
Discrete Mathematics 344 (2021) 112402

B
a

b

c

d

e

u
w

A
s
r
d

h
0

Contents lists available at ScienceDirect

DiscreteMathematics

journal homepage: www.elsevier.com/locate/disc

The threshold strong dimension of a graph
Nadia Benakli a, Novi H. Bong b, Shonda Dueck (Gosselin) c, Linda Eroh d,
eth Novick e, Ortrud R. Oellermann c,1

Department of Mathematics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201, USA
Department of Mathematical Sciences, University of Delaware, 15 Orchard Road, Newark, DE, 19716, USA
Department of Mathematics and Statistics, The University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada
Department of Mathematics, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54963, USA
School of Mathematical and Statistical Sciences, Clemson University, O-110 Martin Hall, Box 340975, Clemson, SC, 29634, USA

a r t i c l e i n f o

Article history:
Received 9 August 2020
Received in revised form 19 March 2021
Accepted 23 March 2021
Available online xxxx

Keywords:
Strong dimension of graphs
Threshold strong dimension
Embeddings in strong products of graphs
Bounds for the threshold strong dimension
Graphs with vertex covering number 2
realizable by strong resolving graphs
Threshold strong dimension and trees

a b s t r a c t

Let G be a connected graph and u, v and w vertices of G. Then w is said to strongly
resolve u and v, if there is either a shortest u-w path that contains v or a shortest v-w
path that contains u. A set W of vertices of G is a strong resolving set if every pair of
vertices of G is strongly resolved by some vertex of W . A smallest strong resolving set of
a graph is called a strong basis and its cardinality, denoted βs(G), the strong dimension of
G. The threshold strong dimension of a graph G, denoted τs(G), is the smallest strong
dimension among all graphs having G as spanning subgraph. A graph whose strong
dimension equals its threshold strong dimension is called βs-irreducible. In this paper
we establish a geometric characterization for the threshold strong dimension of a graph
G that is expressed in terms of the smallest number of paths (each of sufficiently large
order) whose strong product admits a certain type of embedding of G. We demonstrate
that the threshold strong dimension of a graph is not equal to the previously studied
threshold dimension of a graph. Graphs with strong dimension 1 and 2 are necessarily
βs-irreducible. It is well-known that the only graphs with strong dimension 1 are the
paths. We completely describe graphs with strong dimension 2 in terms of the strong
resolving graphs introduced by Oellermann and Peters-Fransen. We obtain sharp upper
bounds for the threshold strong dimension of general graphs and determine exact values
for this invariant for certain subclasses of trees.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by a problem in network security, Slater [10] initiated the study of the metric dimension of a graph. Let
, v, and w be vertices of a connected graph G. Then w is said to resolve u and v, if the distance dG(u, w) from u to
does not equal the distance dG(v, w) from v to w. If G is clear from context we will write d(x, y) instead of dG(x, y).
set W of vertices of G resolves G if every pair of vertices in G is resolved by some vertex of W . A smallest resolving

et of a graph is called a metric basis and its cardinality the metric dimension of G, denoted by β(G). Thus, if W is a
esolving set for a graph G, then the location of an intruder in a network can be uniquely determined if distance detecting
evices are placed at each of the vertices in W . If w1, w2, . . . , wk is an ordering of the vertices of W , the set of vectors
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(d(v, w1), d(v, w2), . . . , d(v, wk)) : v ∈ V (G)} are called the distance vectors of G relative to the given ordering of the
ertices of W .
Sebö and Tannier [9] observed that there are non-isomorphic graphs G1 and G2 on the same vertex set that share a

common metric basis, say W , and that have the same distance vectors relative to some ordering of the vertices of W .
This motivated the introduction of a stronger version of the metric dimension of a graph for which a corresponding basis
uniquely determines all adjacencies of the graph. A vertex w is said to strongly resolve two vertices u and v of a graph

if there is either a shortest u-w path that contains v or a shortest v-w path that contains u or, equivalently, either
the interval between u and w contains v or the interval between v and w contains u, where the interval between two
vertices is the collection of all vertices that lie on some shortest path between these vertices. If every pair of vertices of
G is strongly resolved by a vertex in some set W of vertices of G, then W is a strong resolving set for G. A smallest strong
resolving set is called a strong basis and its cardinality the strong dimension of G, denoted by βs(G). Thus a strong resolving
et of a graph is certainly also a resolving set.
It is natural to ask if the number of detecting devices that are required to uniquely determine the location of an intruder

n a network could be reduced if additional links between some pairs of nodes are added. Or equivalently one may ask
y how much the dimension of a graph can be reduced by adding edges. The question of how the metric dimension of a
raph relates to that of its subgraphs had previously been posed, for example, in [1] and [3]. Mol, Murphy and Oellermann
n [7] introduced the problem of determining the smallest metric dimension among all graphs having a given graph G
s spanning subgraph. This minimum is called the threshold dimension of G and is denoted by τ (G). Let U(G) denote that
amily of graphs having G as spanning subgraph. If H ∈ U(G) is such that β(H) = τ (G), then H is called a threshold graph
f G. Graphs whose metric dimension cannot be lowered by adding edges will be referred to as β-irreducible. So G is
-irreducible if and only if β(G) = τ (G). Graphs that are not β-irreducible are called β-reducible. The seminal work on
-irreducible graphs appears in [6]. In this paper we introduce and study the analogue of the threshold dimension for
he strong dimension of a graph.

efinition 1.1. The threshold strong dimension of a graph G, denoted by τs(G), is defined as the smallest strong dimension
mong all graphs having G as spanning subgraph. A graph H ∈ U(G) such that βs(H) = τs(G) is called a strong dimension
hreshold graph. A graph G is βs-irreducible if βs(G) = τs(G) and is βs-reducible otherwise.

