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4.7 The Basics of Filtering in the Frequency Domain 
 
Additional Characteristics of the Frequency Domain 
 

By observing the 2-D discrete Fourier transform (DFT)  
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we find that each term of ( , )F u v  contains all values of ( , )f x y , 
and it usually is impossible to make direct associations between 
specific components of an image and its transform. 
 

However, we can make some general statements about the 
relationship between the frequency components of the Fourier 
transform and spatial features of an image. 
 

For instance, since frequency is directly related to spatial rates of 
changes, frequencies in the Fourier transform are associated with 
patterns of intensity variations in an image. One of examples is 
that the slowest varying frequency component, 0u v= = , is 
proportional to the average intensity of an image. 
 

Filtering techniques in the frequency domain are based on 
modifying the Fourier transform to achieve a specific objective 
and then computing the IDFT to get us back to the image domain. 
 

According to 
 

( ),( , ) ( , ) j u vF u v F u v e f= ,   (4.6-15) 
 

the two components of the transform to which we have access are 
the transform magnitude (spectrum) and the phase angle. 
 
 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Fall Term, 2022-23) 
 

201

Although the visual analysis of the phase component generally is 
not very useful, however, the spectrum provides some useful 
guidelines as to gross characteristics of the image from which the 
spectrum was generated. 
 

Figure 4.29 shows an example. 
 

 
Figure 4.29 (a) shows an electron microscope image of an integrated 
circuit. It has two notable features: strong edges that run approximately 
at 45o and two white oxide protrusions. 
 

The Fourier spectrum in Figure 4.29 (b) shows prominent components 
along the 45o directions that correspond to the edges mentioned in 
Figure 4.29 (a). 
 

There is a vertical component that is off-axis slightly to the left in Figure 
4.29 (b). It was caused by the edges of the white oxide protrusions. 
 

The abovementioned facts are typical of the types of associations 
that can be made in general between the frequency and spatial 
domains.  
 

The relationships between frequency content and rate of change of 
intensity levels in an image can lead to some very useful results. 
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Frequency Domain Filtering Fundamentals 
 

Filtering in the frequency domain consists of modifying the Fourier 
transform of an image and then computing the inverse transform to 
obtain the processed result. 
 

Given a digital image ( , )f x y , of sizeM N´ , the basic filtering 
equation has the form 
 

[ ]g 1( , ) ( , ) ( , )x y H u v F u v-= F ,   (4.7-1) 
 

where 1-F is the IDFT, ( , )F u v  is the DFT of  the input image, 
( , )f x y , ( , )H u v  is a filter function, and g( , )x y  is the filtered image. 

 

One of the simplest filters we can construct is a filter ( , )H u v  that is 
0  at the center of the transform and 1  elsewhere. This filter will 
reject the dc term and pass all other terms.  
 

Figure 4.30 shows the result of applying this filter. 
 

 
 

 

Figure 4.30 is not a true representation of the original, as all 
negative intensities were set to 0  for display purposes. 
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Since high frequencies are caused by sharp transitions in intensity, 
such as edges and noise, we would expect a filter ( , )H u v  that 
attenuates high frequencies while passing low frequencies would 
blur an image. This is called a lowpass filter. 
 
On the other hand, a highpass filter would enhance sharp details, but 
could cause a reduction in contrast in the image. 
 
Figure 4.31 shows these effects. 
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We know that, while applying convolution, if the functions are not 
padded, the wraparound error is expected. Figure 4.32 shows an 
example. 
 

 
 
Figure 4.33 illustrates the reason for discrepancy between Figure 
4.32 (b) and (c). 
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Although  
 

[ ]g 1( , ) ( , ) ( , )x y H u v F u v-= F    (4.7-1) 
 

involves a filter that can be specified either in the spatial or the 
frequency domain, padding is done only in the spatial domain. 
 
What is the relationship between spatial padding and filters 
specified directly in the frequency domain? 
 

