a center frequency. Figure 5.18 shows 
plots of ideal, Butterworth, and Gaussian notch (reject) filters. 
 

 
 
Similar to (5.4-1), the transfer function ( , )NPH u v  of a notch 
pass filter is obtained from a corresponding notch reject filter 
transfer function, ( , )NRH u v , by using the equation 
 

( , ) 1 ( , )NP NRH u v H u v= - .    (5.4-2) 
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Example 5.8: Removal of periodic noise by notch filtering 
 

Figure 5.19 (a) shows the same image as Figure 4.51 (a). 
 

Figure 5.19 (b) shows the spectrum of Figure 5.19 (a), in 
which the noise is not domain enough to have a clear pattern 
along the vertical axis. 
 

 
 

Figure 5.19 (c) shows the notch pass filter applied on Figure 5.19 (b). 
 

Figure 5.19 (d) shows the spatial representation of the noise pattern 
(inverse transform of the notch-pass-filtered result). 
 

Figure 5.19 (e) shows the result of processing the image with the 
Figure 5.19 (d) shows. 
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Optimum Notch Filtering 
 
Figure 5.20 shows another example of periodic image degradation. 
 

 
 
When several interference components are present, the methods 
discussed previously are not always acceptable because they may 
remove too much image information in the filtering process. 
 
The method discussed here is optimum, in the sense that it 

minimizes local variances of the restored estimate ( , )f x y


. 
 
The procedure consists of first isolating the principal contributions 
of the interference pattern and then subtracting a variable, weighted 
portion of the pattern from the corrupted image. 
 

The first step can be done by placing a notch pass filter, ( , )NPH u v , 
at the location of each spike. 
 
The Fourier transform of the interference noise pattern is given by 
the expression 
 

( , ) ( , ) ( , )NPN u v H u v G u v= ,    (5.4-3) 
 

where  ( , )G u v  donates the Fourier transform of the corrupted image. 
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Since the formation of ( , )NPH u v  requires judgment about what 
is or is not an interference spike, the notch pass filter generally 
is constructed interactively by observing the spectrum of ( , )G u v  
on a display. 
 

After a particular filter has been selected, the corresponding 
pattern in the spatial domain is obtained from the expression 
 

{ }( , ) ( , ) ( , )-1
NPx y H u v G u vh = F .   (5.4-4) 

 

Since the corrupted image is assumed to be formed by the addition 
of the uncorrupted image ( , )f x y  and the interference, if ( , )x yh  were 

known, to obtain ( , )f x y  would be a simple matter 
 

 g( , ) ( , ) ( , )f x y x y x yh= - . 
 

However, the filtering procedure usually yields only an approximation 
of the true pattern. 
 

The effect of components not present in the estimate of ( , )x yh  can 

be minimized by subtracting from g( , )x y  a weighted portion of 
( , )x yh  to obtain an estimate of ( , )f x y : 

 

g(̂ , ) ( , ) ( , ) ( , )f x y x y w x y x yh= - ,   (5.4-5) 
 

where the function ( , )w x y  is called a weighted or modulation 
function. 
 

One approach is to select ( , )w x y  so that the variance of the 

estimate (̂ , )f x y  is minimized over a specified neighbourhood of 

every point( , )x y . 
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Consider a neighbourhood of size (2 1) (2 1)a b+ ´ +  about a 

point ( , )x y . The local variance of (̂ , )f x y  at ( , )x y  can be 
estimated from samples, as 
 

2
2 1 ˆ ˆ( , ) ( , ) ( , )

(2 1)(2 1)

a b

s a t b

x y f x s y t f x y
a b

s
=- =-

é ù= + + -ê úë û+ + å å    (5.4-6) 
 

where ˆ( , )f x y is the average value of (̂ , )f x y in the neighbourhood: 
 

1ˆ ˆ( , ) ( , )
(2 1)(2 1)

a b

s a t b

f x y f x s y t
a b =- =-

= + +
+ + å å .     (5.4-7) 

 

Then, we have 
 

g2 1
( , ) {[ ( , )

(2 1)(2 1)

a b

s a t b

x y x s y t
a b

s
=- =-

= + +
+ + å å     

( , ) ( , )]w x s y t x s y th- + + + +  

g 2[ ( , ) ( , ) ( , )]}x y w x y x yh- -    (5.4-8) 
 