In Section 2 we introduce some known results and useful tools. In Section 3 we establish a geometric interpretation
or the threshold strong dimension of a graph in terms of certain types of embeddings in strong products of graphs and
e show that there are graphs G for which τs(G) ̸= τ (G). Graphs with strong dimension 2 are βs-irreducible. We study
heir structure in Section 4. Bounds for τs(G) for general graphs are obtained in Section 5. We conclude by finding the
hreshold strong dimension for some special classes of graphs in Section 6.

. Preliminaries

.1. The strong resolving graph: a tool for finding the strong dimension

In [8] it was shown that the problem of finding the strong dimension of a connected graph can be transformed to a
ertex covering problem. We begin by describing this transformation. Let u and v be vertices of a connected graph G.
he vertex v is said to be maximally distant from u, denoted v MD u, if every neighbour of v is no further from u than
, i.e., d(u, x) ≤ d(u, v) for all x ∈ N(v). If u MD v and v MD u, then we say u and v are mutually maximally distant and
enote this by u MMD v. The strong resolving graph GSR of G has as its vertex set V (G) and two vertices u, v of GSR are
djacent if and only if u MMD v. For any graph H , let α(H) denote the vertex covering number of the graph H , i.e., the
ardinality of a smallest set S of vertices of H such that every edge is incident with a vertex of S. The following reduction
f the strong dimension problem to the vertex covering problem was given in [8].

heorem 2.1 ([8]). If G is a connected graph, then βs(G) = α(GSR).

.2. The threshold dimension of a graph

For a connected graph G, let diam(G) denote the diameter of G, i.e., the maximum distance between a pair of vertices
f G.
If G1,G2, . . . ,Gk are graphs, then their strong product is the graph

G1 ⊠ G2 ⊠ · · · ⊠ Gk =

k

⊠
i=1

Gi,

ith vertex set {(x1, x2, . . . , xk): xi ∈ V (Gi)}, and for which two distinct vertices x = (x1, x2, . . . , xk) and y =

y , y , . . . , y ) are adjacent if and only if for every 1 ≤ i ≤ k, either x y ∈ E(G ) or x = y . The distance between x
1 2 k i i i i i

2
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nd y in G1 ⊠ G2 ⊠ · · · ⊠ Gk is given by max{dGi (xi, yi): 1 ≤ i ≤ k}. For a graph G, we let G⊠,k denote the strong product of
copies of G, i.e.,

G⊠,k
=

k

⊠
i=1

G.

Let G and H be graphs. A map ϕ : V (G) → V (H) is called an embedding of G in H if it is injective and preserves the
dge relation (i.e., if xy ∈ E(G), then ϕ(x)ϕ(y) ∈ E(H)).
If G is a subgraph of H , then we say that G is an isometric subgraph of H if dG(u, v) = dH (u, v) for all vertices u, v ∈ V (G).
Recall that U(G) denotes the set of all graphs that have G as spanning subgraph. For a graph G and a subset W ⊆ V (G),

we let G[W ] denote the subgraph of G induced by W . For an embedding ϕ of G in H , we let ϕ(G) = H[ϕ(V (G))], i.e., ϕ(G)
is the subgraph of H induced by the range of ϕ. Thus, the graph ϕ(G) is isomorphic to the graph G′

∈ U(G) with vertex
et V (G′) = V (G) and edge set E(G′) = {xy: ϕ(x)ϕ(y) ∈ E(ϕ(G))}.
We next describe the geometric interpretation of the threshold dimension of a graph developed in [7]. To do this, we

et V (Pn) = {0, . . . , n − 1}. Thus, the vertices of P⊠,k
n are k-tuples over the set {0, . . . , n − 1}. With this choice of notation

for the vertex set of Pn, distances in P⊠,k
n can easily be computed.

Fact 2.2. If x = (x1, . . . , xk) and y = (y1, . . . , yk) are in V
(
P⊠,k
n

)
, then

d(x, y) = max{|xi − yi|: 1 ≤ i ≤ k}.

In particular, if x and y are distinct, then they are adjacent if and only if |xi − yi| ≤ 1 for every 1 ≤ i ≤ k.

