
ACS-294-001 Unix (Fall Term, 2023-2024) Page 1

The Brief History of the Unix System

In the 1960s, a number of researchers at Bell Labs (the research
arm of AT&T), participated in the development of an operating
system called Multics (Multiplexed Information and Computing
Service).

In 1969, Bell Labs withdrew from the Multics project. At about
the same time (1969), one of these researchers, Ken Thompson,
developed a simpler and smaller operating system for a PDP-7
minicomputer.

In searching for a name, Thompson compared his new system to
Multics. The goal of Multics was to offer many features to multiple
users at the same time.

Ken Thompson’s system was smaller, less ambitious and, at the
beginning, was used by one person at a time. Moreover, each part
of the new system was designed to do only one thing and do it
well. Ken Thompson decided to name his system Unics, which
was soon changed to Unix.

Thompson’s original UNIX system was written in assembly-
language (PDP-7). In 1973 Dennis Ritchie rewrote the UNIX
system in C.

Once the original assembly language programs were rewritten in
C, it was possible to move the entire UNIX system from one
environment to another with a minimum of difficulty.

During the early 70s, the UNIX system began to be used internally
throughout the Bell system.

In 1975 Western Electric started licensing the UNIX system. The
fee was nominal for academic institutions, encouraging many of
them to use and further develop the UNIX system. However, there
was little success in introducing it into mainstream businesses.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 2

The main event during the 80s was the UNIX system’s continuing
internal struggle to define itself. For much of the decade there
were two main factions: AT&T (System V) and Berkeley (BSD).

During the 1980s Unix remained a technological marvel, with
impressive networking and communications’ capabilities, but it
never managed to crack the mainstream business market.

UNIX is a registered trademark of AT&T. For example, System V
version 4 is referred as System V.4 (V.4 for Version/Release 4).

Unix is a more generic term to describe any operating system that
meets certain specific standards.

BSD is one of the most important Unixes comes from the University
of California at Berkeley. At first, Berkeley Unix was based on
AT&T UNIX. The official name of Berkeley Unix is BSD,
Berkeley Software Distribution.

Some of Unix systems are:

 AIX – IBM;
 HP-UX – Hewlett-Packard;
 Solaris – Oracle (former Sun Microsystems);
 NeXTSTEP – NeXT (bought by Apple in 1996 and became Mac OS X);
 BSD – Berkeley Kernel Organization;
 Linux – Linux Kernel Organization;
 GNU Hurd – GNU.

Free Unix System

 Many noncommercial versions of Unix are available at little or no
cost. The Unix systems are maintained by many people (mostly
volunteers) around the world who cooperate and communicate
over the Internet.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 3

What Is an Operating System?

An Operating System (which is software) is a complex master
control program whose principal function is to use the resources
of a computer efficiently.

The operating system is always there, waiting to serve you and to
manage the resources of your computer.

In Unix, the operating system can be divided into three layers:
utilities, shell, and kernel.

Utilities: The utilities of an operating system are the standard
commands and programs associated with the operating
system.

Shell: A shell is a program that runs other programs.

Kernel: The kernel is a collection of software that provides
the basic capabilities of the operating system.

“Unix” Is the Name of a Culture

Unix means much more than a family of operating systems.

In using Unix, we will learn to approach and solve problems by
combining simple programs into elegant structures.

The Unix Connection

Host: The main computer that actually does most of the work.

Character Terminal:

 A character terminal has nothing more than a screen and a
keyboard, and can display only characters.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 4

Graphics Terminal:

 It can display everything that can be drawn on a screen
using small dots: pictures, geometric shapes, and so on.

 Most graphics terminals have a mouse and are designed to
be used with a graphical user interface.

Console:

A display screen and a keyboard that are part of the host
computer itself.

A Console is just another terminal.

What Happens When You Press a Key?

Each time you press a key, a signal is sent to the host. The host
responds by sending its own signal back to your terminal telling
it to display the appropriate character on the screen.

If the host computer is far away, you might not see the letters
appear on the screen immediately after you press keys.

Network Connections

Network

A network refers to two or more computers connected together.
People connect computers into networks in order to share resources.

Local Area Network (LAN)

When computers are connected directly by using some type of
cable, we call the network LAN.

Wide Area Network (WAN)

 Many LANs are connected to other networks, forming a bigger
network that is called WAN.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 5

Backbone

A high-speed link that ties together the smaller LANs into one
large wide area network.

Gateways

Some computers, called gateways, will act as the links between
the campus network and the outside world.

Internet

Around the world, the major wide area networks are connected
to a system known as the Internet. Any computer on the Internet
can connect to any other computer on the Internet.

Client-Server Relationship

Server

 In network terminology, any program that offers a resource is
called a server.

A program that provides access to files over the network is
called a file server; A program that coordinates the printing of
data using different printers is called a print server.

 Sometimes the name server is used to refer to a real computer
too (i.e., mail server, news server, …).

Client

 A program that uses a resource is called a client.

Unix system programmers often talk about the connection
between a client program and a server as the Client-Server
Relationship.

VT-100 Terminal:

 A very old terminal made by Digital Equipment Corporation.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 6

Starting to Use Unix

System Manager/Administrator:

 All Unix systems require administration and maintenance.
The person who performs these duties is called the system
manager or system administrator.

Userid: A name that identifies you to the system.

Password: A secret code that you must type in each time you use
the system.

Account: Once you have permission to use a system, we say that you
have a Unix account on that computer.

Logging In: Starting work with Unix

Logging Out: Stopping working with Unix

1. logout 2. exit 3. login 4. Ctrl-D (for some systems)

ACS-294-001 Unix (Fall Term, 2023-2024) Page 7

Getting Down to Work: The Shell Prompt

The program that reads and interprets your commands is called a
“shell”. When the shell is ready for you to type the next
command, it will display a “prompt”.

If you use the C-Shell, your prompt will be a %.

If you system manager has customized your environment, the
prompt may be somewhat different, i.e., mars.acs.uwinnipeg.ca>.

With a Bourne shell, a $ may be your prompt.

Upper- and Lowercase

 Unix is case sensitive.

Some cases to use uppercase letters:

1. Passwords
2. Environment variables (TERM, HOME, …)
3. Writing programs
4. Electronic mail (E-mail) address

Example: uwinnipeg.ca vs. Uwinnipeg.ca

Who Has Been Using Your Account: last

The command last can display login and logout information about
users and terminals.

Example:

mars% last
sliao pts/1 wnpgmb0426w-ds02 Sat Sep 2 15:40 still logged in
nischal pts/1 acs-3d07b-f01.uw Fri Sep 1 12:23 - 12:24 (00:00)
acs2941 pts/1 acs-3d07b-f01.uw Fri Sep 1 12:22 - 12:23 (00:00)
. . .
aulakh-s pts/4 142.161.217.182 Sun Mar 19 03:28 - 04:03 (00:34)

wtmp begins Sun Mar 19 03:27:57 2023
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 8

passwd: You can change your password by using the command
passwd.

Userid vs. User

A user is a person who utilizes a Unix system in some way.
Unix itself only knows about userids. If someone logs in with your
userid, Unix has no way of knowing whether or not it is really you.

Example:

mars% finger
Login Name Tty Idle Login Time Office Office Phone Host
sliao Simon Liao pts/1 Sep 2 15:40
(wnpgmb0426w-ds02-202-50-88.dynamic.bellmts.net)
mars%

The Superuser Userid: root

Within Unix, all userids are considered equal, except the
superuser root.

Using the Keyboard with Unix

TTYs: When the Unix was first developed, the programmers used
Teletype ASR33 terminals. The terminals had letters,
numbers, and a “Control” key. TTY (Teletype) quickly
became a way to refer to any terminal.

tty is a command to display the name of your terminal.

mars% tty
/dev/pts/1
mars%

stty is a command to set up your terminal.

Another convention derived from Teletypes is how we use the
word “print”. Teletype printed output on paper. But now the
same information would be displayed on a screen.

“Print” means “Display”

ACS-294-001 Unix (Fall Term, 2023-2024) Page 9

Examples: appreciate

 pwd Print Working Directory
 lpr Line Printer

How to Deal with Different Types of Terminals?

 For older Unix systems, the descriptions of all different types
of terminals into a single file, termcap database. The newer
Unix systems should use the terminfo database and associated
libraries.

How Does Unix Know What Terminal You Are Using?

There is a global variable named TERM whose value is the type
of terminal you are using.

mars% echo $TERM
vt100
mars%

Understanding Your Keyboard

Unix must work with any terminals and there is no such thing as
a standard keyboard. As a solution, Unix defines standard codes
that are mapped into different keyboards.

Some codes:

erase: Erase the last character that you typed.

werase: Erase the last word you typed.

kill: Erase the whole line.

intr: Abort the program that is currently running (interrupt).

quit: quit is designed for advanced programmers. When you stop a
program with quit, it not only stops the program, but also
makes a copy of the contents of memory at that instant.

stop: Pause the screen display.

start: Restart the screen display.

eof: End of file

ACS-294-001 Unix (Fall Term, 2023-2024) Page 10

Checking the Special Keys for Your Terminals: stty

 To check how your Unix system uses your particular terminal,
you can use the stty (set terminal) command.

mars% stty
speed 38400 baud; line = 0;
kill = ^X;
-brkint -imaxbel
mars%

You can set some special keys in your .login file.

For example, add

 stty kill ^X

to your .login file will change the kill key to ^X.

Summary of some Keyboard Codes:

Code Key Purpose

intr ^C stop a program that is running
erase <Backspace>,<Delete> erase the last character typed
werase ^W erase the last word typed
kill ^X, ^U erase the entire line
quit ^\ stop a program, save core file
stop ^S pause the screen display
start ^Q restart the screen display
eof ^D indicate there is no more data

Teletype (ASR33) Control Signals

<Ctrl-H>: Caused the print carriage to back up a single space
before printing the next character.

<Ctrl-M>: Moved the print carriage to the beginning of the line.

<Ctrl-J>: Moved the paper up one line.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 11

<Ctrl-M> <Ctrl-J>: Would position the carriage and the paper at
the beginning of the next line.

<Ctrl-I>: Tab Setting

How Teletype Control Signals are Used by Unix

^H: When you press the <Backspace> key, Unix interprets the
signal as being a ^H.

^I: When you press the <Tab> key, Unix interprets it as a ^I.

^M: Signal that you have reached the end of a line. (return)

^J: Mark the end of each line. (newline)

Unix treats the data typed at the keyboard the same as data read
from a file.

