
 Page 1 ACS-2941-001 Unix (Fall Term, 2023-24)

The vi Editor

To start vi

The basic syntax is: vi [file…]

Command Mode and Input Mode

Editing Buffer: When you work with vi, all the data is kept

in the editing buffer. It means that when you

use vi to edit an existing file, you are not

working with the actual file.

Command Mode: The characters you type are interpreted as

commands.

Input Mode: Everything you type is inserted into the

editing buffer.

As you work with vi, you frequently change back and forth

between command mode and input mode. In command

mode, there are a number of commands that can be used to

change to input mode.

When you are in input mode, you press <Esc> key to

change to command mode.

Some versions of vi have an option named showmode.

Once you set this option (:set showmode), vi will display a

short message at the bottom right-hand corner of the screen

when you are in input mode.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 2

How do you add some data to the middle of a file?

1. When you start vi, you are automatically in a command

mode.

2. The cursor shows your current position in the editing

buffer.

3. You move the cursor to the place where you want to add

the data. (There are 40 different “simple” commands just

to move the cursor.)

4. You type one of the 12 different “simple” commands to

change to input mode.

5. You start typing. Everything you type is inserted into the

editing buffer.

6. When you finish typing, you press <Esc> key to change

back to command mode.

7. Save your file and quit from vi.

Starting vi as a Read-Only Editor:

vi –R [file…] (R: read-only)

or

view [file…]

Recovering Data After a System Failure:

vi –r filename (r: recover)

Stop vi

ZZ Save your work, then stop.

:q! Quit without saving (You need to press <Return>).

ACS-2941-001 Unix (Fall Term, 2023-24) Page 3

Redisplay

^L Redisplays everything.

Enter control characters

^V followed by the control character you want to enter.

Examples:

^V^C results a ^C

^V^V results a ^V

^V^G results a ^G

Moving the Cursor

Move the cursor by one position

h Move cursor one position left

j Move cursor one position down

k Move cursor one position up

l Move cursor one position right

The above four keys are easy to press with you right hand.

The following keys are the alternatives that are easier to

remember:

 Move cursor one position left

 Move cursor one position down

 Move cursor one position up

→ Move cursor one position right

<Backspace> Move cursor one position left

<Space> Move cursor one position right

ACS-2941-001 Unix (Fall Term, 2023-24) Page 4

Move the cursor within a line

- Move cursor to beginning of previous line

+ Move cursor to beginning of next line

<Return> Move cursor to beginning of next line

0 Move cursor to beginning of current line

$ Move cursor to end of current line

Move the cursor by a word

w Move cursor forward to first character of next word

e Move cursor forward to last character of next word

b Move cursor backward to first character of previous word

W Same as w; ignore punctuation

E Same as e; ignore punctuation

B Same as b; ignore punctuation

Move the cursor in a larger range

) Move forward to beginning of next sentence

(Move backward to beginning of previous sentence

} Move forward to beginning of next paragraph

{ Move backward to beginning of previous paragraph

H (high) Move cursor to top line

M (middle) Move cursor to middle line

L (low) Move cursor to last line

The art of moving the cursor is to get where you want in as

few keystrokes as possible.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 5

Repeat Count

Whenever it makes sense, you can have vi automatically

repeat a cursor movement command by typing a number,

repeat count, before the command.

Examples:

20w Move forward 20 words

30j Move down 30 lines

30+ Same as 30j

As a general rule, you can repeat any vi command, not just

cursor commands, by typing a number in front of it, as long

as doing so makes sense.

Moving Through the Editing Buffer

vi will display as much of the editing buffer as will fit on

your screen.

To display different parts of the editing buffer:

^F Move down (forward) one screen

^B Move up (back) one screen

^D Move down a half screen

^U Move up a half screen

Examples:

10^F Move down 10 screens

7^B Move up 7 screens

However, when you type a number in front of ^D or ^U, it is

used for something different: it sets the number of lines that

either of these commands should jump.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 6

Example:

 10^D Will jump 10 lines and tell vi that all

subsequent ^D and ^U commands should

also jump 10 lines until you reset it.

Searching for a Pattern

You also can move around the editing buffer by jumping to a

line that contains a particular pattern.

/pattern<Return>

vi will search forward for the next occurrence of the

pattern.

?pattern<Return>

vi will search backward for the previous occurrence of

the pattern.

n vi will repeat the last / or ? command in the same

direction.

N vi will repeat the last / or ? command in the opposite

direction.

In fact, pattern is not just a string, it can be a “Regular

Expression”.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 7

Special Characters to Use in Regular Expressions

. Match any single character except newline

* Match zero or more of the preceding characters

^ Match the beginning of a line

$ Match the end of a line

\< Match the beginning of a word

\> Match the end of a word

[] Match one of the enclosed characters

[^] Match any character that is not enclosed

\ Take the following symbol literally

Examples of using regular expression:

/t.t.l\> Will search for next 5-letter word whose first and

third letter is t and the last letter is l (i.e., total).

/th[ae] Will search for the next word whose first letter

is t, the second letter is h, and the third letter is

either a or e (i.e., the, that, these, …).

