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Chapter 5     Image Restoration and Reconstruction  
 

The principal goal of restoration techniques is to improve an 
image in some predefined sense.  
 
Although there are areas of overlap, image enhancement is 
largely a subjective process, while restoration is for the most part 
an objective process. 
 
Restoration attempts to recover an image that has been degraded 
by using a priori knowledge of the degradation phenomenon. 
Thus, restoration techniques are oriented toward modeling the 
degradation and applying the inverse process in order to recover 
the original image. 
 
The restoration approach usually involves formulating a criterion 
of goodness that will yield an optimal estimate of the desired 
result, while enhancement techniques are heuristic procedures to 
manipulate an image in order to take advantage of the human 
visual system. 
 
Some restoration techniques are best formulated in the spatial 
domain, while others are better suited for the frequency domain. 
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5.1 A Model of the Image Degradation/Restoration Process 

 

 
 

Figure 5.1 shows an image degradation/restoration process. 
 
The degraded image in the spatial domain is given by 
 

g( , ) ( , ) ( , ) ( , )x y h x y f x y x yh= +★   (5.1-1) 
 

where  ( , )h x y  is the spatial representation of the degradation 
function and “★ ” indicates convolution. Therefore, we can have 
the frequency domain representation of (5.1-1)  
 

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= + .  (5.1-2) 
 
These two equations are the bases for most of the restoration 
material in Chapter 5. 
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5.2 Noise Models 
 
The principal sources of noise in digital images arise during image 
acquisition and/or transmission. 
 
Spatial and Frequency Properties of Noise 
 
In the spatial domain, we are interested in the parameters that 
define the spatial characteristics of noise, and whether the noise is 
correlated with the image. 
 

Frequency properties refer to the frequency content of noise in 
the Fourier sense. 
 

In general, we assume that noise is independent of spatial 
coordinates and it is uncorrelated with respect to the image itself. 
 
Some Important Noise Probability Density Functions 
 

Gaussian noise 
 

Because of its mathematical tractability in both the spatial and 
frequency domains, Gaussian (normal) noise models are used 
frequently in practice. 
 
The probability density function (PDF) of a Gaussian random 
variable, z , is given by 
 

2 2( ) /21
( )

2
z zp z e s

ps
- -=     (5.2-1) 

 

where z represents intensity, z is the mean (average) value of z , 
and s  is its standard deviation. 
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Rayleigh noise 
 

The probability density function of Rayleigh noise is given by 
  

2( ) /2
( )     for 

( )
0                         for 

z a bz a e z a
bp z

z a

- -ìï - ³ïï= íï <ïïî
  (5.2-2) 

 

The mean and variance of this density are given by 
 

/4z a bp= +       (5.2-3) 
and 

2 (4 )
4

b p
s

-
= .       (5.2-4) 
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Erlang (gamma) noise 
 

The probability density function of Erlang noise is given by 
 

1

    for 
( 1)!( )
0                  for 

b b
aza z
e z a

bp z
z a

-
-ìïï ³ïï -= íïï <ïïî

  (5.2-5) 

 

where 0a >  and b  is a positive integer. The mean and variance 
of this density are given by 
 

b
z

a
=        (5.2-6) 

and 
2

2

b

a
s = .       (5.2-7) 

 
Exponential noise 
 

The PDF of exponential noise is given by 
 

    for 
( )

0         for 

azae z a
p z

z a

- ³ìïï= íï <ïî
    (5.2-8) 

 

where 0a > . The mean and variance of this density are given by 
 

1
z

a
=        (5.2-9) 

and 
2

2

1

a
s = .       (5.2-10) 

 
 
 
 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Winter Term, 2021-22) 
 

245

Uniform noise 
 

The PDF of uniform noise is given by 
 

1
    for 

( )
0          otherwise

a z b
b ap z

ìï £ £ïï -= íïïïî
   (5.2-11) 

 
The mean and variance of this density function are given by 
 

2
a b

z
+

=       (5.2-12) 

and 
2

2 ( )
12
b a

s
-

= .      (5.2-13) 

 
Impulse (salt-and-pepper) noise 
 

The PDF of impulse noise is given by 
 

      for 

( )       for 

0       otherwise

a

b

P z a

p z P z b

ìï =ïïïï= =íïïïïïî
   (5.2-14) 

 

If b a> , intensity b  appears as a light dot in the image. 
Conversely, intensity a  will appear like a dark dot. 
 

If either aP  or bP  is zero, the impulse noise is called unipolar. 
 

If neither aP  nor bP  is zero, and especially if they are 
approximately equal, the impulse noise values will resemble 
salt-and-pepper granules randomly distributed over the image.  
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Example 5.1: Noisy images and their histograms 
 

Figure 5.3 shows a test pattern.  
 