When you display data, each newline (^J) is changed by Unix into a
return newline (^M^J) combination.

Q. Can you press ^J instead of <Return> to enter a command at any time?

A. Yes!

ACS-294-001 Unix (Fall Term, 2023-2024) Page 12

Programs to Use Right Away

date The date command will display the current time and date.

Example:

mars% date
Tue Sep 5 15:29:51 CDT 2023
mars%

cal The cal command displays a calendar.

 Examples:

mars% cal
 September 2023
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

mars%

calendar

Unix does have a calendar command, which is different from cal.

The calendar program offers a reminder service based on a file
named calendar in your home directory. The program calendar will
check this file and display all the lines that have today’s and
tomorrow’s date.

Example:

pearl% cat calendar
January 5 Day1
January 6 Day2
January 7 Day3
January 8 Day4
pearl% date
Thu Jan 5 17:13:26 CST 2019
pearl% calendar
Jan 05 Day1
Jan 06 Day2
pearl%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 13

uptime

The uptime command will tell you that how long your particular
computer has been up.

 Example:

mars% uptime
 15:30:55 up 20 days, 5:49, 3 users, load average: 0.00, 0.01, 0.05
mars%

 In this case, mars has been up for 20 day, 5 hour and 49 minutes,
and there are 3 users currently logged in. The last three numbers
show the average number of jobs in the run queue over the last 1, 5
and 15 minutes, respectively.

hostname

The hostname command will display the name of the system you
are using.

Example:

mars% hostname
mars-acs-uwinnipeg-ca
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 14

The Online Unix Manual

Unix comes with a large, built-in manual that is accessible at any
time from your terminal.

The Online Manual is a collection of files, stored on disk, each of
which contains the documentation about one Unix command or topic.

The Online Manual can be accessed at any time by using the man
command.

Examples:

 man cp

 man man

 man mv lpr ln

How Is the Online Manual Organized?

Section

1 Executable programs or shell commands

2 System calls (functions provided by the kernel)

3 Library calls (functions within program libraries)

4 Special files (usually found in /dev)

5 File formats and conventions (e.g. /etc/passwd)

6 Games

7 Miscellaneous (including macro packages and conventions)

8 System administration commands (usually only for root)

9 Kernel routines (nonstandard)

The most important section is Section 1. Section 2, 3, 4, and 5
may be important to programmers.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 15

The following conventions apply to the SYNOPSIS section and can
be used as a guide in other sections:

bold text type exactly as shown

italic text replace with appropriate argument

[-abc] any or all arguments within [] are optional

 -a | -b options delimited by | cannot be used together

argument … argument is repeatable

[expression] … entire expression within [] is repeatable
…

 Examples:

man kill

will show the description of kill that resides in Section 1 of the
manual;

man –s 2 kill

will show the description of kill that resides in Section 2 of the
manual;

man -s 7 man

will show the description of man in Section 7;

man umask

will show the description of umask that resides in Section 1 of
the manual:

ACS-294-001 Unix (Fall Term, 2023-2024) Page 16

mars% man kill

KILL(1) User Commends KILL(1)

NAME
 kill - terminate a process

SYNOPSIS
 kill [-s signal|-p] [-q sigval] [-a] [--] pid...
 kill -l [signal]
.
.
.

At the end of the kill man pages are the following a few lines, which
tell us there are other pages related to this one:

SEE ALSO
 bash(1), tcsh(1), kill(2), sigvec(2), signal(7)

AUTHOR
 Taken from BSD 4.4. The ability to translate process names to
process ids was added by Salvatore Valente …

AVAILABILITY
 The kill command is part of the util-linux package and is available
from Linux Kernel Archive …

NAME: This is what the command is all about.

SYNOPSIS: Official explanation of how to enter the command.

DESCRIPTION: Could be divided into two separate sections:
Description & Options.

FILES: This section shows the names of the files that are
used by this command.

SEE ALSO: It shows you other places to look in the manual for
more information.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 17

A Quick Way to Find Out What a Command Does

Sometimes you don’t want to view a full manual page and you are
interested in just a quick description.

If you want to see the Name Section, which is a one line
description, you can type man followed by –f.

Example:

mars% man -f date cal
date (1) - print or set the system date and time
date (1p) - write the date and time
cal (1) - display a calendar
cal (1p) - print a calendar
mars%

As a convenience, you can type the single word whatis, instead of
man –f.

Example:

mars% whatis date cal
date (1) - print or set the system date and time
date (1p) - write the date and time
cal (1) - display a calendar
cal (1p) - print a calendar
mars%

What if you know what you want to do, but not sure which
command(s) to use? You can use man –k (or apropos) followed by
specified keywords.

Example:

mars% man -k what
.
.
.
w (1) - Show who is logged on and what they are doing.
whatis (1) - display manual page descriptions
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 18

Command Syntax

The Unix Command Line

When you enter a command, the entire line that you type is called
the command line. A command line can contain multiple commands
separated by semicolons.

Example:

 date; ls –l; lpq

Command Syntax

The formal description of how a command must be entered is
called the command syntax.

Arguments: Options & Parameters

 Options: Options come right after the command and consist of
a – (minus sign) followed by a letter.

 Parameters: Parameters come after the options.

 Examples:

 ls -a –l file1 file2
 ls –al file1 file2

The Format of a Unix Command:

 command-name options parameters

Whitespace

 One or more consecutive spaces or tabs.

Two important expressions:

One or More: You must use at least one of something.

Zero or More: It is okay to leave it out.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 19

Examples:

 whatis man cp
 man man
 ls –l
 ls –al file1 file2

 ls
 who
 uptime

With ls, the default is the set of files in your working directory.

The Formal Description of a Command: Syntax

 The syntax of a command is its “official” description.

The syntax that is used to describe Unix commands follows five
simple rules:

1. Items in square brackets ([]) are optional.

2. Items not in square brackets are obligatory and must be
entered as part of the command.

3. Anything in boldface must be typed exactly as written.

4. Anything in italics must be replaced by an appropriate value.

5. Any parameter that is followed by an ellipsis(…) may be
repeated any number of times.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 20

Example:

 ls [-aAbBcCdDfFgGhHiIklLmnNopqQrRsStTuUvwxXZ1] [file ...]

a) The command has 40 options. Since they are optional, they are
enclosed in square brackets.

b) There is one parameter, file, which is optional.

c) The name of the command and the options are printed in
boldface. It means that they must be typed exactly as they
appear.

d) The parameter is in italics. It means that you must replace it
with an appropriate value.

e) The parameter is followed by “…”. That means that you can
use more than one parameter. Since the parameter is optional
itself, the “Zero or More” will apply here.

Examples:

 ls
 ls –l
 ls file1
 ls file1 file2 file3
 ls –f –l file4
 ls –fl file4

ACS-294-001 Unix (Fall Term, 2023-2024) Page 21

The Shell

From the beginning, Unix was designed so that the shell is an actual
program separated from the main part of the operating system.

What is a shell?

A shell is a command processor -- a program that reads and
interprets the commands that you enter.

A shell is a programming language. You can write programs,
called script, for a shell to interpret. These scripts can contain
regular Unix commands, as well as special shell programming
commands.

A shell is your main interface into Unix. Using the facilities that
are built into your shell, you can create a highly customized
environment for yourself.

There are several shells. Therefore, you can have a choice as
to which interface you want to use.

The Bourne Shell Family

Bourne shell (sh)

 The earliest Unix shell developed by Steven Bourne of AT&T Bell
Labs. It is still in use.

Korn shell (ksh)

 The Korn shell is an upwards compatible extension to Bourne shell. It
was developed by David Korn, a Bell Labs scientist, in the mid-1980s.

Bash (bash)

 Bash stands for “the Bourne Again SHell”. It is the product of the
Free Software Foundation.

 Bash extends the capabilities of the basic Bourne shell in a manner
similar to the Korn shell.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 22

Zsh (zsh)

 Zsh was developed by Paul Falstad in 1990. Zsh offers all of the
important features of the other Unix shells as well as new capabilities.
It is popular among programmers and advanced Unix users.

The C-Shell Family

C-Shell (csh)

 The C-Shell was designed by Bill Joy as the Berkeley Unix
alternative to the Bourne shell.

 The C-Shell offers many advantages over the Bourne shell. It is
very popular among experienced Unix users, especially at
universities and research organizations.

Tcsh (tcsh)

 Tcsh is an enhanced C-Shell that offers advanced features.

What Shell Should You Use?

Worldwide, the most widely used shells are the Bourne shell and its
replacement, the Korn shell. However, in the academic, research, and
programming communities, the C-Shell is the most popular shell.

As a command processor, the C-Shell family provides a good all-
around working environment.

The programming language used by the Bourne shell family is
easier and more pleasant to use than that of the C-Shell.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 23

The Relative Complexity of Different Shells

Name of Shell Size of the Man page (bytes) Relative Complexity

rc 37,885 1.00
Bourne 44,500 1.17
C-Shell 76,816 2.03
Bash 127,361 3.36
Zsh 133,565 3.53
Korn 141,391 3.73
Tcsh 199,834 5.27

Changing Your Shell Temporarily

 When you log in, the shell Unix starts automatically is called
your login shell.

 Since a shell is a program itself, you can start a new shell any
time by entering the name of that shell.

 When you are finished with the new shell, you can stop it by
entering either the exit command or press ^D, the eof key.

You must go back to the login shell before you can log out.

Using the C-Shell

Shell Variables

A shell variable is an item, known by a name, which represents a
value of some type. The value of a shell variable can be changed.

There are two types of shell variables:

1. Variables that act as off/on switches.

2. Variables that store a particular value as a string of
characters.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 24

Shell Variables That Act as Switches: set, unset

 To turn on switch variables, use the set command.

 Syntax: set [variable-name]

 Examples:
 set ignoreeof
 set filec

 To turn off a switch, use unset command.

 Examples:
 unset ignoreeof
 unset filec

To display all shell variables and their current settings, enter the
command set without arguments:

 set

If a variable is set, its name will appear in the list. If a variable is
unset, its name will not appear.

Built-in Shell Variables: Switches

Variable Name Purpose

echo display each command before execution
filec enable filename completion
ignoreeof must log out with logout instead of eof key (^D)
nobeep no beep if filename is ambiguous
noclobber do not allow redirected output to replace a file
noglob inhibit expansion of filenames
nonomatch no error if filename expansion matches nothing
notify notify about job completions at any time
verbose display full command after history substitution

ACS-294-001 Unix (Fall Term, 2023-2024) Page 25

Shell Variables That Store Values: set

Some of the shell variables can be set by you to modify the shell’s
behavior. Other values are set by the shell to pass information to you.

