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Histogram Matching (Specification) 
 
As previously discussed, histogram equalization can automatically 
determine a transformation function that seeks to produce an output 
image that has a uniform histogram. When automatic enhancement 
is desired, this is a good approach since the results from this 
technique are predictable and the method is simple to implement. 
 
However, it is useful sometimes to be able to specify the shape of 
the histogram that we wish the processed image to have. 
 
The method used to generate a processed image that has a 
specified histogram is called histogram matching or histogram 
specification. 
 

Let r and z denote the intensity levels of input and output images, 

and ( )rp r  and ( )zp z  denote their corresponding continuous 

probability density functions. We can estimate ( )rp r  from the 

given input image, while ( )zp z  is the specified probability 
density function that we wish the output image to have. 
 
Let s be a random variable with the property 
 

0

( ) ( 1) ( )
r

rs T r L p d     ,  (3.3-10) 
 

which is the continuous version of histogram equalization given in  
 (3.3-4). Then, we define a random variable z with the property 
 

0

( ) ( 1) ( )
z

zG z L p t dt s   ,  (3.3-11) 
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where t is a dummy variable of integration. It then follows from 

these two equations that ( ) ( )G z T r  and, therefore, that z must 
satisfy the condition 
 

 1 1( ) ( )z G T r G s   .   (3.3-12) 
 

Equations (3.3-10) through (3.3-12) show that an image whose 
intensity levels have a specified probability density function can 
be obtained from a given image by using the following procedure: 
 

1. Obtain ( )rp r  from the input image and use (3.3-10) to 
obtain the values of s. 

 

2. Use the specified PDF in (3.3-11) to obtain the transformation 

function ( )G z . 
 

3. Obtain the inverse transformation 
1( )z G s . Because z is 

obtained from s, this process is a mapping from s to z. 
 

4. Obtain the output image by first equalizing the input image 
using (3.3-10). The pixel values in this image are the s values.  

 

For each pixel with values s in the equalized image, perform 

the inverse mapping 
1( )z G s  to obtain the corresponding 

pixel in the output image. 
 

When all pixels have been processed, the PDF of the output 
image will be equal to the specified PDF. 

 
 
 
 
 
 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Fall Term, 2022-23) 
 

107

Example 3.7: Histogram specification 
 

Suppose that an image has the intensity probability density 
function  
 

2

2
( )

( 1)r

r
p r

L


   
 

for 0 ( 1)r L    and ( ) 0rp r   for other values of r . 
 

We want to find the transformation function that will produce 
an image whose intensity PDF is 
 

2

3

3
( )

( 1)z

z
p z

L


  
 

for 0 ( 1)z L    and ( ) 0zp z  for other values of z . 
 

First, we find the histogram transformation function for [0, 1]L  : 
 

2

0 0

2
( ) ( 1) ( )

( 1) ( 1)

r r

r

r
s T r L p d d

L L
       

    
 

Since we are interested in an image with a specified histogram, so 
we find next 
 

3
2

2 20 0

3
( ) ( 1) ( )

( 1) ( 1)

z z

z

z
G z L p d d

L L
      

    
 

Then, we require that 
3 2( ) /( 1)G z s z L   , we can generate 

the z directly from the intensities, r , of the input image: 
 

1/32
1/3 1/32 2 2( 1) ( 1) ( 1)

( 1)

r
z L s L L r

L

 
               
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As Example 3.7 shows, histogram specification is straightforward 
in principle. In practice, however, a common difficulty is to find 

meaningful expressions for ( )T r  and 
1G
. This problem will be 

simplified significantly when dealing with discrete quantities. 
 
The discrete formulation of 
 

0

( ) ( 1) ( )
r

rs T r L p d        (3.3-10) 

 

is the histogram equalization transformation in  
 

0

0

( ) ( 1) ( )

( 1)
          0,1,2,..., 1

k

k k r j
j

k

j
j

s T r L p r

L
n k L

MN





  


  



  (3.3-13) 

 

Given a specific value of ks , the discrete formulation of  
 

0

( ) ( 1) ( )
z

zG z L p t dt s      (3.3-11) 

 

involves computing the transformation function 
 

0

( ) ( 1) ( )
q

q z i
i

G z L p z


       (3.3-14) 
 

for a value of q , so that 
 

( )q kG z s       (3.3-15) 
 

where ( )z ip z  is the thi value of the specified histogram. 
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We can find the desired value qz  by obtaining the inverse 
transformation: 
 

1( )q kz G s ,      (3.3-16) 
 

though we do not need to compute 
1G
 in practice. 

 

Recalling that the ks s are the values of histogram-equalized image, 
we can summarize the histogram-specification procedure as follows: 
 

1. Compute the histogram ( )rp r of the given image, and use it to 
find the histogram equalization transformation in (3.3-13). Then, 

round the resulting values, ks , to the integer range [1, 1]L  . 
 