Assuming that ( , )w x y  essentially remains constant over the 
neighbourhood, 
 

( , ) ( , )w x s y t w x y+ + =      (5.4-9) 
 

for a s a- £ £  and b t b- £ £ . It also leads to 
 

( , ) ( , ) ( , ) ( , )w x y x y w x y x yh h=     (5.4-10) 
 

in the neighbourhood. Then, (5.4-8) becomes 
 

g2 1
( , ) {[ ( , )

(2 1)(2 1)

a b

s a t b

x y x s y t
a b

s
=- =-

= + +
+ + å å     

( , ) ( , )]w x y x s y th- + +  

g 2[ ( , ) ( , ) ( , )]}x y w x y x yh- -    (5.4-11) 



GACS-7205-001 Digital Image Processing                                        Page 
(Winter Term, 2021-22) 
 

273

To minimize 2( , )x ys , we solve 
 

2( , )
0

( , )
x y

w x y
s¶

=
¶        (5.4-12) 

 

for ( , )w x y . The result is  
 

g g
2 2

( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , )

x y x y x y x y
w x y

x y x y

h h

h h

-
=

-    (5.4-13) 

 

Since ( , )w x y  is assumed to be constant in a neighbourhood, it is 
computed for one point in each neighbourhood and then used to 
process all of the image points in that neighbourhood. 
 
Example 5.9: Illustration of optimum notch filtering. 

 

Figure 5.21 through Figure 5.23 show the result of applying 
the preceding techniques to the image in Figure 5.20 (a). 
 

 
 

Figure 5.21 shows the Fourier spectrum of the corrupted image. 
The origin was not shifted to the center of the frequency plane 
in this case, so 0u v= =  is at the top left corner in Figure 5.21. 
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Figure 5.22 (a) shows the spectrum of ( , )N u v , where only the 
noise spikes are present. 
 

Figure 5.22 (b) shows the interference pattern ( , )x yh  obtained 

by taking the inverse Fourier transform of ( , )N u v . 
 

Note the similarity between Figure 5.22 (b) and the structure 
of the noise present in Figure 5.20 (a). 
 

 
 

Figure 5.23 shows the processed image obtained by using 
 

g(̂ , ) ( , ) ( , ) ( , )f x y x y w x y x yh= - .   (5.4-5) 
 

In Figure 5.23, the periodic interference has been removed. 
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5.5 Linear, Position-Invariant Degradations 
 
The input-output relationship in Figure 5.1 before the restoration 
can be expressed as 
 

[ ]g( , ) ( , ) ( , )x y H f x y x yh= + .    (5.5-1) 
 

First, we assume that ( , ) 0x yh =  so that [ ]g( , ) ( , )x y H f x y= .  H  
is linear if 
 

[ ] [ ] [ ]1 2 1 2( , ) ( , ) ( , ) ( , )H af x y bf x y aH f x y bH f x y+ = + ,    (5.5-2) 
 

where a and b  are scalars and 1( , )f x y  and 2( , )f x y  are any two 
input images. If 1a b= = , then (5.5-2) becomes 
 

[ ] [ ] [ ]1 2 1 2( , ) ( , ) ( , ) ( , )H f x y f x y H f x y H f x y+ = + , (5.5-3) 
 

which is called the property of additivity.  
 

If 2( , ) 0f x y = , (5.5-2) becomes 
 

[ ] [ ]1 1( , ) ( , )H af x y aH f x y= ,     (5.5-4) 
 

which is called the property of homogeneity. It says that the 
response to a constant multiple of any input is equal to the 
response to that input multiplied by the same constant. 
 
An operator having the input-output relationship 
 

[ ]g( , ) ( , )x y H f x y=  
 

is said to be position (space) invariant if 
 

[ ] g( , ) ( , )H f x y x ya b a b- - = - -    (5.5-5) 
 

for any ( , )f x y  and any a  and b . (5.5-5) indicates that the response 
at any point in the image depends only on the value of the input at 
that point, not on its position. 
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With a slight change in notation in the definition of the impulse in 
 

0 0 0 0( , ) ( , ) ( , )f t z t t z z dtdz f t zd
¥ ¥

-¥ -¥
- - =ò ò ,  (4.5-3) 

 

( , )f x y  can be expressed as 
 

( , ) ( , ) ( , )f x y f x y d da b d a b a b
¥ ¥

-¥ -¥
= - -ò ò .  (5.5-6) 

 

Assuming ( , ) 0x yh = , then substituting (5.5-6) into (5.5-1) we 
have 
 

[ ]g( , ) ( , )

