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Gaussian Lowpass Filters 
 

The form of Gaussian lowpass filters (GLPFs) in two dimensions 
is given by 
 

2 2( , )/2( , ) D u vH u v e s-= ,   (4.8-6) 
 

where ( , )D u v  is the distance from the center of the frequency 
rectangle. As mentioned previously, s is a measure of spread about 
the center. Let 0Ds = , we can express the filter using the notation 
of other filters 
 

2 2
0( , )/2( , ) D u v DH u v e-= ,   (4.8-7) 

 

where 0D  is the cutoff frequency. When 0( , )D u v D= , the GLPF is 
down to 0.607 of its maximum value. 
 

As shown in Table 4.3, the inverse Fourier transform of the GLPF is 
Gaussian as well. So a spatial Gaussian filter, obtained by the IDFT 
of (4.8-6) and (4.8-7), will have no ringing. 
 

  
 

Table 4.4 summarizes the lowpass filters we have discussed. 
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Example 4.18: Image smoothing with a Gaussian lowpass filter 
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Additional Examples of Lowpass Filtering 
 

Figure 4.49 (a) shows a sample of text of poor resolution. 

 
 

To deal with the characters that have distorted shapes due to lack of 
resolution, one approach is to bridge small gaps in the input image 
by blurring them. 
 
Figure 4.49 (b) shows a result of using a Gaussian lowpass filter 
with 0 80D = . The images are of size 444 508´ . 
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Figure 4.50 shows an application of lowpass filtering for producing 
a smoother, softer-looking result from a sharp original. 
 

 
 
Figure 4.51 shows two applications of lowpass filtering on the same 
image with 0 50D =  and 0 20D = . 
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4.9 Image Sharpening Using Frequency Domain Filters 
 
A highpass filter is obtained from a given lowpass filter using the 
equation 
 

( , ) 1 ( , )HP LPH u v H u v= - ,  (4.9-1) 
 

where  ( , )LPH u v  is the transfer function of the lowpass filter. 
 

As in the previous section, we will also discuss ideal, Butterworth, 
and Gaussian highpass filters, which are shown in Figure 4.52. 
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Figure 4.53 shows what these filters look like in the spatial domain. 
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Ideal Highpass Filters 
 

A 2-D ideal highpass filter (IHPF) is defined as 
 

0

0

0   if ( , )
( , )

1   if ( , )

D u v D
H u v

D u v D

ì £ïï= íï >ïî
  (4.9-2) 

 

Because of the way they are related, we can expect IHPFs to have 
the same ringing properties as ILPFs.  
 
Figure 4.54 shows the various IHPF results of using the original 
image in Figure 4.41 (a) with 0D  equal to 30, 60, and 160 pixels. 
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Butterworth Highpass Filters 
 
A 2-D Butterworth highpass filter (BHPF) of order n and cutoff 
frequency 0D  is defined as 
 

[ ]20

1
( , )

1 / ( , ) nH u v
D D u v

=
+ ,   (4.9-3) 

 

where  ( , )D u v  is given by 
 

2 2( , ) ( /2) ( /2)D u v u P v Q= - + -  . (4.8-2) 
 
Figure 4.55 shows the performance of a BHPF. 
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Gaussian Highpass Filters 
 

The transfer function of the Gaussian highpass filter (GHPF) with 
cutoff frequency locus at a distance 0D  from the center of the 
frequency rectangle is defined as 
 

2 2
0( , )/2( , ) 1 D u v DH u v e-= - .   (4.9-4) 

 

Figure 4.56 shows some comparable results from using GHPF s. 
 

 
 

As expected, the results are more gradual than with the IHPFs and 
BHPFs.  
 

Table 4.5 contains a summary of the highpass filters we have discussed. 
 

 
 

where the expression for Ideal should read as 
 

( )

( )

0

0

0    if ,
( , )

1    if ,

D u v D
H u v

D u v D

£ìïï= íï >ïî
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Example 4.19: Using highpass filtering and thresholding for image 
enhancement 
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The Laplacian in the Frequency Domain 
 
The Laplacian was used for image enhancement in the spatial 
domain. Now, we show that the Laplacian can yield equivalent 
results using frequency domain techniques. 
 