 
 
Figure 4.34 (a) shows a 1-D ideal lowpass filter in the frequency 
domain. The filter is real and has even symmetry. From Property 8 
in Table 4.1 
 

( , ) real and even     ( , ) real and evenf x y F u v  
 

its IDFT will be real and even symmetry as well. 
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Figure 4.34 (b) shows the corresponding spatial filter. 
 
Figure 4.34 (c) shows the two discontinuities created by zero-padding. 
 
To get back to the frequency domain, we compute the DFT of the 
zero-padded spatial filter. Figure 4.34 (d) shows the result. The 
discontinuities in the spatial filter have created ringing in its 
frequency counterpart. 
 
Any spatial truncation of the filter to implement zero-padding will 
introduce discontinuities, which will in general result in ringing in 
the frequency domain.  
 
Now we analyze the phase angle of the filtered transform. 
 
Since the DFT is a complex array, we can express it in terms of its 
real and imaginary parts: 
 

( , ) ( , ) ( , )F u v R u v jI u v= + .    (4.7-2) 
 

Equation (4.7-1) then becomes  
 

[ ]g 1( , ) ( , ) ( , ) ( , ) ( , )x y H u v R u v jH u v I u v-= +F , (4.7-3) 
 

which will not alter the phase angle because ( , )H u v  cancels out 
when the ratio of the imaginary and real parts is formed in 
 

( )
( , )

, arctan
( , )
I u v

u v
R u v

f
é ù

= ê ú
ê úë û .   (4.6-17) 

 

Filters that affect the real and imaginary parts equally, and thus have 
no effect on the phase, are called zero-phase-shift filters. 
 

Even small changes in the phase angle can have dramatic effects on 
the filtered output.  
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Figure 4.35 shows the effect of a scalar change. 
 

 
 

Figure 4.35 (a) shows an image resulting from multiplying the angle 
array in 
 

( ),( , ) ( , ) j u vF u v F u v e f=    (4.6-15) 
 

by 0.5, without changing ( , )F u v , and then computing the IDFT. 
Although the basic shapes remain unchanged, the intensity 
distribution is quite distorted. 
 
Figure 4.35 (b) shows the result of multiplying the phase by 0.25. 
The image is close to unrecognizable. 
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Summary of Steps for Filtering in the Frequency Domain 
 

1. Given an input image ( , )f x y  of sizeM N´ , obtain the padding 
parameters P and Q from  

 

2 1P M³ -      (4.6-31) 
and 

2 1Q N³ - .     (4.6-32) 
 

Typically, we select 2P M= and 2Q N= . 
 

2. Form a padded image, ( , )pf x y , of size P Q´  by appending the 

necessary number of zeros to ( , )f x y . 
 

3. Multiply ( , )pf x y by( )1 x y+-  to center its transform. 
 

4. Compute the DFT, ( , )F u v , of the image from Step 3. 
 

5. Generate a real, symmetric filter function, ( , )H u v , of size 
P Q´  with center at ( )/2, /2P Q . Form the product 
( ) ( ), ( , ) ,G u v H u v F u v=  using array multiplication 
( ) ( ), ( , ) ,G i k H i k F i k= . 

 

6. Obtain the processed image: 
 

( ) ( )[ ][ ]{ }( )g -1, real , 1 x yp x y G u v += -F  
 

where the real part is selected in order to ignore parasitic 
complex components resulting from computational in 
accuracies.  

 

7. Obtain the final processed result, g( , )x y , by extracting the  
M N´ region from the top, left quadrant of g ( , )p x y . 
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Figure 4.36 illustrates the preceding steps. 
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Correspondence between Filtering in the Spatial and Frequency 
Domains 
 
The link between filtering in the spatial and frequency domains is 
the convolution theorem. 
 

Suppose we want to find the equivalent representation of ( , )H u v  in 
the spatial domain. If we let  
 

( , ) ( , )f x y x yd= ,   
 

it follows from Table 4.3 that 
 

( , ) 1F u v = . 
Then, from 
 

[ ]g 1( , ) ( , ) ( , )x y H u v F u v-= F ,   (4.7-1) 
 

the filtered output is { }1 ( , )H u v-F . This is the inverse transform of 
the frequency domain filter, which is the corresponding filter in the 
spatial domain. 
 

