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4.6 Some Properties of the 2-D Discrete Fourier Transform 
 
Relationships between Spatial and Frequency Intervals 
 

Suppose that a continuous function ( , )f t z  is sampled to form a 

digital image ( , )f x y , consisting of M N´  samples taken in the t- 
and z-directions. Let TD  and ZD  denote the separations between 
samples, then, the separations between the corresponding discrete, 
frequency domain variables are given by 
 

1
u

M T
D =

D      (4.6-1) 

and 
1

v
N Z

D =
D .     (4.6-2) 

 
Translation and Rotation 
 

The Fourier transform pair satisfies the following translation 
properties: 
 

( )0 02 / /
0 0( , ) ( , )j u x M v y Nf x y e F u u v vp +  - -  (4.6-3) 

and 
( )0 02 / /

0 0( , ) ( , ) j x u M y v Nf x x y y F u v e p- +- -   (4.6-4) 
 

Using the polar coordinates 
 

cos    sin    cos    sinx r y r u vq q w j w j= = = = , 
 

we have the following transform pair: 
 

0 0( , ) ( , )f r Fq q w j q+  + .    (4.6-5) 
 

Equation (4.6-5) indicates that rotating ( , )f x y  by an angle 0q  will 

rotate ( , )F u v  by the same angle. Conversely, rotating ( , )F u v  will 

rotate ( , )f x y  by the same angle. 
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Periodicity 
 

As in the 1-D case, the 2-D Fourier transform and its inverse are 
infinitely periodic in the u  and v  directions: 
 

( ) ( ) ( )1 2 1 2( , ) , , ,F u v F u k M v F u v k N F u k M v k N= + = + = + +  (4.6-6) 
 

and 
 

( ) ( ) ( )1 2 1 2( , ) , , ,f x y f x k M y f x y k N f x k M y k N= + = + = + +      (4.6-7) 
 

where 1k  and 2k  are integers. 
 

The periodicities of the transform and its inverse are important 
issues in the implementation of DFT-based algorithms. 
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Considering Figure 4.23 (b) and referring to 
 

( )0 02 / /
0 0( , ) ( , )j u x M v y Nf x y e F u u v vp +  - - , (4.6-3) 

 

it follows 
 

( )02 /
0( ) ( )j u x Mf x e F u up  - , 

 

which indicates that multiplying ( )f x  by the exponential term will 

show the shifting. If we let 0 /2u M= , the exponential term becomes 
j xe p , which is equal to ( )1 x- . It follows 

 

( )( ) 1 ( /2)xf x F u M-  - . 
 

It means that multiplying ( )f x  by ( )1 x-  shits the data so that ( )0F   
is at the center of the interval[ ]0, 1M - . 
 

In a case of 2D, if we let ( ) ( )0 0, /2, /2u v M N=  in 
 

( )0 02 / /
0 0( , ) ( , )j u x M v y Nf x y e F u u v vp +  - - , (4.6-3) 

 

it will result the expression 
 

( )( , ) 1 ( /2, /2)x yf x y F u M v N+-  - -   (4.6-8) 
 
Using (4.6-8) shifts the data so that ( )0,0F  is at the center of the 
frequency rectangle defined in Figure 4.23 (d). 
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Symmetry Properties 
 

An important result from functional analysis is that any real or 
complex function, ( , )w x y , can be expressed as the sum of an even 
and an odd part: 
 

( , ) ( , ) ( , )e ow x y w x y w x y= +    (4.6-9) 
 

where 
 

( )( , ) ,
( , )

2e
w x y w x y

w x y
+ - -

   (4.6-10a) 
 

and 
 

( )( , ) ,
( , )

2o
w x y w x y

w x y
- - -

 .  (4.6-10b) 
 

It follows that 
 

( )( , ) ,e ew x y w x y= - -     (4.6-11a) 
and 

( )( , ) ,o ow x y w x y= - - -    (4.6-11b) 
 

Even functions are said to be symmetric and odd functions are 
antisymmetric. 
 

Since all indices in DFT and IDFT are positive, when we say 
“symmetry (antisymmetry)” we are referring to symmetry 
(antisymmetry) about the center point of a sequence. 
 