 
 

Figure 5.4 shows the test pattern after addition of the six 
types of noise. Shown below each image is the histogram 
computed directly from that image. 
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Periodic Noise 
 

Periodic noise in an image arises typically from electrical or 
electromechanical interference during image acquisition. 
 

 
 

The periodic noise can be reduced significantly via frequency 
domain filtering, which will be discussed in Section 5.4. 
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Estimation of Noise Parameters 
 

The parameters of periodic noise can be estimated by inspection 
of the Fourier spectrum of the image.  
 

Periodic noise tends to produce frequency spikes, which are 
detectable even by visual analysis. 
 

In simplistic cases, it is also possible to infer the periodicity of 
noise components directly from the image. 
 

Automated analysis is possible if the noise spikes are either 
exceptionally pronounced, or when knowledge is available about the 
general location of the frequency components of the interference. 
 

It is often necessary to estimate the noise probability density 
functions for a particular imaging arrangement.  
 

When images already generated by a sensor are available, it may 
be possible to estimate the parameters of the probability density 
functions from small patches of reasonably constant background 
intensity. 
 

 
 

The vertical stripes shown in Figure 5.6 were cropped from (a), 
(b), and (h) of Figure 5.4. 
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The histograms shown in Figure 5.6 were calculated using image 
data from these small stripes. We can see that the shapes of these 
histograms correspond closely to the shapes shown in (d), (e), 
and (k) of Figure 5.4. 
 
The simplest use of the data from the image strips is for calculating 
the mean and variance of intensity levels. Let S  denote a stripe 
and ( )S ip z , 0,1,2,..., 1i L= - , denote the probability estimates of 
the intensities of the pixels in S , then the mean and variance of the 
pixels in S  are 
 

1

0

( )
L

i S i
i

z z p z
-

=
= å      (5.2-15) 

and 
1

2 2

0

( ) ( )
L

i S i
i

z z p zs
-

=
= -å .    (5.2-16) 

 
The shape of the histogram identifies the closest probability 
density function match. 
 
The Gaussian probability density function is completely specified 
by these two parameters. 
 
For the other shapes discussed previously, we can use the mean 
and variance to solve the parameters a and b . 
 
Impulse noise is handled differently because the estimate needed 
is of the actual probability of occurrence of the white and black 
pixels. 
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5.3 Restoration in the Presence of Noise Only – Spatial Filtering 
 
When the only degradation present in an image is noise, 
 

g( , ) ( , ) ( , ) ( , )x y h x y f x y x yh= +★    (5.1-1) 
 

and  
 

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +    (5.1-2) 
 

become 
 

g( , ) ( , ) ( , )x y f x y x yh= +      (5.3-1) 
 

and 
 

( , ) ( , ) ( , )G u v F u v N u v= + .    (5.3-2) 
 

Since the noise terms are unknown, subtracting them from ( )g ,x y  

or ( ),G u v  is not a realistic option. 
 

In the case of periodic noise, it usually is possible to estimate 
( ),N u v  from the spectrum of ( ),G u v . 

 
Mean Filters 
 

Arithmetic mean filter 
 

Let xyS  represent the set of coordinates in a subimage window 

of sizem n´ , centered at ( , )x y . The arithmetic mean filter 

computes the average value of the corrupted image g( , )x y in xyS . 

The value of the restored image f̂  at point ( , )x y  is the 
arithmetic mean computed in the region xyS : 
 

( , )

1
(̂ , ) ( , )

xys t S

f x y g s t
mn Î

= å .     (5.3-3) 
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Geometric mean filter 
 

Using a geometric mean filter, an image is restored by  
 

g

1

( , )

(̂ , ) ( , )
xy

mn

s t S

f x y s t
Î

é ù
ê ú= ê ú
ê úë û
 .     (5.3-4) 

 

A geometric mean filter achieves smoothing comparable to the 
arithmetic mean filter, but it tends to lose less image detail in 
the process. 
 
Harmonic mean filter 
 

The harmonic mean filter is given by the expression 
 

g( , )

(̂ , )
1

( , )
xys t S

mn
f x y

s tÎ

=
å ,     (5.3-5) 

 

which works well for some types of noise like Gaussian noise 
and salt noise, but fails for pepper noise. 
 
Contraharmonic mean filter 
 

The contraharmonic mean filter yields a restored image based 
on the expression 
 

g

g

1

( , )

( , )

( , )

(̂ , )
( , )

xy

xy

Q

s t S

Q

s t S

s t

f x y
s t

+

Î

Î

=
å

å ,     (5.3-6) 

 

whereQ is called the order of the filter.  
 

The contraharmonic mean filter is well suited for reducing or 
eliminating the effects of salt-and-pepper noise. 
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For positive values of Q , it eliminates pepper noise. 
 

