GACS-7205-001 Digital Image Processing Page 181
(Fall Term, 2022-23)

4.6 Some Properties of the 2-D Discrete Fourier Transform

Relationships between Spatial and Frequency Intervals

Suppose that a continuous function f(%,2) is sampled to form a
digital image f(7,¥), consisting of M x N samples taken in the ¢-

and z-directions. Let AT and AZ denote the separations between
samples, then, the separations between the corresponding discrete,
frequency domain variables are given by

1
Au = (4.6-1)
and
1
Av = (4.6-2)

Translation and Rotation

The Fourier transform pair satisfies the following translation
properties:

f(z,y)ePm ot M wIN) o Py —ug,0 — 1) (4.6-3)
and

fl@ = g,y — yo) & F(u,v)e 2rme/Mrwe /N4 6.4y
Using the polar coordinates

r=rcosf y=rsinf u=wcosy v=uwsiny,
we have the following transform pair:
f(r>0+00) And F(w790+00). (46-5)

Equation (4.6-5) indicates that rotating /(,¥) by an angle 6, will
rotate F'(u,v) by the same angle. Conversely, rotating £'(u,v) will
rotate f(2,9) by the same angle.
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Periodicity
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As 1n the 1-D case, the 2-D Fourier transform and its inverse are
infinitely periodic in the v and v directions:

F(u,0) = F(u+ kM,v) = F(u,0+ bN) = F(u + kMo + kN) (4.6-6)

and

flay) = fle+kMy) = f(z,y + B,N) = f(z + hM,y + kN)

where %1 and % are integers.

(4.6-7)

The periodicities of the transform and its inverse are important
issues in the implementation of DFT-based algorithms.
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FIGURE 4.23
Centering the
Fourier transform.
(a) A1-D DFT
showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying f(x)
by (—1)* before
computing F(u).
(c) A2-DDFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)**)

before computing
F(u,v). The data
now contains one
complete, centered
period, as in (b).
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Considering Figure 4.23 (b) and referring to

fla,y)e?r ot MEIN) o Flu —ug,0 —v9),  (4.6-3)
it follows

fla)e2r I o Fu — ),

which indicates that multiplying /(%) by the exponential term will
show the shifting. If we letup = M /2 | the exponential term becomes
e/™  which is equal to (—1)". It follows

f@)(=1)" & Flu—M/2),

It means that multiplying f(z) by (—1)* shits the data so that #'(0)
is at the center of the interval [0, M — 1],

In a case of 2D, if we let (up,vy) = (M /2,N /2) in

f(.’E, y)€j27r(u0:p/M+vQy/N) PN F(U — Uy, v — UO) ’ (46-3)
it will result the expression
fla,y) (=) & Flu— M /20— N/2) (4.6-8)

Using (4.6-8) shifts the data so that F'(0,0) is at the center of the
frequency rectangle defined in Figure 4.23 (d).
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Symmetry Properties

An important result from functional analysis is that any real or
complex function, w(z,¥), can be expressed as the sum of an even
and an odd part:

w(z,y) = w,(,y) + w,(z,y) (4.6-9)
where
w\r,y + U)<—$,—y)
w(y) & L2V 5 (4.6-10a)
and
A w(x7y) _ w(_xa_y)
w, (7, y) = 5 . (4.6-10b)
It follows that
we(7,y) = w, (—7,~y) (4.6-11a)
and
w,(7,y) = —w, (—2,~y) (4.6-11b)

Even functions are said to be symmetric and odd functions are
antisymmetric.

Since all indices in DFT and IDFT are positive, when we say
“symmetry (antisymmetry)” we are referring to symmetry
(antisymmetry) about the center point of a sequence.

It is more convenient to think only in terms of nonnegative indices,
in which case

we(%?/) = We (M - ZB,N - y) (46-123)
and
w,(2,y) = —w, (M —z,N — y) (4.6-12b)

where M and N are the number of rows and columns of a 2-D
array.
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We know that the product of two even or odd functions is even, and
the product of an even and an odd is odd. In addition, the only way
that a discrete function can be odd 1s if all its samples sum to zero.