The choice of the vertex labels in V (Pn) is important since they correspond to distances, and thus the labels of
the vertices of P⊠,k

n will correspond to vectors of distances. Let G be a connected graph with resolving set W =

{w1, w2, . . . , wk}. Then every vertex x ∈ V (G) is uniquely determined by its vector of distances to vertices in W , given
by (dG(x, w1), dG(x, w2), . . . , dG(x, wk)). It was shown in [7] that the map which takes every vertex x to this vector of
distances to W is an embedding of G in P⊠,k for some path P .

It was also shown in [7] that if W = {w1, w2, . . . , wk} is a resolving set for some graph in U(G), then there is an
embedding ϕ of G in P⊠,k for some path P , such that for every vertex x ∈ V (G), the label of ϕ(x) is exactly the vector of
distances in ϕ(G) from ϕ(x) to the vertices of ϕ(W ). More formally these embeddings are defined as follows:

Definition 2.3. Let G be a graph, let W = {w1, w2, . . . , wk} be a subset of V (G), and let P be a path. A W -resolved
embedding of G in P⊠,k is an embedding ϕ of G in P⊠,k such that for every x ∈ V (G), we have

ϕ(x) =
(
dϕ(G)(ϕ(x), ϕ(w1)), . . . , dϕ(G)(ϕ(x), ϕ(wk))

)
,

i.e., for every 1 ≤ i ≤ k, the ith coordinate of ϕ(x) is exactly the distance between ϕ(wi) and ϕ(x) in ϕ(G).

The geometric interpretation of the threshold dimension of a graph given in [7] is summarized in the following two
results.

Theorem 2.4 ([7]). Let G be a connected graph of diameter D, and let W = {w1, w2, . . ., wk} ⊆ V (G). Then W is a resolving
set for some graph H ∈ U(G) if and only if there is a W-resolved embedding of G in P⊠,k

D+1.

The following consequence of this theorem gives a geometric interpretation for the threshold dimension.

Corollary 2.5 ([7]). Let G be a connected graph of diameter D. Then τ (G) is the minimum cardinality of a set W ⊆ V (G) such
that there is a W-resolved embedding of G in P⊠,|W |

D+1 .

3. A geometric interpretation for the threshold strong dimension

As described in Section 2, a characterization for the threshold dimension of a graph with a geometric flavour was
established in [7]. In this section we establish a characterization for the threshold strong dimension of a graph that has
a geometric flavour and builds on the geometric-type characterization of the threshold dimension given in [7]. We also
demonstrate that the threshold strong dimension of a graph may not equal the threshold dimension.

3.1. A geometric characterization for the threshold strong dimension

We show next that with one additional condition the W -resolved embeddings described in Section 2, give rise to a
geometric interpretation of the threshold strong dimension. We begin with a useful lemma.

Lemma 3.1. Let G be a connected graph with diameter D and let W = {w1, w2, . . . , wk} be a set of vertices of G. If ϕ(G) is
a W-resolved embedding of G in P⊠,k

D+1 and x ∈ V (G), then

dϕ(G)(ϕ(x), ϕ(wi)) = dP⊠,k
D+1

(ϕ(x), ϕ(wi)).
3
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roof. Since ϕ(G) is a W -resolved embedding of G, we know, by definition, that

ϕ(x) =
(
dϕ(G)(ϕ(x), ϕ(w1)), . . . , dϕ(G)(ϕ(x), ϕ(wk))

)
and, in particular,

ϕ(wj) =
(
dϕ(G)(ϕ(wj), ϕ(w1)), . . . , dϕ(G)(ϕ(wj), ϕ(wj)), . . . , dϕ(G)(ϕ(wj), ϕ(wk))

)
.

y Fact 2.2,

dP⊠,k
D+1

(ϕ(wj), ϕ(x)) = max{|dϕ(G)(ϕ(wi), ϕ(x)) − dϕ(G)(ϕ(wi), ϕ(wj))|: 1 ≤ i ≤ k}

≥ |dϕ(G)(ϕ(wj), ϕ(x)) − dϕ(G)(ϕ(wj), ϕ(wj))|
= dϕ(G)(ϕ(wj), ϕ(x)).

ince ϕ(G) is a subgraph of P⊠,k
D+1,

dP⊠,k
D+1

(ϕ(wj), ϕ(x)) ≤ dϕ(G)(ϕ(wj), ϕ(x)).

The result now follows. □

heorem 3.2. Let G be a connected graph of diameter D, and let W = {w1, w2, . . ., wk} ⊆ V (G). Then W is a strong resolving
et for some graph H ∈ U(G) if and only if there is a W-resolved embedding ϕ(G) of G in P⊠,k

D+1 such that ϕ(G) is an isometric
ubgraph of P⊠,k

D+1.

roof. Suppose W is a strong resolving set for some graph H ∈ U(G). Since W is a strong resolving set for H , it is also
resolving set for H . Since the diameter(H) ≤ diameter(G) = D, we know from Theorem 2.4 that there is a W -resolved
mbedding ϕ(H) of H in P⊠,k

D+1 such that if v ∈ V (H), then

ϕ(v) = (dϕ(H)(ϕ(v), ϕ(w1)), dϕ(H)(ϕ(v), ϕ(w2)), . . . , dϕ(H)(ϕ(v), ϕ(wk)))
= (dH (v, w1), dH (v, w2), . . . , dH (v, wk)).