For negative values of Q , it eliminates salt noise. 
 

When 0Q = , the contraharmonic mean filter reduces to the 
arithmetic mean filter. 
 

When 1Q = - , the contraharmonic mean filter becomes the 
harmonic mean filter. 
 
Example 5.2: Illustration of mean filters 
 

Figure 5.7 (a) shows an 8-bit image, and Figure 5.7 (b) shows 
its corrupted version with additive Gaussian noise of zero 
mean and variance of 400. 

 

 
 

Figure 5.7 (c) and Figure 5.7 (d) show the result of filtering 
the noisy image with a 3 3´  arithmetic mean filter and a 
3 3´  geometric mean filter, respectively.  
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Figure 5.8 (a) and Figure 5.8 (b) show the images corrupted 

by 10%  pepper noise and 10%  salt noise, respectively.  
 

 
 

Figure 5.8 (c) shows the result of filtering Figure 5.8 (a) using 
a contraharmonic mean filter with 1.5Q = . 
 

Figure 5.8 (d) shows the result of filtering Figure 5.8 (b) using 
a contraharmonic mean filter with 1.5Q = - . 
 

The positive-order filter did a better job of cleaning the 
background, at the expense of slightly thinning and blurring 
the dark areas. 
 

The opposite was true of the negative-order filter. 
 

In general, the arithmetic and geometric mean filters are 
suited for random noise like Gaussian or uniform noise.  
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The contraharmonic mean filter is well suited for impulse 
noise, with the disadvantage that it must known whether the 
noise is dark or light in order to selectQ . 
 

Figure 5.9 shows some results of choosing the wrong sign forQ . 
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Order-Statistic Filters 
 

As discussed in Chapter 3, order-statistic filters are spatial filters 
whose response is based on ordering (ranking) the values of the 
pixels contained in the image area encompassed by the filter. 
 

Median filter 
 

The best-known order-statistic filter is the median filter, which 
will replace the value of a pixel by the median of the intensity 
levels in the neighbourhood of that pixel: 
 

{ }g
xy(s,t) S

(̂ , ) median ( , )f x y s t
Î

= .     (5.3-7) 

 

For certain types of random noise, the median filters can provide 
excellent noise-reduction capabilities. 
 

The median filters are particularly effective in the presence of 
both bipolar and unipolar impulse noise. 
 
Max and min filters 
 

The max and min filters are defined as 
 

{ }g
xy(s,t) S

(̂ , ) max ( , )f x y s t
Î

=       (5.3-8) 
 

and 
 

{ }g
xy(s,t) S

(̂ , ) min ( , )f x y s t
Î

= .     (5.3-9) 

 

The max filter is useful for finding the brightest points in an 
image, while the min filter can be used for finding the darkest 
points in an image. 
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Midpoint filter 
 

The midpoint filter computes the midpoint between the 
maximum and minimum values in the area encompassed by 
the filter: 
 

{ } { }g g
xy xy(s,t) S (s,t) S

1
(̂ , ) max ( , ) min ( , )

2
f x y s t s t

Î Î

é ù
= +ê úê úë û .  (5.3-10) 

 
The midpoint filter works best for random distributed noise, 
like Gaussian or uniform noise. 
 
Alpha-trimmed mean filter 
 

Suppose that we delete the /2d  lowest and the /2d  highest 

intensity values of g( , )s t  in xyS . Let g ( , )r s t  represent the 
remaining mn d-  pixels, an alpha-trimmed mean filter is 
given by 
 

g
xy(s,t) S

1
(̂ , ) ( , )rf x y s t

mn d Î
=

- å .   (5.3-11) 

 

When 0d = , the alpha-trimmed mean filter is reduced to the 
arithmetic mean filter. 
 

If 1d mn= - , the alpha-trimmed mean filter becomes a 
median filter. 
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Example 5.3: Illustration of order-statistic filters 
 

Figure 5.10 (a) shows the image corrupted by salt-and 
pepper noise with probabilities 0.1a bP P= = . 
 

Figure 5.10 (b) shows the result of median filtering with a 
filter of size 3 3´ .  
 

Figure 5.10 (c) and Figure 5.10 (d) show the result of applying 
the same filter on Figure 5.10 (b) and Figure 5.10 (c), 
respectively. 
 

 
 

Figure 5.11 (a) shows the result of applying the max filter to 
the pepper noise image of Figure 5.8 (a). 
 

Figure 5.11 (b) shows the result of applying the min filter to 
the image of Figure 5.8 (b). 
 

The min filter did a better job on noise removal, but it removes 
some white points around the border of light objects. 
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The results of applying the alpha-trimmed filter are shown in 
Figure 5.12. 
 

 
 

In Figure 5.12 (e), it should be 6d = . 