To set a variable of this type, use the set command with the
following syntax:

 set [variable-name = value]

Example:

 set history=50

Built-in Shell Variables That Store Values

Variable Name Purpose

argv list of arguments for current command
cdpath directories to search to find a subdirectory
cwd pathname of current working directory
fignore suffixes to ignore during the file name completion
hardpath no symbolic link pathnames in directory stack
histchars the two characters used for history substitution
history size of the history list
home pathname of your home directory
mail pathnames where shell should check for mail
path list of directories to search for programs
prompt string of characters used for command prompt
savehist number of history lines to save upon logout
shell pathname of the shell program
status return status of the last command
term type of terminal you are using
time threshold value for reporting of command timing
user name of the userid currently logged in

On occasion, you may want to give a variable a value that
contains spaces or other special characters. In that case, you
must put single quotes around the value.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 26

Examples:

mars% set prompt='My Own Prompt>'
My Own Prompt>echo $prompt
My Own Prompt>
My Own Prompt>set prompt='mars% '
mars% echo $prompt
mars%
mars%

Displaying the Value of a Variable: echo

 The command echo simply displays the value of anything you give it.

 Example:

mars% echo Have a nice day!
Have a nice day!
mars%

To display the value of a single variable, use the echo command
with the following syntax:

 echo $variable-name

Examples:

mars% echo $history
100
mars% set history=200
mars% echo $history
200
mars%

mars% echo My working directory is $cwd and my home directory is $home.
My working directory is /home/sliao and my home directory is /home/sliao.
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 27

Environment Variables

 The shell variables are used only within the shell to control
preferences and settings.

 There is a whole other set of variables that the shell maintains for
passing values between programs. These are called Environment
Variables or Global Variables.

 All environment variables have uppercase names.

Common Environment Variables

Variable Name Purpose

EDITOR pathname of your text editor
HOME pathname of your home directory
LOGNAME name of the userid currently logged in
MAIL pathname of your mail program
MANPATH list of directories to search for manual pages
PAGER name of the paging program you prefer
PATH list of directories to search for programs
SHELL pathname of the shell program
TERM type of terminal you are using
USER name of the userid currently logged in

The value of an environment variable is available to any program
or shell.

Example:

 Many programs look at the TERM variable to see what type of
terminal you are using.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 28

Setting the Value of an Environment Variable

setenv

 The syntax is setenv [variable-name value]

 Example: setenv TERM vt100

Displaying the Value of Environment Variable(s)

printenv

 The syntax is

 printenv [variable-name]

Examples:

 printenv will display all the environment variables

 printenv TERM

echo

 Example: echo $TERM

How Environment and Shell Variables Are Connected

 There are six common shell variables that have the same names
as environment variables (except that environment variables
have uppercase names).

 1) home, shell vs. HOME, SHELL

 home contains the pathname of your home directory and shell
contains the pathname of the shell you use. Whenever you log in,
Unix automatically sets the values of home and shell (and HOME
and SHELL). Your programs will examine these variables from time
to time, but you will probably never need to change them yourself.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 29

2) term, path, user vs. TERM, PATH, USER

 The local variables term, path, and user are tied to the corresponding
global variables.

3) mail vs. MAIL They are not connected.

Commands That Are Built Into the Shell

 When you enter a command, the shell will break the command
line into parts. The first part of each command is the name, the
other parts are options and parameters.

 Some commands are internal to the shell. The shell can
interpret these commands directly.

The Number of Internal Commands in Each Shell

Name of Shell Internal Commands

Bourne 32
Korn 43
Bash 50
C-Shell 52
Tcsh 56
Zsh 73

The Search Path

 If a command is not built into the shell, the shell must find the
appropriate program to execute.

 The path variable tells the shell where to look for programs. The
value of path is a list of directory names called the search path.

 When the shell is looking for a program to execute, it checks each
directory in the search path in the order they are specified.

 Example:

set path = (. /usr/local/bin /usr/bin ~/bin)

ACS-294-001 Unix (Fall Term, 2023-2024) Page 30

 bin is often used to indicate a directory that holds programs.

 Tilde (~) stands for the name of your home directory.

 Dot (.) is the current working directory.

 The shell automatically copies the value of path to PATH.

Setting Up History Substitution: history

 History Substitution

A feature that lets you change and re-enter a previous command
without having to retype it.

At all times, the shell saves your commands in a list called the
History List. Each command is given an identification number
(starting at 1). Whenever you enter a command, the identification
number increases by 1.

You can determine how long the history list should be by setting
the shell variable history.

To display the history list, use the history command. The syntax is:

 history [-r] [number]

Examples:

mars% history 6
 22 ls
 23 date
 24 w
 25 who
 26 finger sliao
 27 history 6
mars% history -r 3
 28 history -r 3
 27 history 6
 26 finger sliao
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 31

Event Number

 In C-Shell, past commands are referred to as Events. The number
that identifies each command is called an Event Number.

 You can display the event number within a prompt by using an
exclamation mark (!). Whenever the shell displays the prompt,
it will replace the ! with the current event number.

Example:

mars% set prompt='mars [\!]% '
mars [121]% uptime
 20:18:26 up 64 days, 10:12, 2 users, load average: 0.00, 0.01, 0.05
mars [122]%

Using History Substitution

The C-Shell supports a large variety of complex substitutions.

!! Re-use the previous command, exactly as you typed.

Example:

mars [124]% uptime
 20:19:37 up 64 days, 10:13, 2 users, load average: 0.00, 0.01, 0.05
mars [125]% !!
uptime
 20:19:39 up 64 days, 10:13, 2 users, load average: 0.00, 0.01, 0.05
mars [126]%

! event_number

 To re-use an older command, use an ! followed by the event
number for that command.

 Example:

mars [127]% history 3
 125 20:19 uptime
 126 20:21 clear
 127 20:21 history 3
mars [128]% !125
uptime
 20:21:12 up 64 days, 10:15, 2 users, load average: 0.02, 0.02, 0.05
mars [129]%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 32

It is also possible to add characters to the end of a command.

 Example:

mars [138]% history 3
 136 20:23 clear
 137 20:25 ls -l
 138 20:25 history 3
mars [139]% !137 calendar
ls -l calendar
-rw-------. 1 sliao sliao 100 Jan 2 20:36 calendar
mars [140]%

^^
To replace a string of characters in the previous command, type ^,
followed by the characters you want to replace, followed by
another ^, followed by the new characters.

Example:

mars [140]% historry 3
historry: Command not found.
mars [141]% ^rr^r
history 3
 139 20:25 ls -l calendar
 140 20:26 historry 3
 141 20:26 history 3
mars [142]%

!pattern

 To re-use a command that begins with a particular pattern, enter !
followed by that pattern.

 Example:

mars [144]% history 3
 142 20:27 clear
 143 20:27 uptime
 144 20:28 history 3
mars [145]% !u
uptime
 20:28:16 up 64 days, 10:22, 2 users, load average: 0.00, 0.01, 0.05
mars [146]%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 33

!?pattern?

 You can also reference a command by specifying a pattern within
question marks(?). The shell will execute the last command that
contained this pattern.

 Example:

mars [146]% history 4
 142 20:27 clear
 144 20:28 history 3
 145 20:28 uptime
 146 20:29 history 4
mars [147]% !?ti?
uptime
 20:30:08 up 64 days, 10:24, 2 users, load average: 0.00, 0.01, 0.05
mars [148]%

!*

 This combination stands for everything on the command line after
the name of the command.

 Example:

mars [156]% ls -l file1 calendar
-rw-------. 1 sliao sliao 100 Jan 2 20:36 calendar
-rw-------. 1 sliao sliao 8 Jan 10 20:32 file1
mars [157]% ls !*
ls -l file1 calendar
-rw-------. 1 sliao sliao 100 Jan 2 20:36 calendar
-rw-------. 1 sliao sliao 8 Jan 10 20:32 file1
mars [158]%

Example: Avoid Deleting the Wrong Files

mars% ls
extra1 extra11 extra2 extra22 temp1 temp2 temp5
mars% ls temp* extra?
extra1 extra2 temp1 temp2 temp5
mars% rm !*
rm temp* extra?
mars% ls
extra11 extra22
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 34

When you use !* in the above example to remove files, you are
guaranteed to get what you want. If you retype the patterns, you
might make a typing mistake.

Command Aliasing: alias, unalias

An alias is a name that you give to a command or list of
command. You can then type the name of the alias instead of the
commands.

To create an alias, use the alias command. The syntax is:

alias [name [command]]

 Examples:

mars% ls -l File*
-rw-------. 1 sliao sliao 29 Jan 10 20:41 File1
-rw-------. 1 sliao sliao 21 Jan 10 20:41 File2
mars% lf
lf: Command not found.
mars% alias lf 'ls -l File*'
mars% lf
-rw-------. 1 sliao sliao 29 Jan 10 20:41 File1
-rw-------. 1 sliao sliao 21 Jan 10 20:41 File2
mars%

mars% mytime
mytime: Command not found.
mars% alias mytime 'date; uptime'
mars% mytime
Tue Jan 10 20:43:24 CST 2023
 20:43:24 up 64 days, 10:37, 2 users, load average: 0.00, 0.01, 0.05
mars%

More examples:

 alias will display all the aliases

 alias a alias

 a h history

To remove an alias, use the unalias command. The syntax is

 unalias alias-name

ACS-294-001 Unix (Fall Term, 2023-2024) Page 35

Using Arguments with an Alias

When you use an alias, you can add arguments (options and
parameters) to the end of the command line.

Example:

mars% ll File* extra*
ll: Command not found.
mars% alias ll ls -l
mars% ll File* extra*
-rw-------. 1 sliao sliao 20 Jan 10 20:47 extra11
-rw-------. 1 sliao sliao 13 Jan 10 20:48 extra22
-rw-------. 1 sliao sliao 29 Jan 10 20:41 File1
-rw-------. 1 sliao sliao 21 Jan 10 20:41 File2
mars%

The shell will replace the ll alias and then tack the parameters onto the
end of the command.

If you want to insert arguments into the middle of an alias, you can refer
to them as !*.

