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Chapter 4    Filtering in the Frequency Domain 
 
4.1 Background 

 
A Brief History of the Fourier Series and Transform 
 

 
 
Joseph Fourier (21 March 1768 – 16 May 1830) was a French 
mathematician and physicist best known for initiating the 
investigation of Fourier series and their application to problems 
of heat transfer. 
 
One of the most important Fourier’s contributions states that any 
periodic function can be expressed as the sum of sines and/or 
cosines of different frequencies, each multiplied by a different 
coefficient. We now call this sum a Fourier series. 
 
It does not matter how complicated the function is, if it is periodic 
and satisfies some mild mathematical conditions, it can be 
represented by Fourier series.  
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Even functions that are not periodic (but whose area under the curve 
is finite) can be expressed as the integral of sines and/or cosines 
multiplied by a weighting function. The formulation in this case is 
the Fourier transform, and its utility is even greater than the Fourier 
series in many theoretical and applied disciplines. 
 
One of the most important characteristics of these representations is 
that a function, expressed in either a Fourier series or transform, can 
be reconstructed completely via an inverse process with no loss of 
information. This characteristic allows us to work in the Fourier 
domain and then return to the original domain of the function 
without losing any information. 
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The initial application of Fourier’s ideas was in the field of heat 
diffusion. The advent of digital computers and the “discovery” of a 
fast Fourier transform (FFT) algorithm in the early 1960s 
revolutionized the field of signal processing. 
 
We will show that Fourier techniques will provide a meaningful and 
practical way to study and implement a host of image processing 
approaches. 
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4.2 Preliminary Concepts 
 
Complex Numbers 
 
A complex number, C , is defined as 
 

C R jI= +      (4.2-1) 
 

where R  and I  are real numbers, and j  is an imaginary number 
equal to 1- . 
 
The conjugate of a complex number C , denoted C * , is defined as 
 

C R jI* = -      (4.2-2) 
 

Sometimes, it is useful to represent complex numbers in polar 
coordinates, 
 

( )cos sinC C jq q= +    (4.2-3) 
 

where 2 2C R I= + is the length of the vector extending from 
the origin of the complex plane to the point ( , )R I , and q is the angle 
between the vector and the real axis. 
 

 
 

Using Euler’s formula 
 

cos sinje jq q q= + ,    (4.2-4) 
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we have the following familiar representation of complex numbers 
in polar coordinates 
 

jC C e q= .     (4.2-5) 
 

The above equations are applicable also to complex functions. For 
example, a complex function, ( )F u , of a variable u , can be 

expressed as the sum ( ) ( ) ( )F u R u jI u= + , where ( )R u  and  ( )I u  
are the real and imaginary component functions. 
 
The complex conjugate of ( )F u  is ( ) ( ) ( )F u R u jI u* = - , the 

magnitude is 2 2( ) ( ) ( )F u R u I u= + , and the angle is 
[ ]( ) arctan ( )/ ( )u I u R uq = . 

 
Fourier Series 
 

A function ( )f t  of a continuous variable t  that is periodic with 
period, T , can be expressed as the sum of sines and cosines 
multiplied by appropriate coefficients. The sum, known as a Fourier 
series, has the form 
 

2

( )
n

j t
T

n
n

f t c e
p¥

=-¥
= å       (4.2-6) 

 

where 
 

2/2

/2

1
( )    for 0, 1, 2,...

nT j t
T

n
T

c f t e dt n
T

p
-

-
= =  ò   (4.2-7) 

 

are the coefficients. 
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Impulses and Their Sifting Property 
 
Central to the study of linear systems and the Fourier transform is 
the concept of an impulse and its sifting property. 
 

A unit impulse of a continuous variable t  located at 0t = , denoted 
( )td , is defined as 

 

       if 0
( )

0        if 0

t
t

t
d

¥ =ìïï= íï ¹ïî
.    (4.2-8a) 

 

It is also to satisfy the identity 
 

( ) 1t dtd
¥

-¥
=ò .      (4.2-8b) 

 

An impulse has the sifting property with respect to integration 
 

( ) ( ) (0)f t t dt fd
¥

-¥
=ò      (4.2-9) 

 

Provided that ( )f t  is continuous at 0t = .  
 
A more general statement of the sifting property involves an impulse 
located at an arbitrary point 0t , denoted by 0( )t td - . Then, the sifting 
property becomes 
 

0 0( ) ( ) ( )f t t t dt f td
¥

-¥
- =ò ,    (4.2-10) 

 

which yields the value of the function at the impulse location, 0t . 
 