By Lemma 3.1 the jth coordinate of ϕ(v) is the distance from ϕ(v) to ϕ(wj) in P⊠,k
D+1. So H , when viewed as a subgraph

f P⊠,k
D+1, preserves the distances between every vertex v of H and every vertex wj ∈ W .
Let a, b be two vertices of V (H) − W . We now show that the distance between a, b in (the embedding of) H equals

he distance between a and b in P⊠,k
D+1. Since ϕ(H) is an embedding of H in P⊠,k

D+1,

dH (a, b) ≥ dϕ(H)(ϕ(a), ϕ(b)) ≥ dP⊠,k
D+1

(ϕ(a), ϕ(b)).

Since W strongly resolves H , there is some wj ∈ W such that either the interval between a and wj in H contains b
r the interval between b and wj in H contains a. We may assume the former occurs. We have already observed that
H (wj, a) = dP⊠,k

D+1
(ϕ(wj), ϕ(a)) and dH (wj, b) = dP⊠,k

D+1
(ϕ(wj), ϕ(b)). Since

dH (a, b) = dH (wj, a) − dH (wj, b)
= dP⊠,k

D+1
(ϕ(wj), ϕ(a)) − dP⊠,k

D+1
(ϕ(wj), ϕ(b))

≤ dP⊠,k
D+1

(ϕ(a), ϕ(b))

e see that H , when viewed as a subgraph of P⊠,k
D+1, preserves distances between every pair of vertices a, b ∈ V (H) − W .

o H is an isometric subgraph of P⊠,k
D+1.

For the converse suppose that there is a W -resolved embedding ϕ(G) of G in P⊠,k
D+1 such that ϕ(G) is an isometric

ubgraph of P⊠,k
D+1. From Theorem 2.4, W is a resolving set. We show that W is in fact, a strong resolving set for ϕ(G).

Again, let a, b be two vertices of V (H) − W .

ϕ(a) =
(
dϕ(G)(ϕ(a), ϕ(w1)), . . . , dϕ(G)(ϕ(a), ϕ(wk))

)
,

nd

ϕ(b) =
(
dϕ(G)(ϕ(b), ϕ(w1)), . . . , dϕ(G)(ϕ(b), ϕ(wk))

)
.

oreover, since ϕ(G) is an isometric subgraph of P⊠,k
D+1 and by Fact 2.2, we have

dϕ(G)(ϕ(a), ϕ(b)) = dP⊠,k
D+1

(ϕ(a), ϕ(b))

= max{|dP⊠,k
D+1

(ϕ(a), ϕ(wj)) − dP⊠,k
D+1

(ϕ(b), ϕ(wj))|: 1 ≤ j ≤ k}

= max{|dϕ(G)(ϕ(a), ϕ(wj)) − dϕ(G)(ϕ(b), ϕ(wj))|: 1 ≤ j ≤ k}.
4
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Fig. 1. Example 3.1.

et i ∈ {1, 2, . . . , k} be such that

dϕ(G)(ϕ(a), ϕ(b)) = |dϕ(G)(ϕ(a), ϕ(wi)) − dϕ(G)(ϕ(b), ϕ(wi))|

and assume wlog that

dϕ(G)(ϕ(a), ϕ(wi)) ≥ dϕ(G)(ϕ(b)ϕ(wi)).

Then

dϕ(G)(ϕ(a), ϕ(wi)) = dϕ(G)(ϕ(a), ϕ(b)) + dϕ(G)(ϕ(b), ϕ(wi)).

Thus by taking in ϕ(G) a shortest path from ϕ(a) to ϕ(b) followed by a shortest path from ϕ(b) to ϕ(wi) we obtain a
hortest ϕ(a)–ϕ(wi) path in ϕ(G) that contains ϕ(b). Hence {ϕ(w1), ϕ(w2), . . . , ϕ(wk)} is a strong resolving set for ϕ(G).
ince H = ϕ(G) ∈ U(G), this completes the proof of the converse. □

As a consequence of this theorem we have the following.

orollary 3.3. Let G be a connected graph of diameter D. Then τs(G) is the minimum cardinality of a set W ⊆ V (G) for which
here is a W-resolved embedding ϕ(G) of G in P⊠,|W |

D+1 that is an isometric subgraph of P⊠,|W |

D+1 .

.2. Comparing the threshold strong dimension with the threshold dimension and the strong isometric dimension

In this section we show that the threshold strong dimension does not equal either the threshold dimension or the
trong isometric dimension.

.2.1. The threshold strong dimension and the threshold dimension are not equal
We show that the threshold strong dimension does not equal the threshold dimension by exhibiting a specific graph

hose threshold dimension is 2, but whose threshold strong dimension exceeds 2.
Let G be a graph with metric dimension 2, metric basis W = {w1, w2} and diameter D. Then G is not a path and hence

(G) = 2. It follows from Theorem 2.4 and Corollary 2.5 that G has a W -resolved embedding in P⊠,2
D+1. By Theorem 3.2

nd Corollary 3.3, W = {w1, w2} is a strong basis of some graph H ∈ U(G) if and only if there is a W -resolved isometric
mbedding of G in P⊠,2

D+1.

xample 3.1. Let G be the graph shown in black in Fig. 1 as an embedding in P⊠,2
D+1. By Theorem 2.4 the set {w1, w2} is a

etric basis, but not a strong basis, since for example, c5 and f3 are not strongly resolved by either w1 or w2.