Example:

mars% lld
lld: Command not found.
mars% alias lld 'ls -l \!*; date'
mars% lld File*
-rw-------. 1 sliao sliao 29 Jan 10 20:41 File1
-rw-------. 1 sliao sliao 21 Jan 10 20:41 File2
Tue Jan 10 20:51:02 CST 2023
mars%

The shell replaces lld File*

with
 ls –l File*; date

ACS-294-001 Unix (Fall Term, 2023-2024) Page 36

Example: Keeping Track of Your Working Directory

 cd Change Directory

 pwd Print Working Directory

cwd Shell variable, contains the name of your current
working directory.

If you want to display the new working directory every time you
change directories, you can make the following alias:

 alias cd ’cd \!*; echo $cwd’

Then, whenever you change directories, you will know exactly
where you are.

 Example:

mars% alias cd 'cd \!*; echo $cwd'
mars% cd /usr/bin
/usr/bin
mars% cd
/home/sliao
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 37

Initialization and Termination Files

 The shell provides a way to specify certain commands once and
have them executed at the appropriate time.

 The C-Shell recognizes three special files:

 .cshrc Every time a new shell is started, the commands (i.e., setting
shell variables, defining aliases, …) in the .cshrc file are
executed. It happens when you login, also happens whenever
you run a shell script.

 .login The commands (i.e., setting up terminal, defining environment
variables, setting user masks, …) in the .login file are
executed when you log in (only once).

 .logout The commands in .logout file will be executed when you log
out (only once).

Example:

 Add history | cut -c8- > ~/.history

 to your .logout file will carry the history list from last login.

 Note: rc stands for “run commands”, eg, .mailrc, .newsrc, .exrc

ACS-294-001 Unix (Fall Term, 2023-2024) Page 38

Communicating with Other People

One of the wonderful things about Unix is that every time you
log on a system that is connected to the Internet, you become a
member of a global electronic community.

Take a look around our local system:

users displays the name of each userid that is logged in

Example:

mars% users
acs2941 sliao sliao
mars%

who shows more information than users does

Example:

mars% who
mars% who
nischal pts/0 2023-08-21 15:27 (:0)
chan-w51 pts/1 2023-09-14 11:57 (10.64.21.147)
rajput-s pts/2 2023-09-14 11:26 (10.141.255.89)
sliao pts/4 2023-09-14 12:41 (wnpgmb0426w-ds02-202-50-
88.dynamic.bellmts.net)
mars%

Finding Out What Someone Is Doing: w

 w [-hsu] [userid]

-h display the long report without the heading line

-s display a short report, which contains the information
of User, tty, idle, and what

-u work as the uptime command

Example:

mars% w
 12:42:51 up 29 days, 3:01, 2 users, load average: 0.10, 0.06, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
rajput-s pts/2 10.141.255.89 11:26 1:16m 0.03s 0.03s -csh
sliao pts/4 wnpgmb0426w-ds02 12:41 3.00s 0.08s 0.04s w
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 39

USER userid

TTY terminal name

LOGIN@ time of login

IDLE time since the user last pressed a key (idle time)

JCPU processor time used by all processes (jobs) since login

PCPU processor time used by the current process

WHAT the command (and its arguments) that is running

Public Information about a Userid: /etc/passwd

Unix maintains the information about userids, which is
available to anyone within the same system. On many systems,
this file is named /etc/passwd.

Example:

sliao:x:1000:1000:Simon Liao:/home/sliao:/bin/csh

The first field is the userid, i.e., sliao.

The second field was the encoded password.

The third and fourth fields contain the numeric value for the userid
and the groupid.

The fifth part is used to hold personal data.

The sixth field shows the userid’s home directory.

The last field contains the name of the login shell.

Displaying Public Information about a Userid: finger

 finger [-lmp] [username ...]

The most common way to use the command finger is to specify
the name of a particular userid.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 40

 Example:

mars% finger sliao
Login: sliao Name: Simon Liao
Directory: /home/sliao Shell: /bin/csh
On since Thu Sep 14 12:41 (CDT) on pts/4 from wnpgmb0426w-ds02-202-50-
88.dynamic.bellmts.net
 4 seconds idle
New mail received Thu Sep 14 11:36 2023 (CDT)
 Unread since Thu Sep 14 09:16 2023 (CDT)
Project:
.project line 1
.project line 2
.project line 3
.project line 4
Plan:
.plan line 1
.plan line 2
.plan line 3
.plan line 4
mars%

Checking to See if a Computer Is Alive: ping

If you want to check if a computer is actually connected to the
Internet and is alive, you can use the ping command.

Networks and Addresses

Once you are a part of the Unix community, you can communicate
with other people and transfer data all over the world. All you need
is an electronic address and the knowledge of how to use the
networking programs.

An Overview of the Unix Mail System

mail: electronic mail (not regular post office mail)

address: electronic mailing address

TCP/IP: the common name for a collection of more than 100 different
protocols

protocol: a set of rules that allow different machines and programs to
coordinate with one another

ACS-294-001 Unix (Fall Term, 2023-2024) Page 41

TCP: Transmission Control Protocol

 When you send a message, it is TCP that breaks the data into
packets, sequences the packets, adds some error control
information and then sends the packets out to be delivered.

At the other end, TCP receives the packets, checks for errors, and
combines all of the packets back into the original data. If there is
an error somewhere, the recipient computer will ask the sender to
re-send that packet.

IP: Internet Protocol

IP moves the data packets from one place to another. The
computers that direct data from one network to another are
called routes.

Tracing the Route from Your Computer to Another

 traceroute computer-name

Examples:

mars% traceroute mars.uwinnipeg.ca
traceroute to mars.uwinnipeg.ca (142.132.32.4), 30 hops max, 60 byte packets
 1 mars-acs-uwinnipeg-ca (142.132.32.4) 0.059 ms 0.027 ms 0.029 ms
mars%

pearl% traceroute cs.ubc.ca
traceroute to cs.ubc.ca (142.103.6.5), 30 hops max, 60 byte packets
 1 142.132.145.9 (142.132.145.9) 0.464 ms 1.989 ms 2.235 ms
 2 142.132.140.97 (142.132.140.97) 0.265 ms 0.297 ms 0.365 ms
 3 142.132.192.1 (142.132.192.1) 1.346 ms 1.336 ms 1.325 ms
 4 mrsrouter-uofw.mrnet.mb.ca (192.139.69.105) 1.314 ms 1.303 ms 1.292 ms
 5 205.189.32.252 (205.189.32.252) 1.398 ms 1.387 ms 1.376 ms
 6 clgr2rtr1.canarie.ca (205.189.32.176) 15.545 ms 15.415 ms 15.378 ms
 7 vncv1rtr1.canarie.ca (205.189.32.174) 26.313 ms 25.871 ms 25.816 ms
 8 288-canarie-oran-cr1.vncv1.bc.net (205.189.32.173) 26.026 ms 26.015 ms 26.008 ms
 9 cr1-bb3900.vantx2.bc.net (206.12.0.34) 25.989 ms 25.984 ms 25.993 ms
10 343-oran-ubcab-cr1.vncv1.bc.net (134.87.2.233) 26.467 ms 26.456 ms 26.602 ms
11 a0-anguborder.net.ubc.ca (137.82.123.138) 26.500 ms 31.608 ms 31.600 ms
12 a1-a0.net.ubc.ca (142.103.78.249) 26.746 ms 26.737 ms 26.725 ms
13 137.82.73.13 (137.82.73.13) 26.883 ms 26.868 ms 26.861 ms
14 www.cs.ubc.ca (142.103.6.5) 27.025 ms 27.020 ms 27.006 ms
pearl%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 42

pearl% traceroute cosc.canterbury.ac.nz
traceroute to cosc.canterbury.ac.nz (132.181.17.3), 30 hops max, 60 byte packets
 1 142.132.145.9 (142.132.145.9) 0.459 ms 1.124 ms 1.308 ms
 2 142.132.140.97 (142.132.140.97) 0.241 ms 0.310 ms 0.350 ms
 3 142.132.192.1 (142.132.192.1) 1.249 ms 1.240 ms 1.230 ms
 4 mrsrouter-uofw.mrnet.mb.ca (192.139.69.105) 1.229 ms 1.219 ms 1.208 ms
 5 205.189.32.252 (205.189.32.252) 1.246 ms 1.235 ms 1.225 ms
 6 clgr2rtr1.canarie.ca (205.189.32.176) 15.529 ms 15.424 ms 15.348 ms
 7 vncv1rtr1.canarie.ca (205.189.32.174) 26.293 ms 25.813 ms 25.829 ms
 8 aarnet-2-lo-jmb-706.sttlwa.pacificwave.net (207.231.240.4) 29.181 ms 29.232 ms 29.226 ms
 9 et-2-0-0.pe2.brwy.nsw.aarnet.net.au (113.197.15.98) 171.395 ms 171.388 ms 171.378 ms
10 et-2-3-0.pe1.sxt.alxd.nsw.aarnet.net.au (113.197.15.79) 172.095 ms 172.086 ms 172.076 ms
11 et-0-3-0.pe1.wnpa.akl.aarnet.net.au (113.197.15.77) 194.027 ms 193.661 ms 193.652 ms
12 et-1-0-0-202.and05-mdr.reannz.co.nz (182.255.119.205) 194.590 ms 194.616 ms 194.460 ms
13 210.7.37.209 (210.7.37.209) 207.873 ms 207.846 ms 207.800 ms
14 210.7.37.210 (210.7.37.210) 208.266 ms 208.224 ms 208.209 ms
15 202.36.179.100 (202.36.179.100) 209.008 ms 212.632 ms 212.627 ms
16 132.181.3.236 (132.181.3.236) 212.810 ms 213.375 ms 213.616 ms
17 * * 132.181.17.3 (132.181.17.3) 210.599 ms
pearl%

What Is the Internet

Technical Definition:

The Internet is a worldwide collection of networks that transmit
data using the IP protocol.

Practical Definition:

The Internet is a worldwide network that offers the services of
mail, file transfer, remote login, discussion groups, accessing
information, and talking with other people.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 43

Redirection and Pipes

The Unix toolbox makes Unix different from other operating
systems.

The Unix Philosophy

1. Each program or command should be a tool that does only one
thing and does it well.

2. When you need a new tool, it is better to combine existing tools
than to write new ones.

Some people describe this philosophy as:

“Small is beautiful”

Standard Input and Standard Output

 The concept of standard input and output is central for using Unix
effectively.

The basic idea:

 “Every program should be able to accept input from any source
and write output to any target.”