It is more convenient to think only in terms of nonnegative indices, 
in which case 
 

( )( , ) ,e ew x y w M x N y= - -   (4.6-12a) 
and 

( )( , ) ,o ow x y w M x N y= - - -   (4.6-12b) 
 

where M and N  are the number of rows and columns of a 2-D 
array. 
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We know that the product of two even or odd functions is even, and 
the product of an even and an odd is odd. In addition, the only way 
that a discrete function can be odd is if all its samples sum to zero.  
 

These lead to the important result of 
 

1 1

0 0

( , ) ( , ) 0
M N

e o
x y

w x y w x y
- -

= =
=å å .   (4.6-13) 

 

In other words, because the argument of (4.6-13) is odd, the result of 
the summations is 0. the functions can be real or complex. 
 
Example 4.10: Even and odd functions 
 

The evenness and oddness of discrete sequences are not as easy 
to visualize as those of continuous functions. Consider the 1-D 
sequence 

 

{ } { }(0)  (1)  (2)  (3) 2  1  1  1f f f f f= =  
 

in which 4M = . To test for evenness, the condition 
( ) (4 )f x f x= -  must be satisfied:  

 

(0) (4)f f= ,  (1) (3)f f= ,  (2) (2)f f= ,  (3) (1)f f= . 
 

Since (4)f  is outside the range being examined and it can be 

any value, the value of (0)f  is immaterial in the test for 
evenness.  
 

The next three conditions are satisfied and the sequence is 
even. 

 

In fact, any 4-point even sequence has to have the form 
{       }a b c b . 
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According to (4.6-10b), the first term of an odd sequence, 
(0,0)ow , is always 0 . Consider the 1-D sequence 

 

{ }(0)  (1)  (2)  (3) {0 1  0  1}g g g g g= = - , 
 

which satisfies the condition ( ) (4 )g x g x= - - .   
 

Any 4-point odd sequence has the form {0   0  }b b- . 
 
The evenness and oddness of sequences depend also on the length 
of the sequences. For example, although {0 1  0  1}-  is odd, 

the sequence {0 1  0  1  0}-  is neither odd nor even. 
 

The same basic considerations hold in 2-D. For example, the 
6 6´  2-D sequence 

 

0     0     0     0     0     0 
0     0     0     0     0     0 
0     0    -1     0     1     0 
0     0    -2     0     2     0 
0     0    -1     0     1     0  
0     0     0     0     0     0 
 

is odd. However, adding another row or column of 0s would give 
a result that is neither odd nor even. 

 
Now, we can establish a number of important symmetry properties 
of the DFT and its inverse. 
 

The Fourier transform of a real function, ( , )f x y , is conjugate 
symmetric: 
 

( , ) ( , )F u v F u v* = - - .    (4.6-14) 
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If ( , )f x y  is imaginary, its Fourier transform is conjugate 
antisymmetric: 
 

( , ) ( , )F u v F u v* - - = - . 
 
Table 4.1 lists symmetries and related properties of the DFT that 
are useful in digital image processing. 
 

 
 
Example 4.11 
 
Example 4.12 
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Fourier Spectrum and Phase Angle 
 
Since the 2-D DFT is complex in general, it can be expressed in 
polar form: 
 

( ),( , ) ( , ) j u vF u v F u v e f= ,   (4.6-15) 
where 

( ) ( )2 2 1/2( , ) [ , , ]F u v R u v I u v= +  (4.6-16) 
 

is the Fourier (frequency) spectrum, and 
 

( )
( , )

, arctan
( , )
I u v

u v
R u v

f
é ù

= ê ú
ê úë û    (4.6-17) 

 

is the phase angle.  
 
The power spectrum is defined as 
 

2 2 2( , ) ( , ) ( , ) ( , )P u v F u v R u v I u v= = + , (4.6-18) 
 

whereR and I are the real and imaginary parts of ( , )F u v  and the 
discrete variables 0,1,2,..., 1u M= -  and 0,1,2,..., 1v N= - . 
 