We now show that there is no H ∈ U(G) such that βs(H) = 2. We begin by establishing some useful lemmas. For the
irst of these, we will assume that the vertices of P⊠,2

D+1 have been labelled as in Theorem 2.4 and that this graph has been
rawn in R2 so that its vertices are positioned at the points of R2 that correspond to its vertex labels.

emma 3.4. Let G be a connected graph with diameter D, metric dimension 2 and metric basis W = {w1, w2}. Let
= dG(w1, w2) and let ϕ be the W-resolved embedding described in Theorem 2.4. Then ϕ(G) is contained in the subgraph of
⊠,2
D+1 bounded by the paths

Q :(0, a), (1, a + 1), . . . , (D − a,D),
1

5
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Q2 :(0, a), (1, a − 1), . . . , (a, 0),
Q3 :(a, 0), (a + 1, 1), . . . , (D,D − a),
Q4 :(D − a,D), (D − a + 1,D), . . . , (D,D), and
Q5 :(D,D − a), (D,D − a + 1), . . . , (D,D)

Proof. First note that if (x, y) is a vertex in φ(G), then x, y ≤ D. To complete the proof of the lemma we will show that
ϕ(G) contains no vertices with labels (x, y) where either x + y < a, or y < x − a, or x < y − a. Assume, to the contrary
that, ϕ(v) = (x, y) is a vertex of ϕ(G), where either

• x + y = dϕ(G)(w1, v) + dϕ(G)(v, w2) < a = dϕ(G)(w1, w2), or
• y = dϕ(G)(v, w2) < x − a = dϕ(G)(v, w1) − dϕ(G)(w1, w2), or
• x = dϕ(G)(v, w1) < y − a = dϕ(G)(v, w2) − dϕ(G)(w1, w2).

n each case we see that the triangle inequality of the distance metric in graphs is violated, thereby completing the
roof. □

The subgraph of P⊠,2
D+1 bounded by the paths Q1,Q2, . . . ,Q5 of Lemma 3.4 will be referred to as the feasible region. For

vertex x of a connected graph G and an integer i ≥ 0, let Ni(x,G) or Ni(x), if G is clear from context, be the set of all
ertices distance i from x in G. Let e(x) denote the eccentricity of x, i.e., the distance from x to the furthest vertex from x
n G. For vertices x, y in a connected graph a shortest x-y path will be referred to as an x-y geodesic. Using Lemma 3.4 we
btain new proofs (with a geometric flavour) for a set of useful properties of graphs with metric dimension 2 that were
stablished in [11].

emma 3.5. Let G be a connected graph of metric dimension 2 and let W = {w1, w2} be a metric basis for G. Then

1. The degree of wj is at most 3 for j = 1, 2.
2. There is a unique shortest w1-w2 path in G, and every vertex on that path has degree at most 5.
3. The subgraph induced by Ni(wj) is a union of paths and |Ni(wj)| ≤ 2i + 1 for 0 ≤ i ≤ e(wj).
4. For any v ∈ Ni(wj), v is adjacent to at most three vertices in Ni+1(wj), for 0 ≤ i ≤ e(wj)−1. Similarly, there are at most

three vertices in Ni−1(vj) adjacent to v for 1 ≤ i ≤ e(wj).

roof. Let G and W be as stated and let ϕ be a W -resolved embedding of G into P⊠,2
D+1, where D = diam(G). Let ϕ be

he W -resolved embedding of G described in Lemma 3.4. Then the coordinates of ϕ(w1) and ϕ(w2) are (0, a) and (a, 0),
espectively, where a = dϕ(G)(ϕ(w1), ϕ(w2)) = dG(w1, w2). Property 1 now follows immediately from the fact that in P⊠,2

n ,
he vertex φ(w1) = (0, a) is adjacent to exactly three vertices in the feasible region, namely (1, a+1), (1, a), and (1, a−1).
similar analysis holds for φ(w2) = (a, 0). To see that there is a unique w1-w2 geodesic in G, we need only note that the
ath

(0, a), (1, a − 1), (2, a − 2), . . . , (a, 0)

s the unique ϕ(w1)-ϕ(w2) geodesic in ϕ(G): Indeed, because ϕ is W -resolving, the vertices in this path must be the images
f vertices which induce a w1-w2 geodesic in G. Furthermore, for each v on this path, exactly five of its neighbours in
⊠,2
D+1, are in the feasible region. This establishes Property 2. Since the vertices of ϕ(Nk(w1)) are distance k from ϕ(w1) in
⊠,2
D+1 they form, by Lemma 3.4 a subset of {(k, a− k), (k, a− k+ 1), . . . , (k, a+ k)}. A similar situation holds for w2. Since
(k, a − k), (k, a − k + 1), . . . , (k, a + k)} induces a path in P⊠,2