Advantages:

For users:

 You can define the input and output for a program as you see fit.

 Need to learn only one program for each task.

For programmers:

 Writing programs becomes a lot easier.

 Programmers don’t have to worry about all the variations
of input and output, and can concentrate on the details of
their programs and depend on Unix to handle the standard
resources for them.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 44

Redirecting Standard Output

When you log in, the shell automatically sets standard input to be
your keyboard and standard output to be your screen.

However, every time you enter a command, you can tell the shell to
reset the standard input or output for the duration of that command.

If you want the output of a command to go to a file, type a > followed
by the name of the file at the end of the command. For example,

 sort > result

will send the output of sort to a file named result. If the file result
does not exist, Unix will create it. If the file result already exist,
its contents will be replaced.

You also can use >> to append data to the end of an existing file.
For example,

 sort >> result

will create a file named result if it does not exist. If the file result
already exists, the new data will be appended to the end of the file
result.

When we send the standard output to a file, we say that we redirect
it. Both above commands redirect their output to the file result.

Protecting Files from Being Replaced by Redirection

In C-Shell, there is a variable noclobber. Once it is set, you can
have built-in protection. Type:

 set noclobber

Then, if the file result already exists and you enter

 sort > result

You will see

 result: File exists

ACS-294-001 Unix (Fall Term, 2023-2024) Page 45

If you really want to replace the file, type an ! after the >
character:

 sort >! result

This will override the automatic check.

When variable is set noclobber on and you try to append data to
a file that does not exist, for example:

 sort >> notafile

You will see a message like:

 notafile: No such file or directory

If you really want to create a file, type

 sort >>! notafile

Then you are going to override the automatic check.

Pipelines

Pipe: | (vertical bar)

If you want the output of a command to go to another program
for further processing, use pipe. For example,

 sort | lpr

 will send the standard output of the sort program to the lpr
program for printing. It reads:

“The sort program pipes its output to the lpr program.”

Example:

 cat file1 file2 | grep any_string | sort | lpr

 will do the following tasks:

1. Combine two files, file1 and file2, with the cat program;

2. Send the output of the cat program to grep;

ACS-294-001 Unix (Fall Term, 2023-2024) Page 46

3. Program grep extracts all the lines of data that contain a
specified string of characters;

4. Program sort sorts the output of program grep;

5. Program lpr prints the data (with a line printer).

When we combine commands in this manner, we call it a pipeline.

Redirecting Standard Input

By default, the standard input is set to your keyboard. For
example, if you enter

 sort

then the sort command is waiting for you to enter data. If you
enter:

 time
 history
 a
 brief
 of
 ^D

The sort program will sort all the data and write it to the standard
output:

 a
 brief
 history
 of
 time

 If you want the shell to tell a program to read its data from a file,
you can use <. For example,

 sort < temp

 will sort the data contained in a file named temp.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 47

More Examples

Example 1:

 Mail userid1 userid2 userid3 < notice

will send the file notice to three userids.

Example 2:

It is possible to redirect both the standard input and standard
output at the same time:

 sort < rawdata > result

reads data from a file named rawdata, sorts it, and writes the
output to a file named result.

Splitting a Pipeline with Tees: tee

If you want to the output of a program to go to two or more places at
the same time, you can use the tee command:

 tee [-a] file...

 Example:

 cat file1 file2 | grep a_string | sort | tee save1 save2| lpr

will copy the output to two files, save1 and save2.

In the above example, if either save1 or save2 does not exist, tee will
create it for you. If save1 or save2 already exists, tee will override it
and the original contents will be lost.

 If you want to have tee add data to the end of an existing file,
use the –a option:

 cat file1 file2 | grep a_string | sort | tee –a save| lpr

ACS-294-001 Unix (Fall Term, 2023-2024) Page 48

Filters

 A filter is any program that reads from standard input and writes
to standard output.

The Simplest Filter: cat

 The simplest possible filter is cat. All cat does is to copy data from
standard input to standard output. For example, after you enter

 cat

the system will be waiting for you to input data. When you press
<Return> at the end of each line, the line will be sent to cat, which
will copy it to the standard output. The result is that each line you
type will be displayed twice.

What’s the point to use a filter that does not do anything?

Examples:

 cat > a_file (cat >> a_file)

 will create a file named a_file.

 cat < another_file

 will display a file named another_file.

cat < file1 > copy_of_file1

will make a copy of file1 by redirecting both the standard input and
output.

Look how much we can do with a filter that does nothing!

Increasing the Power of Filters

The definition of a filter requires it to read its data from the
standard input.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 49

What if we also have the option of reading from a file whose name
is specified as a parameter. For example, instead of having to enter

 cat < file

 we could enter

 cat file

The change might not be significant in this case, but it makes it
possible to read from multiple files.

Here is an abbreviated version of the syntax for the cat command:

 cat [file...]

 where file is the name of a file which cat can read.

 Examples:

 cat file1 file2 file3

 cat file1 file2 file3 | sort > file4

cat is more powerful now, but cat itself must be more complex.

Many filters are extended in this way.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 50

A List of Useful Filters

Filters Purpose

cat combine files; copy standard input to standard output
colrm remove specified columns from each line of data
cut extract selected portions (columns) of each line
grep extract lines that contain a specified pattern
head display the first few lines of data
look extract lines beginning with a specified pattern
more display data, one screenful at a time
paste combine columns of data
rev reverse order of characters in each line pf data
sort sort or merge data
spell check data for spelling errors
tr translate or delete selected characters

uniq look for repeated lines
wc count number of lines, words, or characters

Combining Files: cat

The cat program copies data, unchanged, to the standard output.
The data can come from the standard input or from one or more
files. The syntax is:

 cat [-bn] [file…]

 -n place a line number in front of each line
-b used with –n to tell cat not to number blank lines

 Examples:

 cat name address phone
 cat name address phone > info
 cat name address phone | sort

 There is one thing that needs to be avoided:

 cat name address phone > name

ACS-294-001 Unix (Fall Term, 2023-2024) Page 51

Unix sets up the output file before starting the cat program. Thus,
the file name will be cleared out before cat reads and combines
its input. By the time cat looks in name, it is already empty.

 If you want to add address and phone to name, you can

 cat address phone >> name

Extract Selected Columns of Each Line: cut

The cut command extracts columns of data. One of the syntaxes
of the cut command is:

 cut –c list [file…]

where list is a list of columns to be extracted.

Examples:

mars% cat students
012-34-5678 Ambercrombie, Al 01/01/72 555-1111
123-45-6789 Barton, Barbara 02/02/73 555-2222
234-56-7890 Canby, Charles 03/03/74 555-3333
345-67-8901 Danfield, Deann 04/04/75 555-4444
.
mars% cut -c 14-30 students
Ambercrombie, Al
Barton, Barbara
Canby, Charles
Danfield, Deann
 . . .
mars%
mars% cut -c 14-30,42-49 students
Ambercrombie, Al 555-11
Barton, Barbara 555-22
Canby, Charles 555-33
Danfield, Deann 555-44

mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 52

Another important syntax of the cut command is:

 cut –f list [-d delim] [-s] [file…]

The list following the –f option is a list of fields assumed to be
separated by a delimiter character.

Examples:

mars% cat students.backup
012-34-5678:Ambercrombie, Al:01/01/72:555-1111
123-45-6789:Barton, Barbara:02/02/73:555-2222
234-56-7890:Canby, Charles:03/03/74:555-3333
345-67-8901:Danfield, Deann:04/04/75:555-4444
mars% cut -f 1 –d ':' students.backup
012-34-5678
123-45-6789
234-56-7890
345-67-8901
mars% cut -f 2,4 –d ':' students.backup
Ambercrombie, Al:555-1111
Barton, Barbara:555-2222
Canby, Charles:555-3333
Danfield, Deann:555-4444
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 53

Combining Columns of Data: paste

The paste command combines columns of data and has a great deal
of flexibility. The syntax of the paste command is:

 paste [-d char] file… (d: delimiter)

 where char is a character to be used as a separator.

 Examples:

mars% cat id
012-34-5678
123-45-6789
234-56-7890
345-67-8901
mars% cat name
Ambercrombie, Al
Barton, Barbara
Canby, Charles
Danfield, Deann
mars% cat birthday
01/01/00
02/02/01
03/03/02
04/04/03
mars% cat phone
555-1111
555-2222
555-3333
555-4444
mars% paste -d'$' id name birthday phone > info
mars% cat info
012-34-5678$Ambercrombie, Al$01/01/00$555-1111
123-45-6789$Barton, Barbara$02/02/01$555-2222
234-56-7890$Canby, Charles$03/03/02$555-3333
345-67-8901$Danfield, Deann $04/04/03$555-4444
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 54

Check Data for Spelling Errors: spell

The spell command will read data and generate a list of all the
words that look as if they are misspelled.

The spell command is actually one of a family of programs that
uses a master file of stored words to provide a spell-checking
service. This file is /usr/share/dict/words (could be a link).

The syntax of the spell command is:

 spell file…

Examples:

mars% cat test_file
The background color of my cheque is light bluue.
mars% spell test_file
bluue
cheque
mars%

Extracting Lines Beginning with a Specified Pattern: look

The look command will search data that is in alphabetical order
and will find all the lines that begin with a specified pattern. The
syntax of the look command is:

 look [-df] string [file…]

 where string is the pattern to search for.

-d Tell look to consider only upper and lowercase letters,
numbers, tabs, and spaces.

-f Tell look to treat uppercase the same as lowercase.

look cannot read from the standard input. Thus, it is not really a
filter and cannot be used within a pipeline.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 55

 Example:

mars% look 3 info
345-67-8901$Danfield, Deann $04/04/03$555-4444
mars%

If you use look without specifying a source of input, look will
examine the file /usr/share/dict/words, using both the –d and –f
options.

Examples:

mars% look winni
Winni
Winnick
Winnie
Winnifred
winning
winningly
winningness
winnings
winninish
Winnipeg
winnipeg
Winnipegger
Winnipegosis
Winnipesaukee
Winnisquam
mars% look manito
manito
Manitoba
manitoba
Manitoban
manitos
Manitou
manitou
Manitoulin
manitous
Manitowoc
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 56

Counting Lines, Words, and Characters: wc

The wc (word count) command counts lines, words, and characters.
(wc considers a “word” to be an unbroken sequence of characters.)