Example: If ( ) cos( )f t t= , using the impulse ( )td p-  , then 

(4.2-10) yields the result ( ) cos( ) 1f p p= = - . 
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The unit discrete impulse, ( )xd , is defined as 
 

1       0
( )

0       0

x
x

x
d

=ìïï= íï ¹ïî
.    (4.2-11a) 

 

Clearly, this definition also satisfies the discrete equivalent of 
(4.2-8b): 
 

( ) 1
x

xd
¥

=-¥
=å .      (4.2-11b) 

 

The sifting property for discrete variables has the form 
 

( ) ( ) (0)
x

f x x fd
¥

=-¥
=å ,    (4.2-12) 

 

and more generally 
 

0 0( ) ( ) ( )
x

f x x x f xd
¥

=-¥
- =å .  (4.2-13) 

 

 
 
An impulse train, ( )Ts tD , defined as the sum of infinitely many 
periodic impulses TD units apart: 
 

( ) ( )T
n

s t t n Td
¥

D
=-¥

= - Då .   (4.2-14) 
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The Fourier Transform of Functions of One Continuous Variable 
 

The Fourier transform of a continuous function ( )f t  of a continuous 
variable, t , is defined by 
 

{ } 2( ) ( ) j tf t f t e dtpm¥ -

-¥
= òF    (4.2-15) 

 

where m  is also a continuous variable. By writing 
 

{ } ( )( )f t F m=F  
 

the Fourier transform may be written as 
 

2( ) ( ) j tF f t e dtpmm
¥ -

-¥
= ò .    (4.2-16) 

 

Conversely, given ( )F m , we can obtain ( )f t  back using the inverse 
Fourier transform, written as 
 

2( ) ( ) j tf t F e dpmm m
¥

-¥
= ò .    (4.2-17) 

 

Equations (4.2-16) and (4.2-17) comprise the so-called Fourier 
transform pair. They indicate the important fact that a function can 
be recovered from its transform. 
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Using Euler’s formula, (4.2-16) can be expressed as 
 

( ) ( )[ ]( ) ( ) cos 2 sin 2F f t t j t dtm pm pm
¥

-¥
= -ò . (4.2-18) 

 

Because the only variable left after integration is frequency, we say 
that the domain of the Fourier transform is the frequency domain. 
 
Example 4.1: Obtaining the Fourier transform of a simple function 
 
 

 
 

The Fourier transform of the function in Figure 4.4 (a) is 
 

/2
2 2

/2
( ) ( )

W
j t j t

W
F f t e dt Ae dtpm pmm

¥ - -

-¥ -
= =ò ò  

[ ] /22
/22 2

Wj t j W j W
W

A A
e e e

j j
pm pm pm

pm pm
- -

-

- - é ù= = -ë û  

( )
( )

sin
2

j W j WA W
e e AW

j W
pm pm pm

pm pm
-é ù= - =ë û , 

 

where we applied the trigonometric identity  
 

( )sin /2j je e jq qq -= - . 
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Note that 
( )

( )

sin m
m
p

p is known as the normalized sinc( )m  function, with  
 

sinc(0) 1=    
and  

sinc( ) 0m =   
 

for all other integer values of m . 
 

 
In general, the Fourier transform contains complex terms, and we 
work with the magnitude of the transform, which is called the 
Fourier spectrum or the frequency spectrum: 
 

( )
( )

sin
( )

W
F AW

W
pm

m
pm

= , 
 

which is shown in Figure 4.4 (c). 
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Example 4.2: Fourier transform of an impulse  
 

The Fourier transform of a unit impulse located at the origin 
follows from (4.2-16) 
 

2( ) ( ) j tF t e dtpmm d
¥ -
-¥

= ò     

2 ( )j te t dtpm d
¥ -
-¥

= ò  
 

By using the sifting property in 
 

( ) ( ) (0)f t t dt fd
¥

-¥
=ò ,     (4.2-9) 

 

we have 
 

2 0 0( ) 1jF e epmm -= = =  
 

Thus, we see that the Fourier transform of an impulse located at 
the origin of the spatial domain is a constant in the frequency 
domain. 
 

The Fourier transform of a unit impulse located at 0t t=   
 

2
0( ) ( ) j tF t t e dtpmm d

¥ -

-¥
= -ò     

2
0( )j te t t dtpm d

¥ -

-¥
= -ò  

 

Again, by using the sifting property stated in (4.2-9), we get 
 

( ) ( )

02

0 0

( )

      cos 2 sin 2

j tF e

t j t

pmm

pm pm

-=

= -  

 

which are equivalent representations of a unit circle centered on 
the origin of the complex plane. 
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Convolution 
 
We are interested in the convolution of two continuous functions, 
( )f t  and ( )h t , of one continuous variable t . 

 

The convolution of these two functions is defined as 
 

( ) ( ) ( ) ( )f t h t f h t dt t t
¥

-¥
= -ò★ .  (4.2-20) 

 

By a few steps starting from (4.2-15), we can find the so-called 
Fourier transform pair: 
 

 ( ) ( ) ( ) ( )f t h t H Fm m★     (4.2-21) 
 

and 
 

( ) ( ) ( ) ( )f t h t H Fm m ★ .    (4.2-22) 
 

The double arrow ( ) is used to indicate that the expression on 
the right is obtained by taking Fourier transform of the expression 
of the left. 
 