D+1, Property 3 follows. Lastly, note that a vertex v = (x, y)
n ϕ(Ni(wj)) for j = 1, 2 has at most three neighbours in ϕ(Ni−1(wj)), namely (x − 1, y + 1), (x − 1, y), and (x − 1, y − 1),
nd at most three neighbours in ϕ(Nk+1(wj)), namely (x + 1, y − 1), (x + 1, y), and (x + 1, y + 1), thereby establishing
roperty 4. □

If G is a graph with metric dimension 2 and basis W = {w1, w2}, then, by Lemma 3.5 there is a unique w1-w2 geodesic
n G to which we will refer as the diagonal. Every vertex of G on this path is called a diagonal vertex, and any other vertex
s referred to as a non-diagonal. We are now prepared to show that when G is the graph of Example 3.1, τs(G) > 2.

heorem 3.6. Let G be the graph of Example 3.1. Then τs(G) > 2.

roof. Assume to the contrary, that there is a H ∈ U(G) such that βs(H) = 2. Let W = {w1, w2}. We claim that
= {w1, w2} is the unique basis for H . By Lemma 3.5(1) and (3) we know that if H is a graph with metric dimension

, then the vertices in the basis have degree at most 3 and the subgraphs induced by their neighbourhoods are acyclic.
ence the only candidates for basis vertices are w1 and w2. This proves our claim.
Moreover, by definition of a W -resolved embedding, the distance in H from any vertex v to either w1 or w2 equals

he distance from v to w1 or w2 in G, respectively. In particular, dH (w1, w2) = dG(w1, w2) = 5. Thus w1a1b1c1d1w2 is the
-w diagonal, i.e., the unique w -w geodesic in H .
1 2 1 2

6
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Fig. 2. The graph G2 shown in black with threshold dimension 2 and threshold strong dimension 4.

By Lemma 3.5(2) the degree in H of each interior vertex on this diagonal is at most 5. Hence the neighbourhood of
each of the vertices a1, b1, c1, d1 in H is the same as the respective neighbourhood in G. Thus, in a W -resolved embedding
f H in P⊠,2

7 the diagonal vertices of H appear in exactly the positions shown in Fig. 1. Moreover, the neighbours of these
ertices in H are precisely the same as their neighbours in G, by Lemma 3.5(1) and (2). Moreover, by Lemma 3.4, we

see that in the W -resolved embedding of H in P⊠,2
7 these neighbours of the diagonal vertices necessarily appear in the

ositions shown in Fig. 1. The positions of the remaining vertices of H in the W -resolved embedding of H in P⊠,2
7 are now

orced to coincide with their positions shown in Fig. 1. Hence H necessarily has the same edges as G. However, then W
oes not strongly resolve H , a contradiction. □

Indeed we believe that the difference τs(G) − τ (G) can be arbitrarily large. To this end let G1 be the graph shown in
ig. 1. Let G2 be the graph obtained from two copies G1

1 and G2
1 of the graph G1 by identifying the vertices corresponding

to w2 and f1 in G1
1 with the vertices w1 and a3, respectively in G2

1 and adding the edge between the vertex f2 in G1
1 and

the vertex b4 from G2
1, as well as the edge between the vertex e1 in G1

1 and the vertex a2 in G2
1. The graph G2 is shown

in Fig. 2. In general for n ≥ 2, let Gn be the graph obtained from n copies G1
1,G

2
1, . . . ,G

n
1 of G1 by identifying for each

1 ≤ i < n the vertices labelled w2 and f1 in Gi
1 with the vertices labelled w1 and a3 in Gi+1

1 and then adding the edge
between the vertex f2 in Gi

1 and the vertex b4 in Gi+1
1 , as well as adding the edge between the vertex e1 in Gi

1 and the
vertex a2 in Gi+1

1 . It is readily seen that τ (Gn) = 2. Using an exhaustive computer search it was shown that τs(G2) = 4.
We conjecture the following:

Conjecture 3.7. For every positive integer k, there is a positive integers n such that

τs(Gn) ≥ τ (Gn) + k.

3.2.2. The threshold strong dimension and the strong isometric dimension
We showed in Corollary 3.3 that, for a connected graph G, τs(G) is the smallest cardinality of a set W ⊆ V (G) for

which there is a W -resolved embedding ϕ(G) of G in P⊠,|W |, for P a path of sufficiently large order, such that ϕ(G) is an
isometric subgraph of P⊠,|W |. It is natural to ask if the threshold strong dimension of a graph G has a relationship with the
strong isometric dimension of G, denoted by sdim(G), and defined as the smallest integer n such that there is an isometric
embedding of G in P⊠,n for some path P . Some results pertaining to the strong isometric dimension have been summarized,
for example, in [2]. In particular, Theorem 15.4 in [2], states that sdim(Kn) = ⌈log2(n)⌉. However, βs(Kn) = n− 1 = τs(Kn).
On the other hand Theorem 15.4 in [2] states that sdim(Cn) = ⌈n/2⌉ whereas τs(Cn) = 2 as illustrated by the {w1, w2}-
esolved embedding of Cn in P⊠,2

⌈
n+1
2 ⌉

shown in Fig. 3. Thus sdim(G) and τs(G) are distinct parameters. In fact, there is no
eneral order relationship between sdim(G) and τs(G).