These lead to the important result of
M-1
In other words, because the argument of (4.6-13) is odd, the result of
the summations is 0. the functions can be real or complex.

N1
;} we (2, y)w, (z,y) = 0 (4.6-13)

Example 4.10: Even and odd functions

The evenness and oddness of discrete sequences are not as easy
to visualize as those of continuous functions. Consider the 1-D
sequence

F=400) /) /) f[G}r=4{2 111}

in which M = 4. To test for evenness, the condition
f(z) = f(4 — ) must be satisfied:

f0)=f4), f1)=f3), f2)=f2), [B)=/Q1).

Since f(4) is outside the range being examined and it can be

any value, the value of f(0) is immaterial in the test for
evenness.

The next three conditions are satisfied and the sequence is
even.

In fact, any 4-point even sequence has to have the form
{a b ¢ b},
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According to (4.6-10b), the first term of an odd sequence,
w,(0,0) , is always 0. Consider the 1-D sequence

g=19(0) g(1) 92) 93)} ={0 —1 0 1},

which satisfies the condition 9(z) = —g(4 — z).

Any 4-point odd sequence has the form {0 —0 0 b},

The evenness and oddness of sequences depend also on the length
of the sequences. For example, although {0 —1 0 1} is odd,

the sequence {0 —1 0 1 0} is neither odd nor even.

The same basic considerations hold in 2-D. For example, the
6 x 6 2-D sequence

0 0 0 0 O O
0 0 0 0 0 O
0O 0 -1 0 1 O
0O 0 -2 0 2 O
0O 0 -1 0 1 O
0 0 0 0 0 O

is odd. However, adding another row or column of Os would give
a result that is neither odd nor even.

Now, we can establish a number of important symmetry properties
of the DFT and its inverse.

The Fourier transform of a real function, f(#,¥), is conjugate
symmetric:

F*(u,v) = F(—u,—v) (4.6-14)
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If f(z,y) is imaginary, its Fourier transform is conjugate

antisymmetric:

F*(—u,—v) = —F(u,v) .
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Table 4.1 lists symmetries and related properties of the DFT that
are useful in digital image processing.

Spatial Domain'

_—
Frequency Domain

1)
)

(TSR ]

=

5

«w o~

)
)
)
)
)
3)

9)
10)
11)
12)

)

13

F(x,y)real

f(x,y) imaginary
F(x,y)real

S(x,y) imaginary

J(—x, —y) real

f(—x, —y) complex

f(x, y) complex
f(x,y)real and even

f(x, y) real and odd
f(x,y)imaginary and even
f(x, y) imaginary and odd
f(x,y) complex and even

F(x,y) complex and odd

LI R A

=

F(u,v) = F(—u, —v)
F'(—u, —v) = —F(u. v)
R(u,v) even: I(u, v) odd
R(u, v) odd; I{u, v) even
F'(u. v) complex

F(—u, —v) complex
F'(—u — v) complex
F(u, v)real and even

F(u, v) imaginary and odd
F(u, v) imaginary and even
F(u, v) real and odd
F(u,v) complex and even

F(u, v) complex and odd

TRecall that x, v, «, and » are discrele (integer) variables, with x and « in the range [0, M — 1], and y, and
vin the range [0, N — 1]. To say that a complex function is even means that its real and imaginary parts

are even, and similarly for an odd complex function.

Example 4.11

Example 4.12

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and {(u, v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.
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Fourier Spectrum and Phase Angle

Since the 2-D DFT is complex in general, it can be expressed in
polar form:

F(u,v) = | F(u,v)| ") (4.6-15)
where

| F(u,v)| = [R? (w,v) + I* (w,0)]? (4.6-16)
is the Fourier (frequency) spectrum, and

I(u,v)
R(u,v)

¢ (u,v) = arctan

(4.6-17)

is the phase angle.

