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5.7 Inverse Filtering 
 
The simplest approach to restoration is direct inverse filtering, 

where we compute an estimate, ˆ( , )F u v , of the transform of the 
original image by 
 

( , )ˆ( , )
( , )
G u v

F u v
H u v

=      (5.7-1) 

 

Substituting the right side of 
 

( , ) ( , ) ( , ) ( , )G u v H u v F u v N u v= +   (5.1-2) 
 

in (5.7-1) yields 
 

( , )ˆ( , ) ( , )
( , )
N u v

F u v F u v
H u v

= + .   (5.7-2) 

 

The bad news is that we cannot recover the undegraded image 
exactly because ( , )N u v is not known. 
 

More bad news is that if the degradation function ( , )H u v  has zero 
or very small values, so the second term of (5.7-2) could easily 

dominate the estimate of ˆ( , )F u v . 
 
One approach to get around the zero or small-value problem is to 
limit the filter frequencies to values near the origin. As discussed 
earlier, we know that (0,0)H  is usually the highest value of 

( , )H u v  in the frequency domain. 
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Example 5.11: Inverse filtering 
 

The image in Figure 5.25 (b) was inverse filtered with  
 

( , )ˆ( , )
( , )
G u v

F u v
H u v

=      (5.7-1) 
 

using the exact inverse of the degradation function that generated 
that image. That is, the degradation function used was 
 

( ) ( )
5/62 2/2 /2( , ) k u M v NH u v e

é ù- - + -ê úë û=   
 

with 0.0025k = . In this case, 480M N= = .  
 

Although a Gaussian-shape function has no zeros and it is not a 
concern here, the degradation values become so small that the 
result of full inverse filtering shown in Figure 5.27 (a) is useless. 
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Figure 5.27 (b) through (d) show the results of cutting off 
values of the ratio ( ) ( ), / ,G u v H u v outside a radius of 40, 70, 
and 85, respectively.  
 
Values above 70 started to produce degraded images, and 
further increases in radius values would produce images that 
looked more and more like Figure 5.27 (a). 

 
The results in Example 5.11 show the poor performance of direct 
inverse filtering in general. 
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5.8 Minimum Mean Square Error (Wiener) Filtering 
 
Here we discuss an approach that incorporates both the degradation 
function and statistical characteristics of noise into the restoration 
process. 
 
Considering images and noise as random variables, the objective 

is to find an estimate f̂  of the uncorrupted image f  such that the 
mean square error between them is minimized. 
 
The error measure is given by 
 

{ }2 2ˆ( )e E f f= -       (5.8-1) 
 

where  { }E   is the expected value of the argument. 
 
By assuming that 
 

1. the noise and the image are uncorrelated; 
 

2. one or the other has zero mean; 
 

3. the intensity levels in the estimate are a linear function of 
the levels in the degraded image. 

 

Then, the minimum of the error function in (5.8-1) is given in the 
frequency domain by the expression 
 

2

( , ) ( , )ˆ( , ) ( , )
( , ) ( , ) ( , )

f

f

H u v S u v
F u v G u v

S u v H u v S u vh

*é ù
ê ú= ê ú+ê úë û

   

2

( , )
( , )

( , ) ( , )/ ( , )f

H u v
G u v

H u v S u v S u vh

*é ù
ê ú= ê ú+ê úë û

 (5.8-2) 

2

2

( , )1
( , )

( , ) ( , ) ( , )/ ( , )f

H u v
G u v

H u v H u v S u v S u vh

é ù
ê ú= ê ú+ê úë û
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The terms in (5.8-2) are as follows: 
 

ˆ( , ) F u v is the frequency domain estimate  
 

( , ) G u v is the transform of the degraded image  
 

( , )H u v  is the transform of the degradation function 
 

( , )H u v*  is complex conjugate of ( , )H u v  
 

2( , ) ( , ) ( , )H u v H u v H u v*=  
 

2( , ) ( , )S u v N u vh = =  power spectrum of the noise 
 

2( , ) ( , )fS u v F u v= =  power spectrum of the undegraded image 
 
This result is known as the Wiener filter, which also is commonly 
referred to as the minimum mean square error filter or the least 
square error filter. 
 
The Wiener filter does not have the same problem as the inverse 
filter with zeros in the degradation function, unless the entire 
denominator is zero for the same value(s) of u  and v . 
 
If the noise is zero, then the Wiener filter reduces to the inverse 
filter. 
 
One of the most important measures is the signal-to-noise ratio, 
approximated using frequency domain quantities such as 
 

1 1
2

0 0
1 1

2

0 0

( , )

( , )

M N

u v
M N

u v

F u v

SNR

N u v

- -

= =
- -

= =

=
å å

å å     (5.8-3) 
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The mean square error given in statistical form in (5.8-1) can be 
approximated also in terms a summation involving the original 
and restored images: 
 

1 1
2

0 0

1 ˆ( , ) ( , )
M N

x y

MSE f x y f x y
MN

- -

= =

é ù= -ê úë ûå å   (5.8-4) 

 

If one considers the restored image to be signal and the difference 
between this image and the original to be noise, we can define a 
signal-to-noise ratio in the spatial domain as 
 

1 1
2

0 0
1 1

2

0 0

(̂ , )

ˆ( , ) ( , )

M N

x y
M N

x y

f x y

SNR

f x y f x y

- -

= =
- -

= =

=
é ù-ê úë û

å å

å å   (5.8-5) 

 

The closer f  and f̂  are, the larger this ratio will be. 
 

If we are dealing with white noise, the spectrum 
2( , )N u v  is a 

constant, which simplifies things considerably. However, 
2( , )F u v  is usually unknown.  

 

An approach is used frequently when these quantities are not 
known or cannot be estimated: 
 

2

2

( , )1ˆ( , ) ( , )
( , ) ( , )

H u v
F u v G u v

H u v H u v K

é ù
ê ú= ê ú+ë û

 (5.8-6) 

 

where  K  is a specified constant that is added to all terms of 
2( , )H u v . 

 

Note: White noise is a random signal (or process) with a flat power spectral 
density. In other words, the signal contains equal power within a fixed 
bandwidth at any center frequency. 
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Example 5.12: Comparison of inverse and Wiener filtering 
 

Figure 5.28 shows the advantage of Wiener filtering over direct 
inverse filtering. 
 

 
 

Figure 5.28 (a) is the full inverse-filtered result from Figure 5.27 (a). 
 

Figure 5.28 (b) is the radially limited inverse result of Figure 5.27 (c). 
 

Figure 5.28 (c) shows the result obtained using 
 

2

2

( , )1ˆ( , ) ( , )
( , ) ( , )

H u v
F u v G u v

H u v H u v K

é ù
ê ú= ê ú+ë û

 (5.8-6) 
 

with the degradation function  
 

( ) ( )
5/62 2/2 /2( , ) k u M v NH u v e

é ù- - + -ê úë û=  
 

used in Example 5.11. The value of K  was chosen interactively 
to yield the best visual result. 
 

By comparing Figure 5.25 (a) and Figure 5.28 (c), we see that 
the Wiener filter yielded a result very close in appearance to the 
original image. 
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Example 5.13: Further comparisons of Wiener filtering 
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5.10 Geometric Mean Filter 
 
It is possible to generalize the Wiener filter slightly to the so-called 
geometric mean filter: 
 

1

2
2

( , ) ( , )ˆ( , ) ( , )
( , )( , )

( , )
( , )f

H u v H u v
F u v G u v

S u vH u v
H u v

S u v

a

a

hb

-

* *

é ù
ê ú

é ù ê ú
ê ú ê ú= ê ú ê é ù úë û ê ê ú ú+

ê ê ú úë ë û û

,  (5.10-1) 

 

where  a  and  b  are positive real constants. 
 
If 1a = , this filter reduces to the inverse filter. 
 
If 0a = , the filter becomes the so-called parametric Wiener 
filter, which reduces to the standard Wiener filter when 1b = . 
 
If 1/2a = , this filter becomes a product of the two quantities 
raised to the same power, which is the definition of the geometric 
mean. When 1b = , the filter is also commonly referred to as the 
spectrum equalization filter. 
 
With 1b = , as a  decreases below 1/2 , the filter performance 
will tend more toward to the inverse filter; as a  increases above 
1/2 , the filter will behave more like the Wiener filter. 
 
 
 
 
 
 
 
 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Winter Term, 2021-22) 
 

294

5.11 Image Reconstruction from Projections 
 

In this section, we will examine the problem of reconstructing 
an image from a series of projections, with a focus on X-ray 
computed tomography (CT), which is one of the principal 
applications of digital image processing in medicine. 
 
Introduction 
 

Consider Figure 5.32 (a), which consists of a single object on a 
uniform background. 
 

 
 

Suppose that we pass a thin, flat beam of X-rays from left to right, 
and assume that the energy of the beam is absorbed more by the 
object than by the background. Using a strip of X-ray absorption 
detectors on the other side will yield the signal, whose amplitude 
(intensity) is proportional to absorption. 
 

The approach is to project the 1-D signal back across the direction 
from which the beam came, as Figure 5.32 (b) shows. This approach 
is called backprojection. 
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We certainly cannot determine a single object or a multitude of 
objects along the path of the beam by a single project.  
 

If we rotate the position of the source-detector pair by 90o  and 
repeat the previous procedure, we will get a backprojection image 
shown in Figure 5.32 (d). Adding this result to Figure 5.32 (b) 
will result an image illustrated in Figure 5.32 (e).  
 

We should be able to learn more about the shape of the object in 
question by taking more views in the same manner, as shown in 
Figure 5.33. 
 

 
 

As the number of projections increases, the strength of non-
intersecting backprojects deceases relative to the strength of 
regions in which multiple backprojects intersect. 
 

Figure 5.33 (f) shows the result formed from 32 projections. 
 

The reconstructed image seems to be a reasonably good 
approximation to the shape of the original object. However, the 
image is blurred by a “halo” effect, which shows a “star” in Figure 
5.33 (e). As the number of views increases, the shape of the “halo” 
becomes circular, as shown in Figure 5.33 (e). 
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Blurring in CT reconstruction is an important issue and will be 
addressed in later discussion. 
 

Since the projections 180o  apart are mirror images of each other, 
we only need to consider angle increments halfway around a circle 
in order to generate all the projects required for reconstruction. 
 
Example 5.16: Backprojection of a simple planar region containing 
two objects 
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Principles of Computed Tomography (CT) 
 

The theoretical foundation of CT dates back to Johann Radon, a 
mathematician from Vienna who derived a method in 1907 for 
projecting a 2-D object along parallel rays as part of his work on 
line integrals. The method is referred as the Radon transform now. 
 

Allan M. Cormack, a physicist at Tufts University, partially 
“rediscovered” these concepts and applied them to CT. Cormack 
published his initial findings in 1963 and 1964. He provided the 
mathematical formulae needed for the reconstruction and built a 
CT prototype to show his ideas. 
 

Working independently, electrical engineer Godfrey N. Hounsfield 
and his colleagues at EMI in London formulated a similar solution 
and built the first medical CT machine. 
 

Cormack and Hounsfield shared the 1979 Nobel Prize in Medicine 
for their contributions to medical tomography. 
 

Figure 5.35 shows the first four generations of CT scanners. 
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The fifth-generation (G5) CT scanners eliminate all mechanical 
motion by employing electron beams controlled electromagnetically. 
 
The sixth-generation (G6) CT scanners rotate the source-detector 
pair continuously through 360o , while the patient is moved at a 
constant speed along the axis perpendicular to the scan. 
 
The seventh-generation (G7) CT scanners (also called multislice CT 
scanners) use parallel banks of detectors to collect volumetric CT 
data simultaneously. 

 
Projections and the Radon Transform 
 

A straight line in Cartesian coordinates can be described either by 
its slope-intercept form 
 

y ax b= + ,   
 

or, as in Figure 5.36, by its normal representation 
 

cos sinx yq q r+ = .    (5.11-1) 
 

 
 

Figure 5.36 Normal representation of a straight line. 
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The projection of a parallel-ray beam may be modeled by a set of 
such lines, as shown in Figure 5.37. 
 

 
Figure 5.37 Geometry of a parallel-ray beam. 

 
An arbitrary point in the projection signal is given by the raysum 
along the line 
 

cos sink k jx yq q r+ = . 
 

In the case of continuous, the raysum is a line integral, given by 
 

( , ) ( , ) ( cos sin )j k k k jf x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
= + -ò òg   (5.11-2) 

 

Recall the properties of the impulse, d , the right side of (5.11-2) 
is zero unless the argument of d is zero. It indicates that the 
integral is computed only along the line cos sink k jx yq q r+ = . 
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If we consider all values of r  and q , (5.11-2)  generalizes  
 

( , ) ( , ) ( cos sin )f x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
= + -ò òg .    (5.11-3) 

 
The equation (5.11-3) gives the projection of ( , )f x y  along an 
arbitrary line in the -p ne laxy , is called the Radon transform. 
 
The Radon transform is the cornerstone of reconstruction from 
projections, with CT being its principle application in the field of 
image processing. 
 
In the discrete case, (5.11-3) becomes  
 

( )
1 1

0 0

( , ) ( , ) cos sin
M N

x y

f x y x yr q d q q r
- -

= =
= + -å åg ,    (5.11-4) 

 

where x , y , r , and q  are now discrete variables. 
 
If we fix q and allow r  to vary, (5.11-4) simply sums the pixels 

of ( , )f x y  along the line defined by specified values of these two 
parameters. 
 
Incrementing through all values of r  required to span the image 
(with q  fixed) yields one projection. Changing q  and repeating 
the same procedure will yield another projection. 
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Example 5.17: Using the Radon transform to obtain the projection 
of a circular region. 
 

We want to obtain the Radon transform for the projection of 
the circular object 

 

2 2 2     
( , )

0      otherwise

A x y r
f x y

ì + £ïïï= íïïïî
, 

 

where A  is a constant and r  is the radius of the object. The 
circular object is shown in Figure 5.38 (a). 
 

 

  
 

Since the object is circularly symmetric, its projections are the 
same for all angles, so all we need is to obtain the projection 
for 0oq = . From (5.11-3), we get 

 

( , ) ( , ) ( )f x y x dxdyr q d r
¥ ¥

-¥ -¥
= -ò òg  

( , )f y dyr
¥

-¥
= ò  

 

This is a line integral along the line ( ), 0L r .  
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Note that ( ), 0r q =g  when rr > . When rr £ , the 

integral is evaluated from 2 2y r r= - -  to 2 2y r r= - .  
 
Therefore, 
 

2 2 2 2

2 2 2 2
( , ) ( , )

r r

r r
f y dy Ady

r r

r r
r q r

- -

- - - -
= =ò òg  

 
 

 

It yields 

( ) ( )
2 22     

0                  otherwise

A r rr r
r q r

ìï - £ïï= = íïïïî
g , g

 

 

Figure 5.38 (b) shows the result.  
 

( ) ( )r q r=g , g  indicates that g  is independent of  q  because 
the object is symmetric about the origin. 
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When the Radon transform, ( )r qg , , is displayed as an image 
with r  and q  as rectilinear coordinates, the result is called a 
sinogram, similar in concept to displaying the Fourier spectrum. 
Like the Fourier spectrum, a sinogram contains the data necessary 
to reconstruct ( ),f x y . 
 

 
 

Figure 5.39 (b) is the sinogram of the rectangle shown in Figure 
5.39 (a). 
 
Figure 5.39 (c) shows an image of the Shepp-Logan phantom, a 
widely used synthetic image designed to simulate the absorption 
of major areas of the brain. The sinogram of Figure 5.39 (c) is 
shown in Figure 5.39 (d). 
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To obtain a formal expression for a back-projected image from 
Radon transform, referring to Figure 5.37, we begin with a single 

point, ( )j kr qg , , of the complete projection, ( )kr qg , , for a fixed 
value of rotation, kq  . 
 

Forming part of an image by back-projecting this single point is 

simply to copy the line ( ),j kL r q  onto the image, where the value 

of each point in that line is ( )j kr qg , . Repeating this process of 
all values of jr  in the projected signal results  
 

( ) ( ) ( ), cos sin ,
k k k k kf x y x yq r q q q q= = +g , g . 

 

This equation holds for an arbitrary value of kq , therefore, we 
can write in general that the image formed from a single 
backprojection obtained at an angle q  is given by 
 

( )( , ) cos sin ,f x y x yq q q q= +g .  (5.11-5) 
 

We form the final image by integrating over all the back-projected 
images 
 

( )
0

( , ) ,f x y f x y d
p

q q= ò          (5.11-6) 
 

In the discrete case, the integral becomes a sum of all back-
projected images: 
 

( )
0

( , ) ,f x y f x y
p

q
q=

= å          (5.11-7) 
 

For example, if 0.5o  increments are being used, the summation is 
from 0  to 179.5 . 
 

A back-projected image formed in this manner is referred to as a 
laminogram, which is only an approximation to the image from 
which the projections were generated. 
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Example 5.18: Obtaining back-projected images from sinograms 
 

Equation  
 

( )
0

( , ) ,f x y f x y
p

q
q=

= å           (5.11-7) 
 

was used to generate the back-projected images in Figure 5.32 
through Figure 5.34 from projections obtained with  
 

( )
1 1

0 0

( , ) ( , ) cos sin
M N

x y

f x y x yr q d q q r
- -

= =
= + -å åg .    (5.11-4) 

 
These equations were also used to generate Figure 5.40 (a) and 
Figure 5.40 (b), which show the back-projected images 
corresponding to the sinograms in Figure 5.39 (b) and Figure 
5.39 (d). 
 

 
 

Note that there is a significant amount of blurring shown in 
Figure 5.40 (a) and (b). It is obvious that a straight use of 
Equations (5.11-4) and (5.11-7) will not yield acceptable results. 
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The Fourier-Slice Theorem 
 

The relationship relating the 1-D Fourier transform of a projection 
and the 2-D Fourier transform of the region from which the 
projection was obtained is the basis for reconstruction methods 
capable of dealing with the blurring problem. 
 
The 1-D Fourier transform of a projection with respect to r  is 
 

( ) 2( , ) jG e dpwrw q r q r
¥ -

-¥
= ò g ,       (5.11-8) 

 

where  w  is the frequency variable, and this expression is for a 
given value of q . 
 

Substituting  
 

( ) ( , ) ( cos sin )f x y x y dxdyr q d q q r
¥ ¥

-¥ -¥
= + -ò òg ,     (5.11-3) 

 

for ( )r qg ,  results the expression 
 
 

( ) ( ) 2( , ) , cos sin jG f x y x y e dxdydpwrw q d q q r r
¥ ¥ ¥ -

-¥ -¥ -¥
= + -ò ò ò

 
( ) ( ) 2, cos sin jf x y x y e d dxdypwrd q q r r

¥ ¥ ¥ -

-¥ -¥ -¥

é ù= + -ê úë ûò ò ò
( ) ( )2 cos sin, j x yf x y e dxdypw q q¥ ¥ - +

-¥ -¥
= ò ò  (5.11-9) 

 
By letting cosu w q=  and sinv w q= , (5.11-9) becomes 
 

( ) ( ) ( )2

cos ; sin
, , j ux vy

u v
G f x y e dxdyp

w q w q
w q

¥ ¥ - +

-¥ -¥ = =

é ù= ê úë ûò ò  (5.11-10) 

 

We recognize (5.11-10) as the 2-D Fourier transform of ( ),f x y  
evaluated at the values of u  and v  indicated.  
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Equation (5.11-10) leads to 
 

( ) ( )[ ] ( )cos ; sin, , cos , sinu vG F u v Fw q w qw q w q w q= == = , (5.11-11) 
 

which is known as the Fourier-slice theorem (or the projection-
slice theorem).   
 

The Fourier-slice theorem states that the Fourier transform of a 
projection is a slice of the 2-D Fourier transform of the region 
from which the projection was obtained. 
 

This terminology can be explained with Figure 5.41. 
 

 
As Figure 5.41 shows, the 1-D Fourier transform of an arbitrary 
projection is obtained by extracting the values of ( ),F u v  along 
a line oriented at the same angle as the angle used in generating 
the projection. 
 

In principle, we could obtain ( ),f x y  simply by obtaining the 
inverse Fourier transform ( ),F u v , though it is expensive 
computationally with the involvement of inverting a 2-D transform. 
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Reconstruction Using Parallel-Beam Filtered Backprojections 
 

Regarding to the blurred results, fortunately, there is a simple 
solution based on filtering the projections before computing the 
backprojections. 
 

Recall 
 

( )2( , ) ( , ) j t zf t z F e d dp m nm n m n
¥ ¥ +

-¥ -¥
= ò ò ,  (4.5-8) 

 

the 2-D inverse Fourier transform of ( ),F u v is 
 

( )2( , ) ( , ) j ux vyf x y F u v e dudvp¥ ¥ +

-¥ -¥
= ò ò .  (5.11-12) 

 

As in (5.11-10) and (5.11-11), letting cosu w q= and sinv w q= , 
we can express (5.11-12) in polar coordinates: 
 

( )
2

2 cos sin

0 0
( , ) ( cos , sin ) j x yf x y F e d d

p pw q qw q w q w w q
¥ += ò ò  (5.11-13) 

 

Then, using the Fourier-slice theorem, we have 
 

( )
2

2 cos sin

0 0
( , ) ( , ) j x yf x y G e d d

p pw q qw q w w q
¥ += ò ò  . (5.11-14) 

 

Using the fact that ( ) ( ), ,G Gw q p w q+ = - , we can express 
(5.11-14) as 
 

( )2 cos sin

0
( , ) ( , ) j x yf x y G e d d

p pw q qw w q w q
¥ +
-¥

= ò ò  . (5.11-15) 
 

In terms of integration with respect to w , the term cos sinx yq q+  
is a constant, which is recognized as r . Thus, (5.11-15) can be 
written as 
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò  . (5.11-16) 
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Recall  
2( ) ( ) j tf t F e dpmm m

¥

-¥
= ò ,     (4.2-17) 

 

the inner expression in (5.11-16) is a 1-D inverse Fourier transform 
with the added term w .  
 

Based on the discussion in Section 4.7, w is a one-dimensional 
filter function.  
 

 
 
w is not integrable, because its amplitude extends to +¥  in both 

directions, so the inverse Fourier transform is undefined. 
 
In practice, the approach is to window the ramp so it becomes zero 
outside of defined frequency interval, as shown in Figure 5.42 (a). 
 
Figure 5.42 (b) shows its spatial domain representation, obtained 
by computing its inverse Fourier transform. The resulting 
windowed filter exhibits noticeable ringing in the spatial domain. 
As discussed in Chapter 4, windowing with a smooth function 
will help in this situation. 
 



GACS-7205-001 Digital Image Processing                                        Page 
(Winter Term, 2021-22) 
 

310

An M-point discrete window function used frequently for 
implementation with the 1-D FFT is given by 
 

( )
2

( 1)cos      0 1
1( )

0                              otherwise

c c M
Mh

pw
w

w
ìï + - £ £ -ïï -= íïïïî

  (5.11-17) 

 

When 0.54c = , this function is called the Hamming window. 
 
Figure 5.42 (c) is a plot of the Hamming window, and Figure 
5.42 (d) shows the product of this window and the band-limited 
ramp filter shown in Figure 5.42 (a). 
 
Figure 5.42 (e) shows the representation of the product in the 
spatial domain, obtained by computing the inverse FFT. 
  
Comparing Figure 5.42 (e) and Figure 5.42 (b), we can find that 
ringing was reduced in the window ramp.  
 
On the other hand, because the width of the central lobe in Figure 
5.42 (e) is slightly wider than that of Figure 5.42 (b), we would 
expect backprojections based on a Hamming window to have less 
ringing but be slightly more blurred. 
 
Recalling 

( ) 2( , ) jG e dpwrw q r q r
¥ -

-¥
= ò g ,     (5.11-8) 

 

that ( ) ,G w q  is the 1-D Fourier transform of ( )r qg , , which is a 
single projection obtained at a fixed angle, q . 
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Equation  
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò      (5.11-16) 
 

states that the complete, back-projected image ( ),f x y  is obtained 
as follows: 
 

1. Compute the 1-D Fourier transform of each projection. 
 

2. Multiply each Fourier transform by the filter function w , 
which has been multiplied by a suitable (e.g., Hamming) 
window. 

 

3. Obtain the inverse 1-D Fourier transform of each resulting 
filtered transform. 

 

4. Integrate (sum) all the 1-D inverse transform from Step 3. 
 
This image reconstruction approach is called filtered backprojection. 
 
In practice, because the data are discrete, all frequency domain 
computations are carried out using a 1-D FFT algorithm, and 
filtering is implemented using the same basic procedure explained 
in Chapter 4 for 2-D functions. 
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Example 5.19: Image reconstruction using filtered backprojections 
 

 
 

Figure 5.43 (a) shows the rectangle reconstructed using a ramp 
filter. The most vivid feature of this result is the absence of any 
visually detectable blurring. However, ringing is present, visible 
as faint lines, especially around the corners of the rectangle. 
Figure 5.43 (c) can show these lines in the zoomed section. 
 
Using a Hamming window on the ramp filter helped considerably 
with the ringing problem, at the expense of slight blurring, as 
Figure 5.43 (b) and Figure 5.43 (d) show. 
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The reconstructed phantom images shown in Figure 5.44 are 
from using the un-windowed ramp filter and a Hamming 
window on the ramp filter. 
 
Since the phantom image does not have transitions that are sharp 
and prominent as the rectangle, so ringing is imperceptible in this 
case, though result shown in Figure 5.44 (b) is a slightly smooth 
than that of Figure 5.44 (a). 
 

The discussion has been based on obtaining filtered backprojections 
via an FFT implementation. However, from the convolution theorem 
introduced in Chapter 4, we know that the equivalent results can be 
obtained using spatial convolution. 
 
Note that the term inside the brackets in 
 

( ) 2

0 cos sin
( , ) , j

x y
f x y G e d d

p pwr

r q q
w w q w q

¥

-¥ = +

é ù= ê úë ûò ò      (5.11-16) 
 

is the inverse Fourier transform of the product of two frequency 
domain functions. According to the convolution theorem, they are 
equal to the convolution of the spatial representations (inverse 
Fourier transform) of these two functions. 
 

Let ( )s r  denote the inverse Fourier transform of w , we can 
write (5.11-16) as 
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    (5.11-18) 

 

The last two lines of (5.11-18) say the same thing: Individual 
backprojections at an angle q  can be obtained by convolving the 
corresponding projection, ( )r qg , , and the inverse Fourier 

transform of the ramp filter, ( )s r . 
 

With the exception of round off differences in computation, the 
results of using convolution will be identical to the results using FFT. 
 
In general, convolution turns out to be more computationally 
efficient and is used in most of modern CT systems, while 
Fourier transform plays a central role in theoretical formulations 
and algorithm development. 

 
 
 
5.11.6 Reconstruction Using Fan-beam Filtered Backprojections 
 
 
 
 
 
 
 
 
 
 
 