 The syntax of the wc command is:

 wc [-lwc] [file…]

 -l counts lines

 -w counts words

 -c counts characters

Example:

mars% cat names
Barbara
Al
Al
Cathy
Barbara
mars% wc names
 5 5 28 names
mars%

In this case, the file names has 5 lines, 5 words, and 28 characters.

You can specify more than one file at a time. For example,

 wc file1 file2 file3

might output

 2 13 71 file1
 3 17 85 file2
 4 24 99 file3
 9 54 255 total

ACS-294-001 Unix (Fall Term, 2023-2024) Page 57

Sorting Data: sort

 The syntax for using sort to sort data is:

sort [-dfru] [-o outfile] [infile…]

-d considers only letters, numerals, and spaces.

-f treats uppercase letters as lowercase.

-r sorts the data in reverse order.

-u looks for identical lines and suppress all but one.

outfile is the name of a file to hold the output, and infile is the
name of a file that contains input.

 Examples:

mars% cat names
Barbara
Al
Al
Cathy
Barbara
mars% sort names
Al
Al
Barbara
Barbara
Cathy
mars% sort -u names
Al
Barbara
Cathy
mars% sort -ru names
Cathy
Barbara
Al
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 58

The –o option will allow you to save the output in the same file.

Examples:

 sort –o names names

will sort the contents of names and save the sorted result in names.

 sort –o names names oldnames extranames

will sort the data from names, oldnames, and extranames, and
save the output in the file names.

The ASCII Code

By default, data is stored in ascending order according to a
specification called the ASCII code. The ASCII code is a
description of the entire set of 128 different characters.

 The order of characters in the ASCII code is as follows:

 control characters (including the tab)
 the space character
 (symbols) ! " # $ % & ' () * + , - . /
 (the numerals) 0 1 2 3 4 5 6 7 8 9
 (more symbols) : ; < = > ? @
 (uppercase letters) A B C … Z
 (more symbols) [\] ^ _ `
 (lowercase letters) a b c … z
 (more symbols) { | } ~
 the del (null) character

ACS-294-001 Unix (Fall Term, 2023-2024) Page 59

Look for Repeated Lines: uniq

The uniq command will look for consecutive, duplicate lines. uniq
can perform four different tasks: retain only duplicate lines, retain
only unique lines, eliminate duplicate lines, and count how many
times lines are duplicated.

The syntax if the uniq command is:

uniq [-cdu] [infile [outfile]]

 -c counts how many times each line is found.

 -d retains one copy of all lines that are duplicated.

 -u retains those lines that are not duplicated.

Examples:

mars% cat names
Barbara
Al
Al
Cathy
Barbara
mars% uniq -c names
 1 Barbara
 2 Al
 1 Cathy
 1 Barbara
mars% uniq -d names
Al
mars% uniq -u names
Barbara
Cathy
Barbara
mars% uniq names (behaves as both –d and –u are on)
Barbara
Al
Cathy
Barbara
mars% sort names | uniq -u
Cathy
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 60

The real power of uniq is when you use it with sort in a pipeline.
When data is sorted, it guarantees that all duplicate lines will be
consecutive.

More examples:

I have two files that contain the names of students enrolled in two
different courses: acs2941 and acs2947.

 sort acs2941 acs2947 | uniq –d

will show the students who are taking both courses.

 sort acs2941 acs2947 | uniq –u

will show the students who are taking one course only.

 sort acs2941 acs2947 | uniq
 (sort –u acs2941 acs2947)

will show all students’ names without duplications.

 sort acs2941 acs2947 | uniq –c

will show how many courses each student is taking.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 61

Command Substitution

Command substitution allows you to use the output of one
command as part of another command.

To use command substitution, you place part of a command
within ` (backquote) characters. The shell will evaluate the part
within backquotes as a command on its own. Then the shell will
substitute the output of this command into the large command.

 Examples:

mars% echo The time is date.
The time is date.
mars% echo The time is `date`.
The time is Tue Sep 19 15:15:44 CDT 2023.
mars% echo The current directory is pwd.
The current directory is pwd.
mars% echo The current directory is `pwd`.
The current directory is /home/sliao/2941.
mars%

Translate or Delete Selected Characters: tr

The tr command will read data and replace specified characters
with other characters. The syntax of the tr command is:

 tr [-csd] [set1 [set2]]

-d deletes all the characters that you specify (you only
define one set of character in this case).

 set1 and set2 are sets of characters.

tr reads data from the standard input and looks for any characters
from set1. Whenever tr finds such a character, it replaces the
character with the corresponding character from set2.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 62

Examples:

mars% cat f1
aabbcc
mars% tr a A <f1 > f2
mars% cat f2
AAbbcc
mars%

mars% tr abc ABC < f1 > f2
mars% cat f2
AABBCC
mars%

mars% cat file1
abcdeabcde
mars% tr abcde Azzzz < file1 > file2
mars% cat file2
AzzzzAzzzz
mars%

mars% tr abcde Az < file1 > file2
mars% cat file2
AzzzzAzzzz
mars%

mars% cat file
a b c
mars% tr '\011' ' ' < file > newfile
mars% cat newfile
a b c
mars%

mars% cat file3
abcdeabcde
1234512345
mars% tr -d 12345 < file3 > file4
mars% cat file4
abcdeabcde

mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 63

Extracting Lines that Contain a Specified Pattern: grep

The grep command will search for all lines in a collection of data
that contain a specified pattern and write these lines to the
standard output.

 grep: Global Regular Expression Print

The grep command is actually part of a family, which provides a
wide range of text searching capabilities. The other members are
fgrep and egrep.

grep was designed to be the general purpose program. It can
search for patterns that are exact characters, or for patterns that
match a more general specification.

fgrep was designed to be a faster searching program. It can only
search for exact characters, not for general specification. fgrep
stands for “fixed character grep”.

egrep was designed to be the most powerful program. It can
search for more complex patterns than grep. The name egrep
stands for “extended grep”.

The syntax of the grep command is:

 grep [-cilnvw] pattern [file…]

where pattern is the pattern to search for, and file is the name of
input file.

-c displays the number of lines that have been extracted.

Example:

mars% w
 18:50:43 up 77 days, 8:45, 2 users, load average: 0.02, 0.02, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
sliao pts/1 wnpgmb0412w-ds01 18:49 3.00s 0.05s 0.02s w
sliao pts/5 wnpgmb0412w-ds01 18:50 40.00s 0.02s 0.02s -csh
mars% w | grep -c sliao
2
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 64

-i ignores the difference between upper- and lowercase letters
when making a comparison.

Example:

mars% cat myfile
line 1
Line 2
line 3
Line 4
mars% grep line myfile
line 1
line 3
mars% grep -i line myfile
line 1
Line 2
line 3
Line 4
mars%

-l lists only the name of each file containing matched lines.
Each file name is listed only once.

Examples:

mars% cat F1
line 1 F1
Line 2 F1
line 3 F1
Line 4 F1
mars% cat F2
line 1 F2
Line 2 F2
line 3 F2
Line 4 F2
mars% cat F3
line 1 F3
Line 2 F3
line 3 F3
Line 4 F3
mars% grep -l Line F1 F2 F3
F1
F2
F3
mars% grep Line F1 F2 F3
F1:Line 2 F1
F1:Line 4 F1
F2:Line 2 F2
F2:Line 4 F2
F3:Line 2 F3
F3:Line 4 F3
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 65

-v will select all the lines that do not contain the specified pattern.

Example:

mars% grep -v line F1
Line 2 F1
Line 4 F1
mars%

-n writes a relative line number in front of each line of output.

Example:

mars% grep -n Line F1 F2 F3
F1:2:Line 2 F1
F1:4:Line 4 F1
F2:2:Line 2 F2
F2:4:Line 4 F2
F3:2:Line 2 F3
F3:4:Line 4 F3
mars%

-w specifies that you want to search only for complete word.

Example:

mars% cat File
line 1
line_2
line 3
line_4
mars% grep line File
line 1
line_2
line 3
line_4
mars% grep -w line File
line 1
line 3
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 66

Regular Expressions

A Regular Expression is a compact way of specifying a general
pattern of characters.

Regular expressions are an integral part of Unix and you can use
regular expressions with many commands, including the vi editor.

Within a regular expression, certain symbols have special meanings.

Summary of Symbol Used in Regular Expressions

Symbol Meaning

. match any single character except newline
* match zero or more of the preceding characters
^ match the beginning of a line
$ match the end of a line
\< match the beginning of a word
\> match the end of a word
[] match one of the enclosed characters
[^] match any character that is not enclosed
\ take the following symbol literally

. (period) will match any single character except newline.

Example:

mars% cat name
Ambercrombie, Al
Barton, Barbara
Canby, Charles
Danfield, Deann
mars% grep 'D....' name
Danfield, Deann
mars%

You need to place the pattern within single quotes whenever you use
special characters. Otherwise, the shell may interpret some of them
incorrectly.

Using the single quotes tells the shell to leave these characters alone
and pass them on to the program.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 67

* will match multiple characters. It stands for zero or more
occurrences of the preceding characters.

Examples:

 grep ':.*:'

 will search for all lines that contain a colon, followed by zero or
more any other characters, followed by another colon.

mars% grep 'Winnip*' /usr/share/dict/words
Winni
Winnick
Winnie
Winnifred
Winnipeg
Winnipegger
Winnipegosis
Winnipesaukee
Winnisquam
mars% grep 'Winnipe*' /usr/share/dict/words
Winnipeg
Winnipegger
Winnipegosis
Winnipesaukee
mars% grep 'Winnipe' /usr/share/dict/words
Winnipeg
Winnipegger
Winnipegosis
Winnipesaukee
mars%

^ indicates that you want to match only patterns at the beginning of
a line.

Examples:

mars% grep '^A' name
Ambercrombie, Al
mars% grep '^A*' name
Ambercrombie, Al
Barton, Barbara
Canby, Charles
Danfield, Deann
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 68

$ indicates that you want to match patterns at the end of a line.

Example:

mars% cat info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
123-45-6789$Barton, Barbara$02/02/93$555-2222
234-56-7890$Canby, Charles$03/03/94$555-3333
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars% grep '4' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
123-45-6789$Barton, Barbara$02/02/93$555-2222
234-56-7890$Canby, Charles$03/03/94$555-3333
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars% grep '^4' info
mars% grep '4$' info
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars%

\< indicates the beginning of the word.
\> indicates the end of the word.