. Graphs with vertex covering number 2 that are realizable as strong resolving graphs

In this section we provide a solution to an open problem posed in [4] that is inspired by the embedding result,
heorem 3.2, of Section 3. It is well-known that a graph has strong dimension 1 if and only if it is a path. Thus paths are
s-irreducible graphs of strong dimension 1 and these are the only such graphs. Thus all graphs with strong dimension 2
re also βs-irreducible. In this section we completely describe the strong resolving graphs for graphs of strong dimension
. In [4] the authors posed the problem of determining which graphs can be realized as strong resolving graphs of some
7
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t

T

Fig. 3. A {w1, w2}-resolved embedding ϕ(Cn) in P⊠,2
⌈
n+1
2 ⌉

that is an isometric subgraph of P⊠,2
⌈
n+1
2 ⌉

, where the dashed edges represent the edges we add

o Cn to obtain the embedding ϕ(Cn).

Fig. 4. Type 1 resolving graph.

graph. They conjectured that the complete bipartite graphs Ks,r where s, r ≥ 2 are not realizable as strong resolving
graphs. Their conjecture was settled in [5]. We show next that if a graph has strong dimension 2, then its strong resolving
graph does not contain K2,2 as subgraph.

Lemma 4.1. Let G be a graph such that α(GSR) = 2 and let w1 and w2 be a vertex cover of GSR. Then w1 and w2 have at most
one common neighbour in GSR.

Proof. Suppose w1 and w2 have two common neighbours in GSR, say vertices u and v. Since {w1, w2} is a strong resolving
set for G, one of w1 and w2 strongly resolves u and v, say w1. So, either u lies on a shortest w1 − v path or v lies on a
shortest w1 − u path. We may assume the former. Then u has a neighbour on a shortest w1 − v path that contains u, that
is further from w1 then u. This implies that u is not maximally distant from w1 and hence u and w1 are not MMD in GSR.
This is contrary to the assumption that w1u ∈ E(GSR). □

Remark 4.2. We note that Lemma 4.1 establishes that if a graph G has strong dimension 2, then its strong resolving
graph does not contain K2,2 as a subgraph.

Let {w1, w2} be a vertex cover of the strong resolving graph of a graph with strong dimension 2. From the above lemma,
we see that the only possible candidates for graphs with vertex covering number 2 that can be realized as the strong
resolving graph of some graphs G fall into one of four categories. We describe these below and in each case construct
a graph that has the given graph as its strong resolving graph. In order to describe these constructions, we will use
subgraphs of strong products of paths. To this end we assume that the vertices of a path Pk of order k have been labelled
0, 1, . . . , k−1 and whenever considering the strong product Pk ⊠Pl we will assume that it has been indrawn in the plane
so that a vertex (x, y) of this strong product is positioned at the point (x, y) in the plane.

ype 1: GSR is the disjoint union of two stars, K1,m ∪ K1,n, where 1 ≤ m ≤ n. See Fig. 4.
• Case 1: m and n have the same parity. In this case let H = Pn+2+ n−m

2
⊠Pn+2. Let G be the subgraph of H induced

by the vertices on the boundary and in the interior of the region bounded by the following paths:

Q1 :(0, n), (1, n − 1), . . . , (n, 0)

Q2 :(0, n), (1, n + 1), . . . ,
(
n − m

+ 1, n +
n − m

+ 1
)

2 2
8



N. Benakli, N.H. Bong, S. Dueck et al. Discrete Mathematics 344 (2021) 112402
Fig. 5. A graph with strong resolving graph K1,6 ∪ K1,6 .

Fig. 6. A graph with strong resolving graph K1,5 ∪ K1,6 .

Q3 :

(
n − m

2
+ 1, n +

n − m
2

+ 1
)

,

(
n − m

2
+ 2, n +

n − m
2

+ 1
)

, . . . ,

(
n + m

2
, n +

n − m
2

+ 1
)

Q4 :

(
n + m

2
, n +

n − m
2

+ 1
)

,

(
n + m

2
+ 1, n +

n − m
2

)
, . . . , (n + 1, n)

Q5 :(n + 1, n), (n + 1, n − 1), . . . , (n + 1, 1)
Q6 :(n + 1, 1), (n, 0)

Then the graph G has the property that GSR ∼= K1,m ∪ K1,n. Fig. 5 illustrates the construction with m = n = 6.
• Case 2: m and n have opposite parity and 1 ≤ m < n. Let H = Pn+2+ n−m−1

2
⊠ Pn+1. We now describe a graph G

as an induced subgraph of H using the following paths.