The power spectrum is defined as
P(u,v) = |F(u,0) = R*(u,v) + I*(w,v),  (4.6-18)

where R and I are the real and imaginary parts of #(«,v) and the
discrete variables v = 0,1,2,.... M —1 and v = 0,1,2,.... N —1,

The spectrum has even symmetry about the origin
| F(u,0)| = |F(—u,—v)|, (4.6-19)
and phase angle has the odd symmetry about the origin
¢(u,v) = —@(—u,—v), (4.6-20)

From the 2-D discrete Fourier transform defined in

M—-1N-1

Fluw) = 37 37 flayyle Proe/ MmN o sy

=0 y=0
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we have
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(4.6-21)

where f(2,9) denotes the average value of f(2,y). Then, we have

| F(0,0)] = MN|JT($>?J)|

(4.6-22)

Since the constant MN is usually large, | #(0,0)| typically is the
largest component of the spectrum (it could be several orders of

magnitude larger than other terms).

F'(0,0) sometimes is called the dc component of the transform.
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Example 4.13: The 2-D Fourier spectrum of a simple function

— ) — b
ab
cd

FIGURE 4.24

(a) Image.

(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
in (a) is longer in that

R -—

direction. The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.

-
-

u u

Figure 4.24 (a) shows a simple image and Figure 4.24 (b) shows
its spectrum, whose values were scaled to the range [0,255] and
displayed in the image form.

The origins of both the spatial and frequency domains are at the
top left. Note that the four corners of the spectrum contain
similarly high values. The reason is the periodicity property
discussed in the previous section.

Figure 4.24 (c) shows the result of multiplying the image in
Figure 4.24 (a) by (—1)""Y before computing the DFT.

Figure 4.24 (d) shows the display of log (1 +|F (u,v)|). The
increased rendition of detail 1s evident.
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According to

flo = 20,y — yo) & Flu,v)e T/ Mwe/N) 4 6.4)
and

f(r,0 +6y) & Flw,p +6), (4.6-5)

the spectrum is insensitive to image translation (the absolute
value of the exponential term is 1), but it rotates by the same
angle of a rotated image. Figure 4.25 illustrates these properties.

a b
c d

FIGURE 4.25

(a) The rectangle
in Fig. 4.24(a)
translated,

and (b) the
corresponding
spectrum.

(c) Rotated
rectangle,

and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

Figure 4.25 (a) shows that the rectangle in Figure 4.24 (a) was
translated. Figure 4.25 (b) shows the corresponding spectrum,
which is identical to the spectrum shown in Figure 4.24 (d). Figure
4.25 (c) and Figure 4.25 (d) are the images of rotated rectangle and
the corresponding spectrum.
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The images in Figure 4.24 (a) and Figure 4.25 (a) are different. If
their Fourier spectra are the same, according to

F(u,0) = | F(u,v)| e’ (4.6-15)

their phase angles must be different, as shown in Figure 4.26.

abc

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig.4.25(a), and (c) to the rotated image in
Fig. 4.25(c).

Figure 4.26 (a) and Figure 4.26 (b) are the phase angle arrays of
the DFTs of Figure 4.24 (a) and Figure 4.25 (a).

In general, visual analysis of phase angle images yields little
intuitive information.

The components of the spectrum of the DFT would determine the
amplitudes of the sinusoids that combine to form the resulting image.

At any given frequency in the DFT of an image, a large amplitude
implies a greater prominence of a sinusoid of that frequency in the
image. Conversely, a small amplitude implies that less of that
sinusoid is present in the image.

The phase is a measure of displacement of the various sinusoids
with respect to their origin.
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Example 4.14: Further illustration of the properties of the Fourier
spectrum and phase angle

abc
de f

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.

Figure 4.27 (b) is the phase angle of the DFT of Figure 4.27 (a).

Figure 4.27 (c¢) was obtained by computing the inverse DFT of
F(u,v) = | F(u,v)] e ") (4.6-15)

using only phase information. It shows the importance of the
phase in determining shape characteristics.

Figure 4.27 (d) was obtained by using only the spectrum in (4.6-15)
and computing the inverse DFT.