Conversely, we can obtain the frequency domain representation by 
taking the forward Fourier transform of the spatial filter. Therefore, 
the two filters form a Fourier transform pair 
 

( , ) ( , )h x y H u v .     (4.7-4) 
 

Since ( , )h x y  can be obtained from the response of a frequency domain 

filter to an impulse, it is referred to the impulse response of ( , )H u v . 
 

In practice, we prefer to implement convolution filtering using 
 

( , ) ( , ) ( , ) ( , )
a b

s a t b

w x y f x y w s t f x s y t
=- =-

= - -å å★  (3.4-2) 
 

with smaller filter masks because of easier computation and 
implementation.  
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Filtering concepts are more intuitive in the frequency domain.  
 
One way to use the properties of both domains is to specify a filter 
in the frequency domain, compute its IDFT, and then use the 
resulting full-size spatial filter as a guide to construct smaller spatial 
filter masks. 
 
Since both the forward and inverse Fourier transforms of a Gaussian 
function are real Gaussian functions, the Gaussian filters are used 
here to show how frequency domain filters can be a guide to 
construct smaller spatial filter masks. 
 

Let ( )H u  be the 1-D frequency domain Gaussian filter 
 

2 2/2( ) uH u Ae s-=      (4.7-5) 
 

where s is the standard deviation of the Gaussian curve. 
 
The corresponding filter in the spatial domain is obtained by taking 
IDFT of ( )H u : 
 

2 2 2
( ) 2 xh x Ae p sps -= .    (4.7-6) 

 

Equations (4.7-5) and (4.7-6) are a Fourier transform pair, and both 
of their components are Gaussian and real. Also, these functions 
behave reciprocally. 
 

When the value of s increases, ( )h x  has a narrow profile. In fact, as 
s approaches infinity, ( )H u  tends toward a constant function and 
( )h x tends toward an impulse, which means that there is no filtering 

in both domains. 
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Example: 
 

 
 

More complex filters can be constructed using the basic Gaussian 
function of (4.7-5).  
 
We can construct a highpass filter as the different of Gaussians: 
 

2 2 2 2
1 2/2 /2( ) u uH u Ae Bes s- -= -     (4.7-7) 

 

with A B³  and 1 2s s> . The corresponding filter in the spatial 
domain is 
 

2 2 2 2 2 2
1 22 2

1 2( ) 2 2x xh x Ae Bep s p sps ps- -= -   (4.7-8) 
 

Figure 4.37 (c) and (d) show plots of these two functions. 
 

The most important feature here is that ( )h x  has a positive center 
term with negative terms on either side. The two masks shown in 
Figure 4.37 (d) were used in Chapter 3 as sharpening filters. 
 
In practice, the frequency domain can be viewed as a “laboratory” 
in which we take advantage of the correspondence between 
frequency content and image appearance. 
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Example 4.15: Obtaining a frequency domain filter from a small 
spatial mask. 

 

Figure 4.38 (a) shows a 600 600´ image, ( , )f x y . Figure 4.38 (b) 
shows its spectrum. 
 

 
Figure 4.39 (a) shows the Sobel mask, ( , )h x y . To avoid 
wraparound error, we have padded f and h  to size 602 602´ . 
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The Sobel mask exhibits odd symmetry, provided that it is 
embedded in an array of zeros of even size. To maintain this 
symmetry, we place ( , )h x y  so that its center is at the center of the 
602 602´ padded array. 
 

If we preserve the odd symmetry with respect to the padded array in 
forming ( , )ph x y , according to the Property 9 in Table 4.1, ( , )H u v  
will be purely imaginary. This will yield results that are identical to 
filtering the image spatially using ( , )h x y . 
 

The procedure used to generate ( , )H u v  is: 
 

(1) multiply ( , )ph x y  by ( )1 x y+-  to center the frequency 
domain filter; 

 

(2) compute the forward DFT of the result in (1); 
 

(3) set the real part of the resulting DFT to 0 to account for 
parasitic real part; 

 

(4) and multiply the result by ( )1 u v+- . 
 