The spectrum has even symmetry about the origin 
 

( , ) ( , )F u v F u v= - - ,   (4.6-19) 
 

and phase angle has the odd symmetry about the origin 
 

( , ) ( , )u v u vf f= - - - .    (4.6-20) 
 

From the 2-D discrete Fourier transform defined in  
 

( )
1 1

2 / /

0 0

( , ) ( , )
M N

j ux M vy N

x y

F u v f x y e p
- -

- +

= =
= å å  (4.5-15) 
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we have 
 

1 1

0 0

(0,0) ( , )
M N

x y

F f x y
- -

= =
= å å  

1 1

0 0

1
( , )

M N

x y

MN f x y
MN

- -

= =
= å å  

( , )MNf x y=      (4.6-21) 
 

where ( , )f x y  denotes the average value of ( , )f x y . Then, we have 
 

(0,0) ( , )F MN f x y=    (4.6-22) 
 

Since the constant MN  is usually large, (0,0)F  typically is the 
largest component of the spectrum (it could be several orders of 
magnitude larger than other terms). 
 

(0,0)F sometimes is called the dc component of the transform. 
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Example 4.13: The 2-D Fourier spectrum of a simple function 
 

 
 

Figure 4.24 (a) shows a simple image and Figure 4.24 (b) shows 
its spectrum, whose values were scaled to the range [ ]0,255  and 
displayed in the image form. 
 

The origins of both the spatial and frequency domains are at the 
top left. Note that the four corners of the spectrum contain 
similarly high values. The reason is the periodicity property 
discussed in the previous section. 
 

Figure 4.24 (c) shows the result of multiplying the image in 
Figure 4.24 (a) by ( )1 x y+-  before computing the DFT. 
 

Figure 4.24 (d) shows the display of ( )( )log 1 ,F u v+ . The 
increased rendition of detail is evident. 
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According to 
 

( )0 02 / /
0 0( , ) ( , ) j x u M y v Nf x x y y F u v e p- +- -   (4.6-4) 

 

and 
 

0 0( , ) ( , )f r Fq q w j q+  + ,    (4.6-5) 
 

the spectrum is insensitive to image translation (the absolute 
value of the exponential term is 1), but it rotates by the same 
angle of a rotated image. Figure 4.25 illustrates these properties. 
 

 
 

Figure 4.25 (a) shows that the rectangle in Figure 4.24 (a) was 
translated. Figure 4.25 (b) shows the corresponding spectrum, 
which is identical to the spectrum shown in Figure 4.24 (d). Figure 
4.25 (c) and Figure 4.25 (d) are the images of rotated rectangle and 
the corresponding spectrum. 
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The images in Figure 4.24 (a) and Figure 4.25 (a) are different. If 
their Fourier spectra are the same, according to 
 

( ),( , ) ( , ) j u vF u v F u v e f= ,   (4.6-15) 
 

their phase angles must be different, as shown in Figure 4.26. 
 

 
 

Figure 4.26 (a) and Figure 4.26 (b) are the phase angle arrays of 
the DFTs of Figure 4.24 (a) and Figure 4.25 (a). 
 

In general, visual analysis of phase angle images yields little 
intuitive information. 

 
The components of the spectrum of the DFT would determine the 
amplitudes of the sinusoids that combine to form the resulting image. 
 
At any given frequency in the DFT of an image, a large amplitude 
implies a greater prominence of a sinusoid of that frequency in the 
image. Conversely, a small amplitude implies that less of that 
sinusoid is present in the image. 
 
The phase is a measure of displacement of the various sinusoids 
with respect to their origin. 
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Example 4.14: Further illustration of the properties of the Fourier 
spectrum and phase angle 

 

 
 

Figure 4.27 (b) is the phase angle of the DFT of Figure 4.27 (a). 
 

Figure 4.27 (c) was obtained by computing the inverse DFT of  
 

( ),( , ) ( , ) j u vF u v F u v e f=    (4.6-15) 
 

using only phase information. It shows the importance of the 
phase in determining shape characteristics.  
 

Figure 4.27 (d) was obtained by using only the spectrum in (4.6-15) 
and computing the inverse DFT. 
 