Figure 4.27 (e) and (f) show the dominance of the phase in
determining the feature content of an image.
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The 2-D Convolution Theorem

Extending
flay h(z) = fm)h(z —m) (4.4-10)
m=0

to two variables results in the expression for 2-D circular
convolution:

1

f(z,y)x h(z,y) = Z— z— f(m,n)h(z — m,y —n) (4.6-23)
m=0n=0

for = = 0,1,2,..., M =1 and ¥y = 0,1,2,.... N — 1 As in (4.4-10),
(4.6-23) gives one period of a 2-D periodic sequence.

The 2-D convolution theorem 1s given by the expressions
f(@,y)x hz,y) < F(u,v)H (u,v) (4.6-24)
and, conversely,
f(@y)h(z,y) < Flu,vpx H(u,v) (4.6-25)

where F' and H are obtained from using the 2-D discrete Fourier
transform

1

M-1N-1
- —727(uz /M+vy/N)
Fu,v) = ;) y;)f(as,y)e / T (4.5415)

As mentioned previously, the double arrow, <, is used to indicate
that the left and right sides of the expressions constitute a Fourier
transform pair.

Equation (4.6-24) is the foundation of linear filtering, and is the
basis for all the filtering techniques discussed in this chapter.
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Figure 4.28 shows a 1-D example.
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I
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Ao g
[l = -

e ]

FIGURE 4.28 Left
column:
convolution of
two discrete
functions
obtained using the
approach
discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce
wraparound error,
yielding an
incorrect
convolution
result. To obtain
the correct result,
function padding
must be used.

The left column of Figure 4.28 implements convolution of two

functions, fand h, using the 1-D equivalent of

ZZ

w(z,

which is

y f

s=—at=—

l’—S,y—t)

5

(3.4-2)
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Figure 4.28 (e) shows the convolution of these two functions.

If we use the DFT and the convolution theorem to obtain the same
result as in the left column of Figure 4.28, we must take into account
the periodicity inherent in the expression of DFT.

Figure 4.28 (f) and (g) are two periodic functions. Processing
convolution with these two functions would yield the result shown
in Figure 4.28 (j), which is incorrect. They interfere with each other
to cause the so-called wraparound error.

To solve the wraparound error problem, consider two functions, f(z)

and () composed of A and B samples. If we append zeros to both

functions so that they have the same length, P, then wraparound is
avoided by choosing

P>A+B-1. (4.6-26)

In the example shown in Figure 4.28, each function has 400 points,
so the minimum value we could use is P = 799 . We can achieve
that by appending 399 zeros to the trailing edge of each function.
This process is called zero padding.

We would have the same conclusion regarding to wraparound error
in 2-D. let f(z,¥) and (2,y) be two image arrays of sizes 4 x B

and C x D pixels. Wraparound error in their circular convolution
can be avoided by padding these functions with zeros, as follows:

flz,y) 0<z<A—-1and 0<y<B-1

hl@y) =1, A<z<P o B<y<Q (4.6-27)

and



GACS-7205-001 Digital Image Processing Page 197
(Fall Term, 2022-23)

h(z,y) 0<z<C-1and 0<y<D-1

h p—
p(:Y) =1, C<z<P o D<y<Q (4.6-28)
with
and
Q>B+D-—1. (4.6-30)

The resulting padded images are of size P’ X @ . If both arrays are of
the same size, M x N , then we require that

P>2M —1 (4.6-31)
and
Q@ >2N -1, (4.6-32)

As arule, DFT algorithms tend to execute faster with arrays of even
size, so it is a good practice to select P and () as the smallest even
integers that satisfy the above equations.

If the two arrays are the same size, P and @ are selected as twice
the array size.
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Summary of 2-D Discrete Fourier Transform Properties

3) Polar representation

4) Spectrum

5) Phase angle

6) Power spectrum

Name Expression(s)
1) Discrete Fourier M—1N—1 . .
transform (DFT) Flu.v) = > D f(x, y)e /rux/MivyN)
nll f‘{xi y] x=l y=0
2) Inverse discrete | M=1N-1
Fourier transform flx.y)=—— E E F(u. v) el27ws/M+vy/N)
(IDFT) of Flu. v) MN =5 520

Flu. v) = |F(u. v)|e/*®?)