Examples:

mars% grep '12' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
123-45-6789$Barton, Barbara$02/02/93$555-2222
mars% grep '\<12' info
123-45-6789$Barton, Barbara$02/02/93$555-2222
mars%

mars% grep '01' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars% grep '\<01' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
mars%

mars% grep 'n' info
123-45-6789$Barton, Barbara$02/02/93$555-2222
234-56-7890$Canby, Charles$03/03/94$555-3333
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars% grep 'n\>' info
123-45-6789$Barton, Barbara$02/02/93$555-2222
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 69

mars% grep 'ie' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars% grep 'ie\>' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
mars%

[] matches one of the enclosed characters.

Examples:

mars% grep 'b[ae]r' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
123-45-6789$Barton, Barbara$02/02/93$555-2222
mars%

mars% grep '[A-Z]a[a-z]' info
123-45-6789$Barton, Barbara$02/02/93$555-2222
234-56-7890$Canby, Charles$03/03/94$555-3333
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars%

[^] matches any character that is not enclosed.

Examples:

mars% grep 'b[^a]r' info
012-34-5678$Ambercrombie, Al$01/01/92$555-1111
mars%

mars% grep '[^a-z]a[^A-Z]' info
123-45-6789$Barton, Barbara$02/02/93$555-2222
234-56-7890$Canby, Charles$03/03/94$555-3333
345-67-8901$Danfield, Deann $04/04/95$555-4444
mars%

\ takes the following symbol literally.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 70

More examples:

mars% cat test
A
Al
Art
Ambercrombie
mars% grep 'A[a-z]*' test
A
Al
Art
Ambercrombie
mars% grep 'A[a-z][a-z]*' test
Al
Art
Ambercrombie
mars% grep 'A[a-z][a-z][a-z]*' test
Art
Ambercrombie
mars% grep 'A[a-z][a-z][a-z][a-z]*' test
Ambercrombie
mars%

 grep '*.*\$' file

 will find all lines that contain the characters *, followed by any
characters, followed by $.

 \\ a single backslash
 * a single star
 .* any number of other characters
 \$ a single dollar sign

 What the following pipeline will do?

 cat /usr/share/dict/words | grep '^[a-z][a-z]$'

ACS-294-001 Unix (Fall Term, 2023-2024) Page 71

The Unix File System

File System: To maintain all the data that is stored in the computer.

File: Any source from which data can be read, or any
target to which data can be written.

The Three Types of Unix Files:

Ordinary Files:

Ordinary files contain data and are stored on disk or on tape.
Sometimes, they are called regular files.

Text files are ordinary files that contain only ASCII characters,
which can be generated by typing at a keyboard.

You can edit a text file with a text editor such as vi.

Binary files are ordinary files that contain non-textual data, which
only makes sense when processed by a program.

Example:

C program == > Machine instructions
(source program) (compiler) (executable program)

Directories and Subdirectories

Unix uses directories to organize files into a hierarchical system.

The Tree-Structured File System

The outline of the Unix file system is like an upside-down tree. The
name “root” was chosen to indicate the main trunk of the tree.

 / is used to indicate the root directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 72

A Tour of the Root Directory

 /bin contains basic programs that are part of Unix.

/dev contains the special files that represent the physical
devices.

/etc contains the programs and files that are used for managing
the system.

/lib contains libraries of programs used by programmers.

/tmp can be used for temporary storage.

A Tour of the /usr Directory

/usr holds a number of subdirectories of its own.

/usr/bin is used to hold executable programs.

/usr/include contains the files that used by (C) programmers.

/usr/lib contains libraries of programs and data used by
programmers.

/usr/local is for local programs and documentation.

/usr/share/man contains the directories and files used by the
online Unix manual.

/usr/share/dict contains files used by the Unix dictionary (words).

Home Directories

In a Unix system, each user (userid) is given a home directory.
This is a directory associated with a particular userid. Within this
home directory, the user can do whatever s/he wants.

~ can be used as an abbreviation for your home directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 73

Examples:

mars% cd ~
mars% pwd
/home/sliao
mars% cd 2941
mars% pwd
/home/sliao/2941
mars% ls -ld
drwx--x--x. 7 sliao sliao 4096 Jan 18 12:36 .
mars% echo ~
/home/sliao
mars% echo $HOME
/home/sliao
mars%

Device File

 The last type of file, a device file, is an internal representation
of a physical device. For example, your keyboard, your display
screen, a printer, the disk drive.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 74

Working with Directories

Pathnames and Working Directory

 A pathname is part of the name of a file. For example,

 vi /home/sliao/2941/assignment1/ver1

 When we write the name of a file in this manner, we call it a
pathname. It shows the path through the directory tree from
the root directory to the file.

 Unix allows you to use one directory at a time as your working
directory. When you want to use a file that is in your working
directory, you don’t need to specify the whole path.

 Example:

 mars% cd ~/2941/assignment1
 mars% vi ver1

Absolute and Relative Pathnames

Absolute Pathname: A file name that begins with a /. It shows the full
path to the file, starting from the root directory.

 Examples:

/home/sliao/2941/test.txt
/home/sliao/2947/final.txt

Relative Pathname: When a file name that does not start with a /,
we call it a relative pathname.

Pathname Abbreviations:

 ~ is home directory

 .. refers to the parent directory.

 . refers to the working directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 75

Moving Around the Directory Tree: cd, pwd

To change your working directory, use the cd (change directory)
command. The syntax is:

 cd [directory]

To display the name of your working directory, use the pwd
(print working directory) command. The syntax is:

 pwd

Examples:

mars% cd /
mars% pwd
/
mars% cd
mars% pwd
/home/sliao
mars% cd ~/2941
mars% pwd
/home/sliao/2941
mars% cd ../../..
mars% pwd
/
mars% cd home/sliao/2941
mars% pwd
/home/sliao/2941
mars%

Making a New Directory: mkdir

To make a directory, use the mkdir command. The syntax is:

 mkdir directory…

where directory is the name of a directory, which can be either
an absolute or relative pathname, you want to make.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 76

Two Rules:

1. Within a single parent directory, you cannot make two
directories with the name pathname.

2. You cannot make a subdirectory if its parent directory
does not exist.

Example:

 mkdir ~/2941 ~/2941/assignment1

 You cannot

 mkdir ~/2941/assignment1 ~/2941

“Tree”: You cannot make a new branch that has nowhere to
attach to the tree.

Removing a Directory: rmdir

You can use the command rmdir to remove a directory. The syntax is:

 rmdir directory…

Two Rules:

1. You cannot remove a directory by using rmdir unless the
directory is empty.

2. You cannot remove any directory that lies between your
working directory and the root directory.

“Tree”: You are sitting on a branch that is your working
directory. You cannot cut off a branch that is
holding up the one you are sitting on.

Example:

If your working directory is

/home/sliao/2941/assignment1

You cannot remove the 2941 directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 77

Moving or Renaming a Directory: mv

We can use the mv command

(1) to rename a directory,
(2) to move a directory, and
(3) to move an entire sub-tree.

The syntax is:

 mv directory target

Case 1: If there is a directory named assignment3 in my working
directory. I want to change the name of this directory to
Assignment3. Assuming that Assignment3 does not exist,

 mv assignment3 Assignment3

 will “rename” assignment3 to Assignment3.

Case 2: If the target directory (Assignment3) already exists,

 mv assignment3 Assignment3

 will “move” the directory assignment3 into Assignment3.

Example:

 Assuming that we have two directories,

/home/sliao/2941

and

/home/sliao/assignment2

 mv /home/sliao/assignment2 /home/sliao/2941

 will move the assignment2 directory to lie within the 2941 directory.
Afterward, the pathname of the assignment2 directory becomes

 /home/sliao/2941/assignment2

When mv moves a directory, it also moves all the files and
subdirectories that lie within that directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 78

Listing the Contents of a Directory: ls

To display information about the contents of a directory, use the
ls (list) command. The basic function of ls is to display an
alphabetical list of names of files in a directory.

The syntax for the ls command is:

 ls [-options] [file...]

where file is the name of a directory or an ordinary file.

By default, ls will display the names of all the files in your
working directory.

-a (all) Lists all file names including the hidden files (dotfiles).

-A Lists all file names, except . (dot) and .. (dot-dot).

-t Sorts by time of last modification (latest first) instead of
by name.

-d (directory) Displays information about the directory itself.

-l (long) Displays the mode, number of links, owner, group, size (in bytes),
and time of last modification for each file, and pathname.

Example:

mars% pwd
/home/sliao/2941
mars% ls -ld
drwx--x--x. 4 sliao sliao 46 Dec 16 22:41 .
mars%

-r Displays the names in reverse order.

-R Will tell ls to list information about all the subdirectories and files
that lie within the directory you name. It will display information
about an entire sub-tree.

-F Will flag certain file names with an identification character.

/: directory
*: executable program

ACS-294-001 Unix (Fall Term, 2023-2024) Page 79

-1 Will force ls to write one line per file name.

-C Will force ls to write columns to a file or pipeline.

 Examples:

mars% ls file*
file file1 file2 file3 file4 file5 file6
mars% ls file* > filea
mars% ls -1 file* > fileb
mars% ls -C file* > filec
mars% cat filea
file
file1
file2
file3
file4
file5
file6
filea
mars% cat fileb
file
file1
file2
file3
file4
file5
file6
filea
fileb
mars% cat filec
file file1 file2 file3 file4 file5 file6 filea fileb filec
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 80

Working with Files

How do you create a file?

1. Many programs will create a file on your behalf.

Example:

vi myfile

 will create a file named myfile if it does not exist.

2. Redirect output to a file.

Example:

 ls ~ > myhome

will create a file named myhome if it does not exist.

3. Make a copy of a file. Unix will create the new file automatically.

We have mkdir command to make a new directory. However, we do
not have a similar command to make an ordinary file.

touch

The touch command can change the modification time of a
file to the current time. It works by reading a character from
the file and writing it back.

 The syntax is

 touch filename…

Side effect: If the file that you specify does not exist, touch will
create it (an empty file).

ACS-294-001 Unix (Fall Term, 2023-2024) Page 81

Choosing a File Name

For Unix, there are only two basic rules for naming files:

1. File names can be up to 255 characters long.

2. A file name can contain any character except /, which has a
special meaning within a pathname.

Bad File Names:

 Any name that contains a character that has a special meaning (<,
>, |, !, ;, …).