?^The\> Will search for the previous line that starts with

the word The.

Using Line Numbers

Internally, vi keeps track of each line in the editing buffer by

assigning it a line number. You can either see these numbers

by entering

:set number

or get rid of these numbers by entering

:set nonumber

ACS-2941-001 Unix (Fall Term, 2023-24) Page 8

There are two important uses for line numbers:

1. You can use them with many of the ex commands.

2. You can use G (goto) command to jump to a specific

line.

Examples:

50G Jump to line 50

1G Jump to the beginning of the editing buffer

G Jump to the end of the editing buffer

Inserting Data into the Editing Buffer

Commands for entering new data:

i Change to input mode: inset before cursor position

a Change to input mode: inset after cursor position

I Change to input mode: inset at start of current line

A Change to input mode: inset at end of current line

o Change to input mode: open below current line

O Change to input mode: open above current line

i: insert a: append o: open

Making Changes to the Editing Buffer

vi Replacement Commands:

r Replace one character

R Replace by typing over

s Replace one character by insertion

C Replace from cursor to the end of line

ACS-2941-001 Unix (Fall Term, 2023-24) Page 9

cc Replace entire current line by insertion

S Replace entire current line by insertion

cmove Replace from cursor to move by insertion

Example 1: This is a test.

Move the cursor to a and type s, you will see This is $ test.

Type not a<Esc>, you will get This is not a test.

Example 2: This is a bad example.

Move the cursor to b and type cw, you will see

This is a ba$ example.

Type very good<Esc>, you will get

This is a very good example.

Example 3: This is not a bad example.

Move the cursor to n and type c3w, you will see

This is not a ba$ example.

Type a very good<Esc>, you will get

This is a very good example.

Replacing a Pattern

If you want to replace a particular pattern with something

else, you can use the ex command named :s (substitute):

:s/pattern/replace/ substitute, current line

:lines/pattern/replace/ substitute, specified line

:line,lines/pattern/replace/ substitute, specified range

:%s/pattern/replace/ substitute, all lines

ACS-2941-001 Unix (Fall Term, 2023-24) Page 10

Examples:

:s/television/TV/

will replace the first “television” on the current line with “TV”.

:s/television/TV/g g: global

will change all “television”s on the current line to “TV”s.

:s/television/TV/c c: confirm

vi will ask your permission before making the change.

:s/television//g

will remove all “television”s on the current line.

:57s/television/TV/

will change the first “television” to “TV” on line 57.

:57,60s/television/TV/cg

will change all “television”s to “TV”s between line 57

and line 60 with your permissions.

:.,$s/television/TV/g

will change all “television”s to “TV”s from the current line

to the end of the editing buffer.

:1,$s/television/TV/g and :%s/television/TV/g

will change all “television”s to “TV”s in the editing buffer.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 11

Undo

u Undo the last command that modified the editing

buffer

U Restore the current line

Example: If you entered :%s/television/TV/g and found

that it was a mistake. You can undo it by typing a

u.

Note:

1. u can undo itself.

2. u can undo U.

3. U only works as long as you stay on the line with

the changes.

Repeating a Change: .

The . command will repeat the last insertion, substitution,

change, or deletion.

For example, if you need to insert the name Krzyzak at

several places in the editing buffer and want to find a way to

make it easier. You can insert

Krzyzak<Esc>

at the first place. Then move to the place where you want to

make the next insertion and type a .. The insertion will be

repeated for you.

You can use the . command as many times as you want.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 12

Changing the Case of a Letter: ~

Controlling the Length of Lines

Breaking a Long Line: r

If you want to break a long line, you can move the cursor to the

space following the last character you want to break, then type:

r<Return>

r will replace the space with a newline character.

Join Two Lines: J

If you want to join two lines, you can move the cursor to the

first line and type J. vi will join that line and the next line

into one line.

You can use the repeat number in front of J to join more

than two lines into one line. However, 2J will likely do the

same thing as J does.

:set wm (you also can use wrapmargin to replace wm)

You can ask vi to break lines for you:

:set wm=n Auto line break within n positions of the

right margin

To turn off the automatic margin control:

:set wm=0

ACS-2941-001 Unix (Fall Term, 2023-24) Page 13

Deleting Data from the Editing Buffer

There are several ways to delete data from the editing buffer:

x delete character at cursor

X delete character to left of cursor

D delete from cursor to end of line

dmove delete from cursor to move

dd delete the entire current line

:lined delete specified line

:line,lined delete specified range

Examples:

dw delete one word

d8W delete 8 words (ignore punctuation)

d5} delete 5 paragraphs

dG delete from current line to end of editing buffer

d1G delete from current line to beginning of editing buffer

8dd delete 8 lines from the current line

:50d delete line 50

:50,60d delete lines 50 through 60

:1,.d delete from the beginning of the editing buffer to

the current line

:.,$d delete from the current line to the end of the

editing buffer

:1,$d delete the entire editing buffer

:%d delete the entire editing buffer

ACS-2941-001 Unix (Fall Term, 2023-24) Page 14

Copying the Last Deletion

vi always keeps a copy of the last thing that you deleted.