The convolution theorem is the foundation for filtering in the 
frequency domain. 
 
 
 
 
 
 
 
 
 
 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Fall Term, 2022-23) 
 

155

4.3 Sampling and the Fourier Transform of Sampled 
Functions 

 

Sampling 
 

Continuous functions have to be converted into a sequence of 
discrete values before they can be processed in a computer. 
 

 
 

One way to model sampling is to multiply ( )f t  by a sampling 
function equal to a train of impulses TD  unit apart 
 

( ) ( ) ( ) ( ) ( )T
n

f t f t s t f t t n Td
¥

D
=-¥

= = - Då
  (4.3-1) 

 

where ( )f t  denotes the sampled function. ( )f t  is shown in Figure 
4.5 (c). 
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The value of each sample is then given by the “strength” of the 
weighted impulses, and the value, kf , of an arbitrary sample in the 
sequence is given by 
 

( ) ( ) ( ) ( )kf t f t t k T dt f k Td
¥

-¥
= - D = Dò .  (4.3-2) 

 

Equation (4.3-2) holds for any integer value ..., 2, 1,0,1,2,...k = - - .  
 
The Fourier Transform of Sampled Functions 
 

Let ( )F m denote the Fourier transform of a continuous function ( )f t .  

Then, the Fourier transform, ( )F m , of the sampled function ( )f t is 
 

( ) ( )F Fm m m= ★ S( ),      (4.3-3) 
 

where 
 

( )
n

n
T

m d m
¥

=-¥
-

D Då1
S( ) =

T     (4.3-4) 
 

is the Fourier transform of the impulse train ( )Ts tD . Then we have 
 

( ) ( )

( ) ( )
( ) ( )

( )

( ) ( )

       =

       =

       =

n

n

n

F F F S d

n
F d

T

n
F d

T

n
F

T

m m m t m t t

t d m t t

t d m t t

m

¥

¥
¥¥

-¥ =-¥
¥ ¥

-¥=-¥
¥

=-¥

= -

- -
D D

- -
D D

-
D D

ò

åò

å ò

å


-

★ S( ) =

1
T

1
T

1
T

  (4.3-5) 

The equation (4.3-5) shows that the Fourier transform ( )F m  of the 

sampled function ( )f t is an infinite, periodic sequence of copies of 
( )F m . The separation between copies is determined by the value of 

1/ TD . 
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The Sampling Theorem 
 
We consider the sampling process and establish the conditions under 
which a continuous function can be recovered uniquely from a set of 
its samples. 
 

A function ( )f t whose Fourier transform is zero for values of 

frequencies outside a finite interval (band) [ ]max max,m m-  is called a 
band-limited function. Figure 4.7 (a) is such a function. 
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We can recover ( )f t  from its sampled version if we can isolate a 

copy of ( )F m  from the periodic sequence of copies of this function 

contained in ( )F m . 
 

Extracting from ( )F m  a single period that is equal to ( )F m  is possible 
if the separation between copies is sufficient. In terms of Figure 4.7 
(b), sufficient separation is guaranteed if max1/2 T mD > , or  
 

max
1

2
T

m>
D .     (4.3-6)  

 

Equation (4.3-6) indicates that a continuous, band-limited function 
can be recovered completely from a set of its samples if the samples 
are acquired at a rate exceeding twice the highest frequency content 
of the function. 
 
This result is known as the sampling theorem. 
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A sampling rate equal to exactly twice the highest frequency is 
called the Nyquist rate. 
 
Figure 4.8 shows the Fourier transform of a function sampled at a 
rate slightly higher than the Nyquist rate. 
 

 
 

The function in Figure 4.8 (b) is defined by  
 

max max      
( )

0          otherwise

T
H

m m m
m

D - £ £ìïï= íïïî
 (4.3-7) 

 

When multiplied by the periodic sequence in Figure 4.8 (a), this 
function isolates the period centered on the origin. Then, we obtain 

( )F m  by multiplying ( )F m  by ( )H m : 
 

( ) ( ) ( )F H Fm m m=  .     (4.3-8) 
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Once we have ( )F m , we can recover ( )f t  by using the inverse 
Fourier transform: 
 

2( ) ( ) j tf t F e dpmm m
¥

-¥
= ò .    (4.3-9) 

 

Equations (4.3-7) through (4.3-9) have proved theoretically that it is 
possible to recover a band-limited function from samples of the 
function obtained at a rate exceeding twice the highest frequency 
content of the function. Function ( )H m  is called a lowpass filter. 
 
Aliasing 
 

What happens if a band-limited function is sampled at a rate that is 
less than twice its highest frequency? Figure 4.9 shows the under-
sampled case.   

 