       ( , ) ( , )

x y H f x y

H f x y d da b d a b a b
¥ ¥

-¥ -¥

=

é ù= - -ê úë ûò ò . (5.5-7) 

 

If H  is a linear operator, then 
 

[ ]g( , ) ( , ) ( , )x y H f x y d da b d a b a b
¥ ¥

-¥ -¥
= - -ò ò . (5.5-8) 

 

Since ( , )f a b  is independent of x  and y , using the homogeneity 
property, it follows that 
 

[ ]g( , ) ( , ) ( , )x y f H x y d da b d a b a b
¥ ¥

-¥ -¥
= - -ò ò  (5.5-9) 

( , ) ( , , , )f h x y d da b a b a b
¥ ¥

-¥ -¥
= ò ò   (5.5-11) 

 

where the term 
 

[ ]( , , , ) ( , )h x y H x ya b d a b= - -     (5.5-10) 
 

is called the impulse response of H .   
 

In other words, if ( , ) 0x yh = , then ( , , , )h x ya b  is the response of 
H  to an impulse at ( , )x y . 
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Equation  
 

g( , ) ( , ) ( , , , )x y f h x y d da b a b a b
¥ ¥

-¥ -¥
= ò ò   (5.5-11) 

 

is called the superposition (or Fredholm) integral of the first kind, 
and is a fundamental result at the core of linear system theory. 
 
If H  is position invariant, from 
 

[ ] g( , ) ( , )H f x y x ya b a b- - = - - ,   (5.5-5) 
 

we have 
 

[ ]( , ) ( , )H x y h x yd a b a b- - = - - ,   (5.5-12) 
 

and (5.5-11) reduces to 
 

g( , ) ( , ) ( , )x y f h x y d da b a b a b
¥ ¥

-¥ -¥
= - -ò ò . (5.5-13) 

 

The expression (5.5-13) is the case of convolution integral  
 

( ) ( ) ( ) ( )f t h t f h t dt t t
¥

-¥
= -ò★     (4.2-20) 

 

being extended to 2-D. 
 
Equation (5.5-13) tells us that knowing the impulse of a linear 
system allows us to compute its response, g , to any input f . The 
result is simply the convolution of the impulse response and the 
input function. 
 
In the presence of additive noise, (5.5-11) becomes 
 

g( , ) ( , ) ( , , , ) ( , )x y f h x y d d x ya b a b a b h
¥ ¥

-¥ -¥
= +ò ò .  (5.5-14) 
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If H  is position invariant, it becomes 
 

g( , ) ( , ) ( , ) ( , )x y f h x y d d x ya b a b a b h
¥ ¥

-¥ -¥
= - - +ò ò . (5.5-15) 

 

Assuming that the values of the random noise ( , )x yh  are 
independent of position, we have 
 

g( , ) ( , ) ( , ) ( , )x y h x y f x y x yh= +★ .    (5.5-16) 
 

Based on the convolution theorem, we can express (5.5-16) in the 
frequency domain as 
 

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= + .    (5.5-17) 
 
In summary, a linear, spatially invariant degradation system with 
additive noise can be modeled in the spatial domain as the 
convolution of the degradation function with an image, followed 
by the additive of noise (as expressed in (5.5-16)). 
 
The same process can be expressed in the frequency domain as 
stated in (5.5-17). 
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5.6 Estimating the Degradation Function 
 
There are three principal ways to estimate the degradation function 
used in image restoration: 
 
Estimation by Image Observation 

 
Suppose that we are given a degraded image without any 
knowledge about the degradation functionH . 
 

Based on the assumption that the image was degraded by a 
linear, position-invariant process, one way to estimate H  is 
to gather information from the image itself. 
 

In order to reduce the effect of noise, we would look for an 
area in which the signal content is strong. 
 

Let the observed subimage be denoted by g ( , )s x y , and the 

processed subimage be denoted by ˆ( , )sf x y . Assuming that the 
effect of noise is negligible, it follows from 
 

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +   (5.5-17) 
that 

( , )
( , )

ˆ ( , )
s

s
s

G u v
H u v

F u v
= .     (5.6-1) 

 

Then, we can have ( , )H u v  based on our assumption of position 
invariant.  
 

For example, suppose that a radial plot of ( , )sH u v  has the 
approximate shape of a Gaussian curve. Then we can construct a 
function ( , )H u v  on a large scale, but having the same basic shape. 
 