 Examples:

 ls –l Assignment3;Newversion
 ls –l Assignment3>Newversion
 ls –info

Characters that Are Safe to Use in File Names

a,b,c... (lowercase letters)
A,B,C... (uppercase letters)
0,1,2... (numbers)
. (period)
= (equals sign)
_ (underscore)

 File names that begin with uppercase letters are reserved for files that
are important in some special way. (Uppercase comes before lowercase
in the ASCII code.)

 Example: README

Some programs expect to use files whose names end in a period
followed by one or more specific letters (extension).

 Examples: a1q6.c and programs.Z

ACS-294-001 Unix (Fall Term, 2023-2024) Page 82

Copying a File: cp

To make a copy of a file, use the cp command:

 cp [-ip] file1 file2

 where file1 is the name of an existing file.

If file2 does not exist, cp will create it.

If file2 does exist, cp will replace it.

-i Tells cp to ask your permission before replacing a file that already exists.

 Example:

mars% ls -l
total 12
-rw-rw-r-- 1 sliao sliao 47 Jan 20 19:59 filea
-rw-rw-r-- 1 sliao sliao 53 Jan 20 19:59 fileb
-rw-rw-r-- 1 sliao sliao 67 Jan 20 19:59 filec
mars% cp -i filea fileb
cp: overwrite fileb? y
mars% ls -l
total 12
-rw-rw-r-- 1 sliao sliao 47 Jan 20 19:59 filea
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:00 fileb
-rw-rw-r-- 1 sliao sliao 67 Jan 20 19:59 filec
mars%

-p Makes the file2 have the same modification time and permissions
as the source file (file1).

Example:

mars% ls -l
total 8
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:00 fileb
-rw-rw-r-- 1 sliao sliao 67 Jan 20 19:59 filec
mars% cp -p fileb filec
mars% ls -l
total 8
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:00 fileb
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:00 filec
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 83

Copying Files to a Different Directory

The cp command can also copy one or more files to a different
directory. The syntax is:

 cp [-ip] file… directory

where file is the name of an existing file, and directory is the name
of an existing directory.

Example:

mars% ls -l questions assignment1
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:31 questions

assignment1:
total 0
mars% cp questions assignment1
mars% ls -l questions assignment1
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:31 questions

assignment1:
total 4
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:32 questions
mars%

Copying a Directory to Another Directory

You can use cp to copy a directory and all of its files to another
directory by using the –r option:

 cp –r [-ip] directory1… directory2

where directory1 is a source directory and directory2 is the target
directory.

If directory2 does not exist, Unix will create one in your working
directory and copy all files and subdirectories to it.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 84

Examples:

mars% ls -l | grep assignment
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:32 assignment1
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:35 assignment2
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:36 assignment3
mars% ls -l assignment3
total 8
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:36 names
-rw-rw-r-- 1 sliao sliao 67 Jan 20 20:35 questions
mars% cp -r assignment3 assignment4
mars% ls -l | grep assignment
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:32 assignment1
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:35 assignment2
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:36 assignment3
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:36 assignment4
mars% ls -l assignment4
total 8
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:36 names
-rw-rw-r-- 1 sliao sliao 67 Jan 20 20:36 questions
mars%

If directory2 does exist, Unix will create a subdirectory named
directory1 under directory2 and copy all files and subdirectories to it.

Examples:

mars% ls -l | grep assignment
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:32 assignment1
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:35 assignment2
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:36 assignment3
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:43 assignment4
mars% ls -l assignment3
total 8
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:36 names
-rw-rw-r-- 1 sliao sliao 67 Jan 20 20:35 questions
mars% ls -l assignment4
total 0
mars% cp -r assignment3 assignment4
mars% ls -l assignment4
total 4
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:43 assignment3
mars% ls -l assignment4/assignment3
total 8
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:43 names
-rw-rw-r-- 1 sliao sliao 67 Jan 20 20:43 questions
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 85

Moving a File: mv

To move a file to a different directory, use the mv (move)
command. The syntax is:

 mv [-if] file… directory

where file is the name of an existing file, and directory is the name
of target directory.

Examples:

mars% ls -l
total 16
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:46 backups
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:46 file1
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:46 file2
-rw-rw-r-- 1 sliao sliao 22 Jan 20 20:46 file3
mars% ls -l backups
total 4
-rw-rw-r-- 1 sliao sliao 22 Jan 20 20:46 file1
mars% mv file[123] backups
mars% ls -l
total 4
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:47 backups
mars% ls -l backups
total 12
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:46 file1
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:46 file2
-rw-rw-r-- 1 sliao sliao 22 Jan 20 20:46 file3
mars%

-i (interactive) option will tell mv to ask your permission before
replacing a file.

-f (force) will force mv to replace a file. It will override the –i
option as well as restrictions imposed by file
permissions.

 Use -f with care!

ACS-294-001 Unix (Fall Term, 2023-2024) Page 86

Renaming a File or Directory: mv

You can also use mv command to rename a file or directory. The
syntax is:

 mv [-if] oldname newname

where oldname is the name of an existing file or directory, and
newname is the new name.

Examples:

mars% ls -l
total 4
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:47 backups
mars% mv backups backupfiles <-- rename backups to backupfiles
mars% ls -l
total 4
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:47 backupfiles
mars%

mars% ls -l
total 8
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:53 backupfiles
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:53 backups
mars% ls -l backupfiles
total 8
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:46 file1
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:46 file2
mars% ls -l backups
total 0
mars% mv backupfiles backups <-- move backfiles under backups
mars% ls -l
total 4
drwxrwxr-x 3 sliao sliao 4096 Jan 20 20:54 backups
mars% ls -l backups
total 4
drwxrwxr-x 2 sliao sliao 4096 Jan 20 20:53 backupfiles
mars% ls -l backups/backupfiles
total 8
-rw-rw-r-- 1 sliao sliao 47 Jan 20 20:46 file1
-rw-rw-r-- 1 sliao sliao 53 Jan 20 20:46 file2
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 87

Removing a File: rm

 To remove (delete) a file, use the rm command. The syntax is:

 rm [-fir] file…

where file is the name of a file you want to remove.

Examples:

 rm file1

 rm ~/file2

 rm /usr/tmp/file3

 rm ~/tmp/file[123]

 rm *

Once you remove a file, it is gone for good.

-i tells rm to ask your permission before removing each file.

 Example:

 alias erase 'rm -i'

-f tells rm to remove all the files you specify regardless of file
permissions. –f will override –i.

-r will remove an entire sub-tree.

 Example:

 rm –r ~/2941

 will remove the directory 2941 and all files and subdirectories
under 2941.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 88

File Permissions

Unix maintains a set of file permissions for each file. These
permissions control who can access the file and in what way.

 Three types of permissions:

 read permission

 write permission

 execute permission

Ordinary File

Read: you can read from the file
Write: you can write to the file
Execute: you can execute the file

Directory

Read: you can read the directory
Write: you can create, move, copy, or remove entries
Execute: you can search the directory

How Unix maintains file permissions?

 You: read, write, execute

 Your group: read, write, execute

 Everybody: read, write, execute

To display your userid and your groupid, use id command.

 Example:

mars% id
uid=1000(sliao) gid=1000(sliao)
groups=1000(sliao)
mars%

ACS-294-001 Unix (Fall Term, 2023-2024) Page 89

Displaying File Permissions: ls -l

To display the file permissions for a file, use the ls command
with the -l (long listing) option.

Example:

mars% ls -l
total 36
-rwxrwxrwx 1 sliao sliao 6 Jan 27 21:25 prog.everybody
-rwxrwx--- 1 sliao sliao 11 Jan 27 21:25 prog.group
-rwx------ 1 sliao sliao 11 Jan 27 21:25 prog.user
-rw-rw-rw- 1 sliao sliao 22 Jan 27 21:25 text.everybody
-rw-rw---- 1 sliao sliao 12 Jan 27 21:25 text.group
-rw------- 1 sliao sliao 10 Jan 27 21:25 text.user
-r--r--r-- 1 sliao sliao 14 Jan 27 21:25 tran.everybody
-r--r----- 1 sliao sliao 47 Jan 27 21:25 tran.group
-r-------- 1 sliao sliao 53 Jan 27 21:25 tran.user
mars%

r: read permission w: write permission

x: execute permission -: permission not granted

File Modes

read permission = 4

write permission = 2

execute permission = 1

no permission = 0

ACS-294-001 Unix (Fall Term, 2023-2024) Page 90

For each set of permissions, we add the appropriate numbers.

read write execute VALUE read write execute

- - - 0 0 + 0 + 0
- - yes 1 0 + 0 + 1
- yes - 2 0 + 2 + 0
- yes yes 3 0 + 2 + 1
yes - - 4 4 + 0 + 0
yes - yes 5 4 + 0 + 1
yes yes - 6 4 + 2 + 0
yes yes yes 7 4 + 2 + 1

Example:

owner group everybody mode

rwx 7 rwx 7 rwx 7 <-- prog.everbody 777
rwx 7 rwx 7 --- 0 <-- prog.group 770
rwx 7 --- 0 --- 0 <-- prog.user 700
rw- 6 rw- 6 rw- 6 <-- text.everybody 666
rw- 6 rw- 6 --- 0 <-- text.group 660
rw- 6 --- 0 --- 0 <-- text.user 600
r-- 4 r-- 4 r-- 4 <-- tran.everybody 444
r-- 4 r-- 4 --- 0 <-- tran.group 440
r-- 4 --- 0 --- 0 <-- tran.user 400

Changing File Permissions: chmod

To change the permissions for a file, use the chmod (change mode)
command. The syntax is:

 chmod mode file…

 where mode is the new file mode, and file is the name of a file or
directory.

ACS-294-001 Unix (Fall Term, 2023-2024) Page 91

Examples:

 chmod 644 file1 file2

 will change the mode for the specified files to give read and write
permissions to the owner, and read permission to the group and
everybody else.

 chmod 755 program

 will give the owner read, write, and execute permissions and read,
execute permissions for the group and everybody else.

How Unix Assigns Permissions to a New File: umask

 When Unix create a new file, it starts with a file mode of:

 666: for non-executable ordinary files

 777: for executable ordinary files

 777: for directories

From this initial mode, Unix subtracts the value of the user mask.
The user mask is a mode, set by you, showing which permissions
you want to restrict.

 To set the user mask, use the umask command. The syntax is:

 umask [mode]

 where mode specifies which permissions you want to restrict.

Examples:

 umask 022 (umask 22)

 umask 077 (umask 77)

It is a good idea to put a umask command in your initialization file
so that your user mask will be set automatically each time you log
in. For the C-Shell, this file is .cshrc.