2. Compute all values of the transformation function G using 

(3.3-14) for 0,1,2,.., 1q L  , where ( )z ip z  are the values 

of the specified histogram. Round the values of G  to integers 
and store the values of G  in a table. 

 

3. For every value of ks , 0,1,2,.., 1k L  , use the stored 

values of G to find the corresponding value of qz  so that 

( )qG z  is closest to ks  and store these mappings from s  to z . 

If there are more than one value of qz  satisfying the given ks , 
choose the smallest value. 

 

4. Form the histogram-specified image by histogram-equalizing 

the input image and then mapping every pixel value, ks , of 

this image to the corresponding value qz  in the histogram-
specified image using the mapping found in Step 3.   
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For 
1G
to satisfy conditions ( a ' ) and (b), G  has to be strictly 

monotonic, which means that none of the values ( )z ip z of the 
specified histogram can be zero. 
 
When working with discrete quantities, the above condition may 
not be satisfied is not a serious implementation issue. 
 
Example 3.8: A simple example of histogram specification 

 

Consider the 64 64 hypothetical image from Example 3.5, 
whose histogram is repeated in Figure 3.22 (a). 
 

 
 

We transform this histogram in order to have the values 
specified in the second column of Table 3.2.  
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The first step is to obtain the scaled histogram-equalized 
values, which was done in Example 3.5: 
 

0 2 4 6

1 3 5 7

1       5       6       7

3       6       7       7  

s s s s

s s s s

   

     

 

Then, by using (3.3-14), we compute all the values of the 
transformation function G : 
 

0

0
0

( ) 7 ( ) 0.00z j
j

G z p z


  , 

 
1

1 0 1
0

( ) 7 ( ) 7 ( ) ( ) 0.00z j
j

G z p z p z p z


    , 

and 
 

2 4 6

3 5 7

( ) 0.00       ( ) 2.45       ( ) 5.95

( ) 1.05       ( ) 4.55       ( ) 7.00

G z G z G z

G z G z G z

  
    

 

To convert these fractional values to integers in our valid 

range [1, 1]L : 
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0 4

1 5

2 6

3 7

( ) 0.00 0        ( ) 2.45 2   

( ) 0.00 0        ( ) 4.55 5    

( ) 0.00 0       ( ) 5.95 6 

( ) 1.05 1        ( ) 7.00 7 

G z G z

G z G z

G z G z

G z G z

   
   
   
   

 

 

These results are summarized in Table 3.3, and the 
transformation function is sketched in Figure 3.22 (c). 

 
Observe that G  is not strictly monotonic, so condition ( a ' ) is 
violated. Therefore, we use the approach outlined in Step 3 of 
the algorithm to handle this situation. 
 

We need to find the smallest value of qz  so that the value ( )qG z  

is the closest to ks . We do this for every value of ks  to create the 
required mappings from s  to z . 
 

For example, 0 1s  , and we see that 3( ) 1G z  , so we have the 

correspondence 0 3s z , which means that every pixel whose 

value is 1 in the histogram equalized image would map to a pixel 
valued 3  in the histogram-specified image. Table 3.4 shows the 
completed mappings with this manner: 
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In the final step of the procedure, we use the mappings in 
Table 3.4 to map every pixel in the histogram equalized 
image into a corresponding pixel in the newly created 
histogram-specified image.  
 
The values of the resulting histogram are listed in the third 
column of Table 3.2, and the histogram is sketched in Figure 
3.22 (d). 
 
Although the final result shown in Figure 3.22 (d) does not 
match the specified histogram exactly, the general trend of 
moving the intensities toward the high end of the intensity scale 
definitely was achieved. 
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Example 3.9: Comparison between histogram equalization and 
histogram matching 

 
Figure 3.23 (a) shows an image of the Mars moon, Phobos, and 
Figure 3.23 (b) shows the histogram of Figure 3.23 (a). 
 

 
 

The image is dominated by large, dark areas, resulting in a 
histogram characterized by a large concentration of pixels in the 
dark end of the gray scale. 
 
Would histogram equalization be a good approach to enhance 
this image, so that details in the dark areas become more visible? 
 
Figure 3.24 (a) shows the histogram equalization transformation 
obtained from the histogram in Figure 3.23 (b), which rises 
sharply from intensity level 0 to 190. 
 
When this transformation is applied to the levels of the input 
image to obtain a histogram-equalized result, the net effect is to 
map a very narrow interval of dark pixels into the upper end of 
the gray scale of the output image.  
 

Figure 3.24 (b) shows the histogram-equalized image. Figure 
3.24 (c) shows the histogram of Figure 3.24 (b). 
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The problem with the transformation function in Figure 3.24 (a) 
was caused by a large concentration of pixels in the original image 
with levels near 0 . A reasonable approach is to modify the 
histogram of that image so that it does not have this property. 
 

Figure 3.25 (a) shows a manually specified function that preserves 
the general shape of the original histogram, but has a smoother 
transition of levels in the dark region of the gray scale. 
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The transformation function ( )G z  obtained from the histogram 
shown in Figure 3.25 (a) using 
 

0

( ) ( 1) ( )
q

q z i
i

G z L p z


       (3.3-14) 
 

is labelled transformation (1) in Figure 3.25 (b). The inverse 

transformation function 
1( )G s

 obtained from 
 

1( )q kz G s       (3.3-16) 
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is labelled transformation (2) in Figure 3.25 (b). 
 

The enhanced image shown in Figure 3.25 (c) was obtained by 
applying transformation (2) to the pixels of the histogram 
equalized image in Figure 3.24 (b). 
 
Figure 3.25 (d) shows the histogram of Figure 3.25 (c). The 
most distinguishing feature of this histogram is how its low end 
has shifted right toward the lighter region of the gray scale. 
 
Compare Figure 3.25 (c) and Figure 3.24 (c), the improvement 
is obvious. 
 
 
 

In general, there are no rules for specifying histograms, and one 
must resort to analysis on a case-by-case basis for any given 
enhancement task. 
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Local Histogram Processing 
 
The histogram processing methods discussed previously are global, 
in the sense that pixels are modified by a transformation function 
based on the intensity distribution of an entire image.  
 
In general, the global approach is suitable for overall enhancement. 
 
Sometimes, we may want to enhance details over small areas in 
an image, in which pixels may have negligible influence on the 
computation of a global transformation. 
 
The solution is to devise transformation functions based on the 
intensity distribution in a neighbourhood of every pixel in the image. 
 
The histogram processing techniques previously described can be 
easily adapted to local enhancement.  
 
The procedure is to define a neighbourhood and move its center from 
pixel to pixel. At each location, the histogram of the points in the 
neighbourhood is computed and either a histogram equalization or 
histogram specification transformation function is obtained.  
 
The center of the neighbourhood region is then moved to an adjacent 
pixel location and the procedure is repeated. 
 
Since only one row or column of the neighbourhood changes during 
a pixel-to-pixel translation of the neighbourhood, updating the 
histogram obtained in the previous location with the new data 
introduced at each motion step is possible. 
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Example 3.10: Local histogram equalization 
 

Figure 3.26 (a) shows an 8-bit, 512 512  image, which is 
slightly noisy. 
 

 
 

Figure 3.26 (b) shows the result of global histogram equalization. 
As often is the case with histogram equalization of smooth, noisy 
regions, Figure 3.26 (b) shows significant enhancement of the 
noise. 
 
Figure 3.26 (c) was obtained using local histogram equalization 
with a neighbourhood of size 3 3 .  
 
Figure 3.26 (c) shows the significant detail contained within the 
dark squares.  
 
Since the intensity values of the objects within small squares 
were too close to the intensity of the large squares, and their 
size were too small, to influence global histogram equalization 
significantly to show this detail. 
 

Using Histogram Statistics for Image Enhancement 
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3.4 Fundamental of Spatial Filtering 
 
Spatial filtering is one of the principal tools used in image processing 
for a broad spectrum of applications. 
 
The Mechanics of Spatial Filtering 
 
As explained briefly in Figure 3.1, a spatial filter consists of a 
neighbourhood and a predefined operation that is performed on 
the image pixels encompassed by the neighbourhood.  
 
Filtering creates a new pixel with coordinates equal to the 
coordinates of the center of the neighbourhood, and whose value 
is the result of the filtering operation.  
 
If the operation performed on the image pixels is linear, then the 
filter is called a linear spatial filter. Otherwise, the filter is nonlinear. 
 
Figure 3.28 shows the mechanics of linear spatial filtering using a 
3 3  neighbourhood. 
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At any point ( , )x y in Figure 3.28, the response, ( , )g x y , of the 
filter is the sum of products of the filter coefficients and the 
image pixels encompassed by the filter: 
 

( , ) ( 1, 1) ( 1, 1) ( 1,0) ( 1, ) ...

               (0,0) ( , ) ... (1,1) ( 1, 1)

g x y w f x y w f x y

w f x y w f x y

= - - - - + - - +

+ + + + +  
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In general, linear spatial filtering of an image of size M N´  with 
a filter of size m n´  is given by the expression: 
 

( , ) ( , ) ( , )
a b

s a t b

g x y w s t f x s y t
=- =-

= + +å å  
 

where x and y are varied so that each pixel in w  visits every pixel 
in f. 
 
Spatial Correlation and Convolution 
 
There are two closely related concepts when performing linear 
spatial filtering, correlation and convolution. 
 
Correlation is the process of moving a filter mask over the image 
and computing the sum of products at each location. 
 
A 1-D example of correlation and convolution: Figure 3.29 (a) – 
(h). 
 
The concept of convolution is a cornerstone of linear system 
theory. A fundamental property of convolution is that convolving 
a function with a unit impulse yields a copy of the function at the 
location of the impulse. 
 
To perform convolution, all we do is to rotate one function by 

o180  and perform the same operation as in correlation, as the 
right column in Figure 3.29 shows. 