Figure 4.27 (e) and (f) show the dominance of the phase in 
determining the feature content of an image. 
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The 2-D Convolution Theorem 
 

Extending  
1

0

( ) ( ) ( ) ( )
M

m

f x h x f m h x m
-

=
= -å★    (4.4-10) 

 

to two variables results in the expression for 2-D circular 
convolution: 
 

1 1

0 0

( , ) ( , ) ( , ) ( , )
M N

m n

f x y h x y f m n h x m y n
- -

= =
= - -å å★  (4.6-23) 

 

for 0,1,2,..., 1x M= -  and 0,1,2,..., 1y N= - . As in (4.4-10), 
(4.6-23) gives one period of a 2-D periodic sequence. 
 
The 2-D convolution theorem is given by the expressions 
 

( , ) ( , ) ( , ) ( , )f x y h x y F u v H u v★    (4.6-24) 
 

and, conversely, 
 

( , ) ( , ) ( , ) ( , )f x y h x y F u v H u v ★    (4.6-25) 
 

where F  and H  are obtained from using the 2-D discrete Fourier 
transform  
 

( )
1 1

2 / /

0 0

( , ) ( , )
M N

j ux M vy N

x y

F u v f x y e p
- -

- +

= =
= å å . (4.5-15) 

 

As mentioned previously, the double arrow,  , is used to indicate 
that the left and right sides of the expressions constitute a Fourier 
transform pair. 
 
Equation (4.6-24) is the foundation of linear filtering, and is the 
basis for all the filtering techniques discussed in this chapter. 
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Figure 4.28 shows a 1-D example. 
 

 
 

The left column of Figure 4.28 implements convolution of two 
functions, f and h , using the 1-D equivalent of 
 

( , ) ( , ) ( , ) ( , )
a b

s a t b

w x y f x y w s t f x s y t
=- =-

= - -å å★ , (3.4-2) 
 

which is  
 

399

0

( ) ( ) ( ) ( )
m

f x h x f x h x m
=

= -å★ .  
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Figure 4.28 (e) shows the convolution of these two functions. 
 
If we use the DFT and the convolution theorem to obtain the same 
result as in the left column of Figure 4.28, we must take into account 
the periodicity inherent in the expression of DFT. 
 
Figure 4.28 (f) and (g) are two periodic functions. Processing 
convolution with these two functions would yield the result shown 
in Figure 4.28 (j), which is incorrect. They interfere with each other 
to cause the so-called wraparound error. 
 

To solve the wraparound error problem, consider two functions, ( )f x  

and ( )h x  composed of A  and B  samples. If we append zeros to both 
functions so that they have the same length, P , then wraparound is 
avoided by choosing 
 

1P A B³ + - .    (4.6-26) 
 

In the example shown in Figure 4.28, each function has 400 points, 
so the minimum value we could use is 799P = . We can achieve 
that by appending 399 zeros to the trailing edge of each function. 
This process is called zero padding.  
  
We would have the same conclusion regarding to wraparound error 
in 2-D. let ( , )f x y  and ( , )h x y  be two image arrays of sizes A B´  
and C D´  pixels. Wraparound error in their circular convolution 
can be avoided by padding these functions with zeros, as follows: 
 

( , )  0 1  and  0 1
( , )   

0              or     p

f x y x A y B
f x y

A x P B y Q

ì £ £ - £ £ -ïï= íï £ £ £ £ïî  (4.6-27) 

and 
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( , )  0 1  and  0 1
( , )   

0              or     p

h x y x C y D
h x y

C x P D y Q

ì £ £ - £ £ -ïï= íï £ £ £ £ïî (4.6-28) 

with 
1P A C³ + -      (4.6-29) 

and 
1Q B D³ + - .    (4.6-30) 

 

The resulting padded images are of size P Q´ . If both arrays are of 
the same size, M N´ , then we require that 
 

2 1P M³ -      (4.6-31) 
and 

2 1Q N³ - .     (4.6-32) 
 
As a rule, DFT algorithms tend to execute faster with arrays of even 
size, so it is a good practice to select P  and Q  as the smallest even 
integers that satisfy the above equations. 
 

If the two arrays are the same size, P  and Q  are selected as twice 
the array size. 
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Summary of 2-D Discrete Fourier Transform Properties 
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