You can copy this deletion to any place in the editing buffer

by using the p and P commands.

p Insert the last deletion after the current position of

the cursor, or below the current line.

P Insert the last deletion before the current position

of the cursor, or above the current line.

Example:

This is a for line testing.

You move the cursor to the space before for and type deep,

you will get

This is a line for testing.

de delete the space and the following word

e move forward to the end of the next word

p insert the deletion after the cursor

This is a for line testing. move cursor after a and type de

This is a line testing. type e

This is a line testing. type p

This is a line for testing.

Other vi command combinations:

xp transpose two characters

ddp transpose two lines

ACS-2941-001 Unix (Fall Term, 2023-24) Page 15

Copying and Moving Lines

You can use the ex commands :co (copy) and :m (move) to

copy or move lines.

The ex copy and move commands are:

:linecotarget copy specified line; insert below target

:line,linecotarget copy specified range; insert below target

:linemtarget move specified line; insert below target

:line,linemtarget move specified range; insert below target

Examples:

:4co12 copy line 4, insert below line 12

:2,5co12 copy lines 2 through 5, insert below line 12

:4m12 move line 4, insert below line 12

:2,5m12 move lines 2 through 5, insert below line 12

:1,.m$ move lines 1 through current line to bottom

:.,$m0 move current line through the last line to top

Entering Shell Commands

There are several ways to enter regular shell commands

within vi.

:! command pause vi, execute command

Example:

:! date

[No write since last change]

Wed Jan 14 11:36:06 CST 2015

Press ENTER or type command to continue

ACS-2941-001 Unix (Fall Term, 2023-24) Page 16

:!! Pause vi, execute the last shell command.

If you would like to enter a number of shell commands, you

can start a new shell:

:sh Pause vi and start a new copy of your login shell.

Now, you can enter as many commands as you want.

To exit from this shell, you can use either ^D or exit.

You also can type

:!csh to start a C-Shell

:!sh to start a Bourn shell

:!ksh to start a Korn shell

Reading Data into the Editing Buffer :r

To read data from an existing file into the editing buffer, use

the :r command:

:liner file insert contents of file after specified line

:r file insert contents of file after current line

Examples:

:10r info insert the contents of the file info after line 10

:0r info insert the contents of info at the beginning of

the editing buffer

:$r info insert info to the end of the editing buffer

:r info insert info after the current line

ACS-2941-001 Unix (Fall Term, 2023-24) Page 17

You also can insert the output of a shell command directly

into the editing buffer by using :r

:liner !command insert output of command after specified line

:r !command insert output of command after current line

Example:

:r !uptime :r !uptime insert of the output of uptime after the current

line

Note:

You can use u to undo the result of :r (or :r !command).

Using a Shell Command to Process Data

Using the ! and !! commands, you can send lines from the

editing buffer to a regular shell command. The output of the

command will replace the original lines.

n!!command execute command on n lines

!move command execute command from cursor to move

Example: We have 5 lines in our editing buffer

of

time

brief

a

history

Then we move the cursor to the first line and type: 5!! sort

ACS-2941-001 Unix (Fall Term, 2023-24) Page 18

The original 5 lines will be replaced by

a

brief

history

of

time

fmp is a command that can make your message look nice

without changing the paragraph breaks.

Examples:

10!!fmp format 10 lines (from the current line)

!}fmt format all lines to the end of paragraph

1G!Gfmt move the cursor to the first line, then format

the entire editing buffer

Writing Data to a File

:w write data to original file

:w file write data to specified file

:w>> file append data to specified file

Examples:

:w will work as a save

:w backup save the contents of the editing buffer to a file

named backup

:w>> info append the contents of the editing buffer to info

:10w memo write 10 line to a file named memo

:2,5w>> info append lines 2 through 5 to file info

ACS-2941-001 Unix (Fall Term, 2023-24) Page 19

Changing the File You Are Editing

If you want to edit a different file, you don’t have to quit and

restart vi. You can use the :e and :e! commands:

:e file edit the specified file

:e! file edit the specified file, omit automatic check

Examples:

:e file2 Will begin editing a file named file2 (vi will check to

see if you have saved your data. If there is unsaved file,

vi will not let you change to file2).

:e! file3 Will begin editing a file named file3 (overriding

the automatic checking protection).

Using Abbreviations

By using the :ab command, you can create abbreviations for

frequently used words or expressions.

:ab short long set short as an abbreviation for long

:ab display current abbreviations

:una short cancel abbreviation short

Example:

:ab tuw The University of Winnipeg

From now on, whenever you type tuw as a separate word

(in input mode), vi will automatically replace it with The

University of Winnipeg.

ACS-2941-001 Unix (Fall Term, 2023-24) Page 20

Using the .exrc File to Initialize vi

When vi starts, it looks for a file named .exrc in your home

directory. If such file exists, vi will read and execute any ex

commands in that file. This allows you to initialize your

working environment automatically. A sample .exrc file:

“ set the options

set wm=6

“set abbreviations

ab pami Pattern Analysis and Machine Intelligence

ab tuw The University of Winnipeg

“define the g macro

map g 1G