, 112
|F (u.v)| = [Rz{u. v) + I(u, v}]
R = Real(F). I = lmag(F)

Iu,v
¢u, v) = lan_l[ ( }}
Riu, v)

P(u.v) = |F(u., v)|?

M-1N-1

= 1
7) Average value xX.y) = - V)= ——F(0,0
) Average value fen=3n 2 }g“f(x ) = 35 FO.0)
(Continued)
Name Expression(s)

8) Periodicity (kq and
k> are integers)

9) Convolution

10y Correlation

11) Separability

12) Obtaining the inverse
Fourier transform
using a forward

transform algorithm.

Flu,v) = Flu + kM. v) = Flu,v + kaN)
= F(u + kyM.v + kN)
flx.y) = fix + kyM. y) = f(x. ¥y + kN)

f(x =+ k]M..y + ng}
M-1N-1

2 Ef(m.n}h(x —m,y — n)

m=0 n=0

M—1N—1
flx,yyhix.y) = > D f(m.nh(x + my + n)

m=0 n=0

Flx, y)*xh(x,y)

The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.

M—1N-1
MNf'(x.y) = 3 D F (u v)e T/

. - - “?ll ?'"=“ - - * -
Thisequation indicates that inputting F (z, ») into an

algorithm that computes the forward transform
(right side of above equation) yields MNF (x, v).
Taking the complex conjugate and dividing by MN
gives the desired inverse. See Section 4.11.2.
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TABLE 4.2
Summary of DFT
definitions and
corresponding
expressions.
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Name DFT Pairs

1) Symmetry See Table 4.1

properties
2) Linearity afi(x, y) + bfs(x, y) < aF{u. v) + bF (1. v)

fx. y)el2rluxiMtvy/N) By — uy v — vy)
— 2 (txa’ M+ uyo/N)

3) Translation

(general) flx — xp.y — yg) = Flu.v)e

Fle.y)(—1D)"V e Fu — M/2.v — N/2)
flx — M/2,y — N/2)<= Flu. o) (— 1)t

4) Translation
to center of
the frequency
rectangle,
(M2, NI2)

5) Rotation f(r.8 + 8)) = Flw. ¢ + )
X =rcosf y=rsinf u=wcoseg
flx, y)*hix, y) = F(u, v)H(u,v)

flx. y)h(x, y) = F(u,v) % H(u,v)

v = wsin g

6) Convolution
theorem’

(Continued)

Name DFT Pairs

F(x. y)h(x, y) < F'(u, v) H(u, v)
fWPmWyN:ﬂuﬂwHw@

7) Correlation
theorem'
8) Discrete unit
impulse

S5(x.y) =

sin(mrua) sin{wvb) —jr(ua+ub)

9) Rectangle rect|a, b] < ab

(mua) {(7vb)

10) Sine sin(2mugx + 2wygy) <

1
;;[6(:1 + Muy, v + Nvy) — 6(u — Mug. v— Na:”}]

11}y Cosine cos(2mugx + 2mrygy) <

1
;[S(U + Muy. v + Nop) + 8(u — Mug, v — N?)HJ]

The following Fourier transform pairs are derivable only for continuous variables,
denoted as before by t and z for spatial variables and by u and » for frequency
variables. These results can l‘-;, used for DFT work by sampling the continuous forms.
a N 0"
12) Differentiation (—) ( _) flt.2) = (22ap)™(2av) Fu, v)
(The expressions o 9z
on the right a"f(t, z) m d f(
assume that am (2mp) " Fp, ) — 5

f(:l:oc:. +oo) = ()

< (j2av)"Fip, v)

Azr(rze—l—.?.rﬁ(rﬁ+z§; @Ae—(.«:h-?];_r#

13) Gaussian (A 1s a constant)

T Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-

ciative, commutative, and distributive.
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TABLE 4.3
Summary of DFT
pairs. The closed-
form expressions
in 12 and 13 are
valid only for
continuous
variables. They
can be used with
discrete variables
by sampling the
closed-form,
continuous
expressions.