This estimation is a laborious process used in very specific 
circumstances. 
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Estimation by Experimentation 
 
If equipment similar to the equipment used to acquire the 
degraded image is available, it is possible in principle to obtain 
an accurate estimate of the degradation. 
 
Images similar to the degraded image can be acquired with 
various system settings until they are degraded as closely as 
possible to the image we wish to restore. 
 
Then the idea is to obtain the impulse response on the 
degradation by imaging an impulse (small dot of light) using 
the same system settings. 
 
An impulse is simulated by a bright dot of light, as bright as 
possible to reduce the effect of noise to negligible values. Since 
the Fourier transform of an impulse is a constant, it follows 
 

( , )
( , )

G u v
H u v

A
= .     (5.6-2) 

 
Figure 5.24 shows an example. 
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Estimation by Modeling 
 

Degradation modeling has been used for years. 
 
In some cases, the model can even take into account environmental 
conditions that cause degradations. For example, a degradation 
model proposed by Hufnagel and Stanley is based on the physical 
characteristics of atmospheric turbulence 
 

2 2 5/6( )( , ) k u vH u v e- += ,     (5.6-3) 
 

where  k  is a constant that depends on the nature of the turbulence. 
 
Figure 5.25 shows examples of using (5.6-3) with different 
values of  k . 
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A major approach in modeling is to derive a mathematical model 
starting from basic principles. 
 
We show this procedure by a case in which an image has been 
blurred by uniform linear motion between the image and the 
sensor during image acquisition. 
 

Suppose that an image ( , )f x y  undergoes planar motion and that 

0( )x t  and 0( )y t  are the time-varying components of motion in 
the -x and -y directions. 
 
The total exposure at any point of the recording medium is 
obtained by integrating the instantaneous exposure over the time 
interval when the imaging system shutter is open. 
 

If theT is the duration of the exposure, the blurred image g( , )x y  is 
 

[ ]g 0 0
0

( , ) ( ), ( )
T

x y f x x t y y t dt= - -ò .  (5.6-4) 
 

From  
( )2( , ) ( , ) j t zF f t z e dtdzp m nm n

¥ ¥ - +

-¥ -¥
= ò ò ,  (4.5-7) 

 

the Fourier transform of  (5.6-4) is 
 

( )g 2( , ) ( , ) j ux vyG u v x y e dxdyp¥ ¥ - +

-¥ -¥
= ò ò   (5.6-5) 

[ ] ( )2
0 0

0
( ), ( )

T
j ux vyf x x t y y t dt e dxdyp¥ ¥ - +

-¥ -¥

é ù= - -ê úë ûò ò ò
 

By reversing the order of integration,  
 

[ ] ( )2
0 0

0
( , ) ( ), ( )

T
j ux vyG u v f x x t y y t e dxdy dtp¥ ¥ - +

-¥ -¥

é ù= - -ê úë ûò ò ò
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Since the term inside the outer brackets is the Fourier transform 
of the displaced function [ ]0 0 ( ), ( )f x x t y y t- - , we have 
 

[ ]

[ ]

0 0

0 0

2 ( ) ( )

0

2 ( ) ( )

0

( , ) ( , )

        ( , )

T
j ux t vy t

T
j ux t vy t

G u v F u v e dt

F u v e dt

p

p

- +

- +

=

=

ò

ò   (5.6-7) 

 

By defining 
 

[ ]0 02 ( ) ( )

0
( , )

T
j ux t vy tH u v e dtp- += ò     (5.6-8) 

 

we can rewrite (5.6-7) in the familiar form 
 

( , ) ( , ) ( , )G u v H u v F u v= .     (5.6-9) 
 

Example: 
 

Suppose that the image in question undergoes uniform linear 
motion in the -directionx only, at a rate given by 0( ) /x t at T= . 
When t T= , the image has been displaced by a total distance 
a . With 0( ) 0y t = ,  (5.6-8) yields 
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    (5.6-10) 

 

If we allow the -componenty  to vary as well, with the 
motion given by 0( ) /y t bt T= , the degradation function 
becomes 
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Example 5.10: Image blurring due to motion 
 
Figure 5.26 (b) is an image blurred by computing the Fourier 
transform of the image in Figure 5.26 (a), multiplying the 
transform by ( ),H u v  from (5.6-11). 
 
The parameters used in (5.6-11) were 0.1a b= =  and 1T = .  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