The Laplacian can be implemented in the frequency domain using 
the filter  
 

2 2 2( , ) 4 ( )H u v u vp= - + ,     (4.9-5) 
 

or, with respect to the center of the frequency rectangle, using the 
filter  
 

[ ]2 2 2

2 2

( , ) 4 ( /2) ( /2)

        4 ( , )

H u v u P v Q

D u v

p

p

= - - + -

= -   (4.9-6) 

 

Then, the Laplacian image is obtained as 
 

{ }2 1( , ) ( , ) ( , )f x y H u v F u v- = -F ,   (4.9-7) 
 

where  ( , )F u v  is the DFT of ( , )f x y . 
 

As explained in Chapter 3, the enhancement is achieved using the 
question 
 

2( , ) ( , ) ( , )g x y f x y c f x y= +  ,    (4.9-8) 
 

where 1c = -  because ( , )H u v  is negative. 
 

In the frequency domain, (4.9-8) is written as 
 

{ }

[ ]{ }

[ ]{ }

1

1

1 2 2

( , ) ( , ) ( , ) ( , )

       1 ( , ) ( , )

       1 4 ( , ) ( , )

g x y F u v H u v F u v

H u v F u v

D u v F u vp

-

-

-

= -

= -

= +

F

F

F
  (4.9-9) 
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Although (4.9-9) is an elegant result, there are the scaling issues 
that would make the computation more difficult. Therefore, 
equation (4.9-8) is the preferred implementation in the frequency 
domain. 
 
Example 4.20: Image sharpening in the frequency domain using 
the Laplacian 
 

Figure 4.58 (a) is the same image as Figure 3.38 (a), and 
Figure 4.58 (b) shows the result of using 
 

2( , ) ( , ) ( , )g x y f x y c f x y= +  ,    (4.9-8) 
 

in which the Laplacian was computed in the frequency domain 
using 
 

{ }2 1( , ) ( , ) ( , )f x y H u v F u v- = -F .   (4.9-7) 
 

By comparing Figure 4.58 (a) and Figure 3.38 (a), we see that the 
frequency domain and spatial results are identical visually. 
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Unsharp Masking, Highboost Filtering, and High-Frequency-
Emphasis Filtering 
 
Using frequency domain methods, the mask defined in  
 

gmask( , ) ( , ) ( , )x y f x y f x y= -   (3.6-8) 
 

is given by 
 

gmask( , ) ( , ) ( , )LPx y f x y f x y= -   (4.9-10) 
 

where 
 

( ) ( )[ ]1( , ) , ,LP LPf x y H u v F u v-= F  (4.9-11) 
 

is a smoothed image analogous to ( , )f x y  in (3.6-8), ( , )LPH u v is a 

lowpass filter, and ( , )F u v  is the Fourier transform of ( , )f x y . 
 

Then, as in (3.6-9) 
 

g gmask( , ) ( , ) ( , )x y f x y k x y= + * ,  (4.9-12) 
 

which defines unsharp masking when 1k =  and highboost filtering 
when 1k > . 
 

Equation (4.9-12) can be expressed in terms of frequency domain 
computations involving a lowpass filter 
 

( )[ ][ ] ( ){ }g 1( , ) 1 1 , ,LPx y k H u v F u v-= + * -F   (4.9-13) 
 

We also can express this result in terms of a highpass filter 
 

( )[ ] ( ){ }g 1( , ) 1 , ,HPx y k H u v F u v-= + *F   (4.9-14) 
 

In (4.9-14), the term ( )[ ]1 ,HPk H u v+ *  is called a high-frequency-
emphasis filter. 
 

A slightly more general formulation of high-frequency-emphasis 
filtering is given in the expression: 
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( )[ ] ( ){ }g 1
1 2( , ) , ,HPx y k k H u v F u v-= + *F   (4.9-15) 

 

where 1 0k ³  gives controls of the offset from the origin and 2 0k ³  
controls the contribution of high frequencies. 
 
Example 4.21: Image enhancement using high-frequency-emphasis 
filtering. 
 

Figure 4.59 (a) shows a 416 596´  chest X-ray with a narrow 
range of intensity levels. Figure 4.59 (b) shows the result of 
highpass filtering using a Gaussian filter with 0 40D = .  
 

Figure 4.59 (c) shows the advantage of high-emphasis filtering 
with 1 0.5k = and 2 0.75k = . Figure 4.59 (d) shows the result of 
applying the histogram equalization on Figure 4.59 (c). 
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4.10 Selective Filtering 
 

All filters we have discussed in the previous two sections operate 
over the entire frequency rectangle.  
 

There are filters to process specific bands of frequencies or small regions 
of the rectangle, which are called bandreject or bandpass filters. 
 
Bandreject and Bandpass Filters 
 

Table 4.6 shows expressions for ideal, Butterworth, and Gaussian 
bandreject filters. 
 

 
Figure 4.63 (a) shows a Gaussian bandreject filter in image form. 
 

 
 

A bandpass filter is obtained from a bandreject filter 
 

( , ) 1 ( , )BP BRH u v H u v= - .   (4.10-1) 
 

Figure 4.63 (b) shows a Gaussian bandpass filter in image form. 
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Notch Filters 
 
A notch filter will reject (or pass) frequencies in a predefined 
neighbourhood. 
 
Since zero-phase-shift filters must be symmetric about the origin, a 
notch with center at 0 0( , )u v  must have a corresponding notch at 

location 0 0( , )u v- - . 
 
Notch reject filters are constructed as products of highpass filters 
whose centers have been translated to the centers of the notches: 
 

1

( , ) ( , ) ( , )
Q

NR k k
k

H u v H u v H u v-
=

=  ,  (4.10-2) 
 

where  ( , )kH u v and ( , )kH u v-  are highpass filters whose centers are 

at ( , )k ku v  and ( , )k ku v- - .  These “centers” are specified to the 

center of the frequency rectangle, ( /2, /2)M N . 
 

The distance computations for each filter are 
 

( ) ( )2 2( , ) /2 /2k k kD u v u M u v N v= - - + - -  (4.10-3) 
 

and 
 

( ) ( )2 2( , ) /2 /2k k kD u v u M u v N v- = - + + - +  (4.10-3) 
 

For example, the following is a Butterworth notch reject filter of 
order n, containing three notch pairs 
 

[ ] [ ]

3

2 2
1 0 0

1 1
( , )

1 / ( , ) 1 / ( , )
NR n n

k k k k k

H u v
D D u v D D u v= -

é ù é ù
ê ú ê ú= ê ú ê ú+ +ë û ë û

   (4.10-5) 

 

The constant 0kD  is the same for each pair of notches, but can be 
different for different pairs. 
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Other notch reject filters are constructed in the same manner, 
depending on the highpass filter chosen. 
 
A notch pass filter is obtained from a notch reject filter by  
 

( , ) 1 ( , )NP NRH u v H u v= - .   (4.10-6) 
 
Example 4.24: Enhancement of corrupted Cassini Saturn image by 
notch filtering 

 

Figure 4.65 (a) shows an image of part of the rings surrounding 
the planet Saturn. Figure 4.65 (b) shows the DFT spectrum. 
 

Figure 4.65 (c) shows a narrow notch rectangle filter (white 
represents 1 and black 0). Figure 4.65 (d) shows the result of 
filtering the corrupted image with this filter with a significant 
improvement over the original image. 
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Figure 4.66 (a) shows the result of using a notch pass version of 
the same filter to the DFT of Figure 4.65 (a). 
 
Figure 4.66 (b) shows the spatial pattern obtained by computing 
the IDFT of Figure 4.66 (a). 
 

 