Figure 4.39 (a) shows a plot of ( , )H u v , and Figure 4.39 (b) 

shows ( , )H u v  as an image.  
 
Figure 4.39 (c) is the result of using the filter just obtained in 
the procedure outlined in Page 208 (of the Lecture Notes) to 
filter the image in Figure 4.38 (a). As expected from a 
derivative filter, edges are enhanced and all the constant 
intensity areas are reduced to zero. 
 
Figure 4.39 (d) is the result of filtering the same image in the 
spatial domain directly, using ( , )h x y . The results are identical. 
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4.8 Image Smoothing Using Frequency Domain Filters 
 

Smoothing (blurring) is achieved in the frequency domain by 
lowpass filtering. 
 
Ideal Lowpass Filters 
 

A 2-D lowpass filter that passes all frequencies within a circle of 
radius 0D  from the origin and “cuts off” all frequencies outside this 
circle is called an ideal lowpass filter (ILPF). It is specified by the 
function 
 

0

0

1   if ( , )
( , )

0   if ( , )

D u v D
H u v

D u v D

ì £ïï= íï >ïî
   (4.8-1) 

 

where 0D is a positive constant, and ( , )D u v is the distance between a 

point ( , )u v  in the frequency domain and the center of the frequency 
rectangle 
 

2 2( , ) ( /2) ( /2)D u v u P v Q= - + -  ,  (4.8-2) 
 

where P and Q are the padded sized from 
 

2 1P M³ -      (4.6-31) 
and 

2 1Q N³ - .     (4.6-32) 
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For an ILPF cross section, the point of transition between 
( , ) 1H u v =  and ( , ) 0H u v =  is called the cutoff frequency. For 

example, the cutoff frequency is 0D in Figure 4.40 (c). 
 

One way to establish a set of standard cutoff frequency loci is to 
compute circles that enclose specified amounts of total image 
power TP . It can be obtained by summing the components of the 
power spectrum of the padded images at each point ( , )u v , 
 

1 1

0 0

( , )
P Q

T
u v

P P u v
- -

= =
= åå  ,    (4.8-3) 

 

where ( , )P u v  is given in 
 

2 2 2( , ) ( , ) ( , ) ( , )P u v F u v R u v I u v= = + . (4.6-18) 
 

If the DFT has been centered, a circle of radius 0D  within the 
frequency rectangle encloses an a  percent of the power, where 
 

100 ( , )/ T
u v

P u v Pa
é ù
ê ú=
ê úë û
åå .   (4.8-4) 

 

Figure 4.41 shows a test pattern image and its spectrum. 
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Example 4.16: Image smoothing using an ILPF 
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The blurring and ringing properties of ILPFs can be explained using 
the convolution theorem. 
 

 
 

Since a cross section of the LIPF in the frequency domain looks like 
a box filter, the corresponding spatial filter has the shape of a sinc 
function. 
 
The center lobe of the sinc is the principal cause of blurring, while 
the outer, smaller lobes are mainly responsible for ringing. 
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Butterworth Lowpass Filters 
 
The transfer function of a Butterworth lowpass filter (BLPF) of 
order n , and with cutoff frequency at a distance 0D  from the origin, 
is defined as 
 

[ ]20

1
( , )

1 ( , )/ nH u v
D u v D

=
+ ,   (4.8-5) 

 

where ( , )D u v  is given by  
 

2 2( , ) ( /2) ( /2)D u v u P v Q= - + -  .  (4.8-2) 
 

Figure 4.44 shows a perspective plot, image display, and radial cross 
sections of the BLPF function. 
 

 
 

Unlike the ILPF, the BLPF transfer function does not have a sharp 
discontinuity. 
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Example 4.17: Image smoothing with a Butterworth lowpass filter 
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A BLPF of order 1 has no ringing in the spatial domain. Ringing 
can become significant in filters of higher order. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