Q1 :(0, n), (1, n − 1), . . . , (n, 0)

Q2 :(0, n), (1, n + 1), . . . ,
(
n − m + 1

2
,
3n − m + 1

2

)
Q3 :

(
n − m + 1

2
,
3n − m + 1

2

)
,

(
n − m + 3

2
,
3n − m + 1

2

)
, . . . ,

(
n + m − 1

2
,
3n − m + 1

2

)
Q4 :

(
n + m − 1

2
,
3n − m + 1

2

)
,

(
n + m − 1

2
+ 1,

3n − m − 1
2

)
, . . . , (n, n)

Q5 :(n, n), (n, n − 1), . . . , (n, 0)

Let G be the subgraph of H induced by the vertices on the boundary and in the interior of the region bounded
by these paths Q1, . . . ,Q5. Then GSR ∼= K1,m ∪ K1,n. Fig. 6 illustrates the construction for m = 5 and n = 6.

Type 2: GSR is K1,m ∪ K1,n + w1w2 for (1 ≤ m ≤ n), where w1 and w2 are the centres of the stars K1,m and K1,n. See Fig. 7.
If m and n have the same parity, then let G be obtained from the graph described in Case 1 of Type 1 by adding
a leaf adjacent to each of the vertices (0, n) and (n, 0). These two new leaves then become w1 and w2. If m and
n have opposite parity, then let G be obtained from the graph described in Case 2 of Type 1 by adding a leaf
adjacent to (0, n). Then GSR ∼= (K1,m ∪ K1,n + w1w2) where w1 and w2 are the centres of the two stars in the
union.

Type 3: GSR is K1,m ∪ K1,n + {vw1, vw2} for (1 ≤ m ≤ n), where w1 and w2 are the centres of the two stars and v is a
new vertex. See Fig. 8.
If m and n have the same parity we take the graph described in Case 1 for Type 1 and add the vertex
( n+m+2 , 3n−m+2 ) and join it to each of ( n+m , 3n−m+2 ), ( n+m+2 , 3n−m ) and ( n+m , 3n−m ). If m and n have opposite
2 2 2 2 2 2 2 2

9
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Fig. 7. Type 2 strong resolving graph.

Fig. 8. Type 3 strong resolving graph.

Fig. 9. Type 4 strong resolving graph.

parity, then we take the graph constructed in Case 2 for Type 1 and add the vertex ( n+m+1
2 , 3n−m+1

2 ) and join it
to ( n+m−1

2 , 3n−m+1
2 ), ( n+m+1

2 , 3n−m−1
2 ) and

( n+m−1
2 , 3n−m−1

2 ). In either case let G be the resulting graph. Then GSR ∼= (K1,m ∪K1,n +vw1, vw2) for (1 ≤ m ≤ n),
where w1 and w2 are the centres of the two stars K1,m and K1,n and v is a new vertex.

Type 4: GSR is K1,m ∪ K1,n + {vw1, vw2, w1w2} for (1 ≤ m ≤ n), where w1 and w2 are the centres of the two stars and v

is a new vertex. See Fig. 9.
In this case we take the graph described in Case 1 or Case 2 of Type 3 above and add a leaf to the vertices (0, n)
and (n, 0). In either case let G be the resulting graph. Then GSR ∼= (K1,m ∪K1,n +vw1, vw2, w1w2) for (1 ≤ m ≤ n),
where w1 and w2 are the centres of the two stars and v is a new vertex.

The following theorem summarizes the above discussion.

heorem 4.3. The only possible candidates for graphs with vertex covering number 2 that can be realized as the strong resolving
raph of some graph G are:

• The disjoint union of two stars, K1,m ∪ K1,n, where 1 ≤ m ≤ n.
• K1,m ∪ K1,n + w1w2 for (1 ≤ m ≤ n), where w1 and w2 are the centres of the stars K1,m and K1,n.
• K1,m ∪ K1,n + {vw1, vw2} for (1 ≤ m ≤ n), where w1 and w2 are the centres of the two stars and v is a new vertex.
• K1,m ∪ K1,n + {vw1, vw2, w1w2} for (1 ≤ m ≤ n), where w1 and w2 are the centres of the two stars and v is a new

vertex.

. Bounds

It appears to be a difficult problem to determine the threshold strong dimension of a graph. In this section we establish
ounds for this invariant for graphs in general and for trees. Let P(S) denote the power set of a set S. The complete graph
ith vertex set V is denoted by KV . If |V | = n then KV is isomorphic to the complete graph on n vertices, which is denoted
y Kn. The complete ℓ-partite graph with partite sets V1, V2, . . . , Vℓ is denoted by KV1,V2,...,Vℓ

. If G is a complete graph of
rder n, then τs(G) = βs(G) = n − 1. The next result gives an upper bound for τs(G) when G is not complete.

heorem 5.1. Let G be a non-complete graph with χ (G) = k and let V1, V2, . . . , Vk be the colour classes in a proper k-colouring
f G, where |V1| ≤ |V2| ≤ · · · ≤ |Vk|.

1. If there is an ℓ ≥ 1 such that |Vi| = 1 for 1 ≤ i ≤ ℓ and |Vi| > 1 for ