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Bit-plane slicing 
 
Instead of highlighting intensity-level ranges, we could highlight 
the contribution made to total image appearance by specific bits. 
 

 
 

Figure 3.13 shows an 8-bit image, which can be considered as 
being composed of eight 1-bit planes, with plane 1 containing the 
lowest-order bit of all pixels in the image and plane 8 all the 
highest-order bits. 
 

Example: 
 

 



GACS-7205-001 Digital Image Processing                                        Page 
(Fall Term, 2022-23) 
 

91 

 

Note that each bit plane is a binary image. 
 
For example, all pixels in the border have values 1 1 0 0 0 0 1 0, 
which is the binary representation of decimal 194. Those values 
can be viewed in Figure 3.14 (b) through (i). 
 
Decomposing an image into its bit planes is useful for analyzing 
the relative importance of each bit in the image. 
 
Example: 
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3.3 Histogram Processing 
 
The histogram of a digital image with intensity levels in the range 
[0, 1]L   is a discrete function ( )k kh r n , where kr  is the kth 

intensity value and kn  is the number of pixels in the image with 

intensity kr . 
 
It is common practice to normalize a histogram by dividing each of 
its components by the total number of pixels in the image, denoted 
by MN, where M and N are the row and column dimensions of the 
image. 
 
A normalized histogram is given by 
 

, for .( ) 0,1,2,..., 1k
k

n
p r k L

MN
    

 

( )kp r  can be seen as an estimate of the probability of occurrence 

of intensity level kr  in an image. The sum of all components of a 
normalized histogram is equal to 1. 
 
Histograms are the basic for numerous spatial domain processing 
techniques.  
 
Example: 
 
Figure 3.16, which is the pollen image of Figure 3.10 shown in 
four basic intensity characteristics: dark, light, low contrast, and 
high contrast, shows the histograms corresponding to these image. 
 

The vertical axis corresponds to value of ( )k kh r n  or 

( ) /k kp r n MN  if the values are normalized. 
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Histogram Equalization 
 
We consider the continuous intensity values and let the variable r 
denote the intensities of an image. We assume that r is in the 

range [0, 1]L  . 
 
We focus on transformations (intensity mappings) of the form 
 

( )   0 1s T r r L       (3.3-1) 
 

that produce an output intensity level s for every pixel in the 
input image having intensity r. Assume that 
 

(a) ( )T r  is a monotonically increasing function in the 

interval  0 1r L   , and 
 

(b) 0 ( ) 1T r L    for 0 1r L   . 
 
In some formations to be discussed later, we use the inverse 
 

 1( )   0 1r T s s L       (3.3-2) 
 

in which case we change condition (a) to 
 

(a ')    ( )T r  is a strictly monotonically increasing function in 

the interval 0 1r L   . 
 

Figure 3.17 (a) shows a function that satisfies conditions (a) and 
(b).   
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From Figure 3.17 (a), we can see that it is possible for multiple 
values to map to a single value and still satisfy these two 
conditions, (a) and (b). That is, a monotonic transformation 
function can perform a one-to-one or many-to-one mapping, 
which is perfectly fine when mapping from r to s. 
 
However, there will be a problem if we want to recover the values 
of r uniquely from the mapped values. 
 

As Figure 3.17 (b) shows, requiring that ( )T r  be strictly 
monotonic guarantees that the inverse mappings will be single 
valued. This is a theoretical requirement that allows us to derive 
some important histogram processing techniques. 
 
The intensity levels in an image may be viewed as random 

variables in the interval [0, 1]L  . A fundamental descriptor of a 
random variable is its probability density function (PDF). 
 

Let ( )rp r and ( )sp s  denote the probability density functions of r 
and s. A fundamental result from basic probability theory is that if 

( )rp r  and ( )T r  are known, and ( )T r  is continuous and 
differentiable over the range of values of interest, then the PDF of 
the transformed variable s can be obtained using the formula 
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 ( ) (r)s r

dr
p s p

ds
     (3.3-3) 

 

A transformation function of particular importance in image 
processing has the form 
 

0

(r) ( 1) ( )
r

rs T L p d       (3.3-4) 

 

where   is a dummy variable of integration.  
 

 

The right side of (3.3-4) is recognized as the cumulative distribution 
function of random variable r . Since PDFs always are positive, the 
transformation function of (3.3-4) satisfies condition (a) because the 
area under the function cannot decreases as r  increases. 
 

When the upper limit in (3.3-4) is ( 1)r L  , the integral 
evaluates to 1 (the area under a PDF curve always is 1), so the 

maximum value of s is ( 1)L  and condition (b) satisfies as well. 
 
Using (3.3-3) and recalling the Leibniz’s rule that saying the 
derivative of a definite integral with respect to its upper limit is 
the integrand evaluated at the limit, we have 
 

0

( )

    ( 1) ( )

    ( 1) ( )

r

r

r

ds dT r

dr dr
d

L p d
dr

L p r

 



     
 

   (3.3-5) 

 

Substituting this result for /dr ds  in (3.3-3), yields 
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( ) ( )

1
        ( )

( 1) ( )

1
               0 1

1

s r

r
r

dr
p s p r

ds

p r
L p r

s L
L






   


  (3.3-6) 

 

which shows the that ( )sp s  always is uniform, independently of 

the form of ( )rp r . 
 

 
 
Example 3.4: Illustration of (3.3-4) and (3.3.6) 

 

Suppose that the continuous intensity values in an image have 
the PDF 
 

 2

2
        0 1

1( )  

0                 

for

otherw  ise
r

r
r L

Lp r

     


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From (3.3-4), 
 

0

( ) ( 1) ( )
r

rs T r L p d       (3.3-4) 

2

0

2

( 1) 1

r r
d

L L
  

   

 

Consider an image in which 10L  , and suppose that a pixel at 
( , )x y  in the input image has intensity 3r  . Then, the pixel at 

( , )x y  in the new image is 
2( ) / 9 1s T r r   . 

 
We can versify that the PDF of the intensities in the new image 

is uniform by substituting ( )rp r  into (3.3-6) and using the facts 

that  2 / 1s r L  , r  is nonnegative, and 1L  : 
 

( ) ( )s r

dr
p s p r

ds
     (3.3-6) 

1

2

2
       

( 1)

r ds

L dr


       

12

2

2
       

( 1) 1

r d r

L dr L


 

      

2

2 ( 1) 1

( 1) 2 1

r L

L r L


 

   
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For discrete values, we deal with probabilities (histogram values) 
and summations instead of probability density functions and 
integrals.  
 

The probability of occurrence of intensity level kr  in a digital 
image is approximated by 
 

( )       0,1,2,..., 1k
r k

n
p r k L

MN
     (3.3-7) 

 

where MN  is the total number of pixels in the image, kn  is the 

number of pixels having intensity kr , and L  is the number of 
possible intensity levels in the image.  
 
The discrete form of the transformation in  

0

( ) ( 1) ( )
r

rs T r L p d        (3.3-4) 

is  

0

0

( ) ( 1) ( )

( 1)
          0,1,2,..., 1

k

k k r j
j

k

j
j

s T r L p r

L
n k L

MN





  


  



  (3.3-8) 

 

The transformation (mapping) ( )kT r  in (3.3-8) is called a histogram 
equalization transformation. 
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Example 3.5: A simple illustration of history equalization. 
 

Suppose that a 3-bit image ( 8L  ) of size 64 64 pixels 
( 4096MN  ) has the intensity distribution shown in Table 3.1. 
 

 
The histogram of our hypothetical image is sketched in Figure 
3.19 (a). 
 

 
 

By using (3.3-8), we can obtain values of the histogram equalization 
function: 
 

0

0 0 0
0

( ) 7 ( ) 7 ( ) 1.33r j r
j

s T r p r p r


    , 
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1

1 1 0 1
0

( ) 7 ( ) 7 ( ) 7 ( ) 3.08r j r r
j

s T r p r p r p r


     , 

 

2 4.55s  , 3 5.67s  , 4 6.23s  , 5 6.65s  , 6 6.86s  , and 

7 7.00s  . This function is shown in Figure 3.19 (b).  
 

Then, we round them to the nearest integers: 
 

0 1 2 31.33 1    3.08 3    4.55 5    5.67 6  s s s s       

4 5 6 76.23 6   6.65 7    6.86 7    7.00 7  s s s s       
 

which are the values of the equalized histogram. 
 

Observe that there are only five distinct levels: 
 

0 1s  :   790 pixels 

1 3s  : 1023 pixels 

2 5s  :   850 pixels 

3 6s  :   985 (656+329) pixels 

5 7s  :   448 (245+122+81) pixels 
     Total: 4096 

 
Dividing these numbers by 4096MN   would yield the 
equalized histogram shown in Figure 3.19 (c). 

 
Since a histogram is an approximation to probability density 
function, and no new allowed intensity levels are created in the 
process, perfectly flat histograms are rare in practical 
applications of histogram equalization.  
 
Therefore, in general, it cannot be proved that discrete histogram 
equalization results in a uniform histogram. 
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Given an image, the process of histogram equalization consists 
simply of implementing 
 

0

( 1)
 

k

k j
j

L
s n

MN 


  ,   (3.3-8) 

 

which is based on information that can be extracted directly from 
the given image, without the need for further parameter 
specifications. 
 
The inverse transformation from s  back to r  is denoted by 
 

1( )     0,1,2,..., 1k kr T s k L    (3.3-9) 
 

Although the inverse transformation is not used in the histogram 
equalization, it plays a central role in the histogram-matching 
scheme. 
 
Example 3.6: Histogram equalization 

 

The left column in Figure 3.20 shows the four images from 
Figure 3.16. 
 
The center column in Figure 3.20 shows the result of performing 
histogram equalization on each of the images in left. 
 
The histogram equalization did not have much effect on the 
fourth image because the intensities of this image already span 
the full intensity scale. 
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Figure 3.21 shows the transformation functions used to 
generate the equalized images in Figure 3.20. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 


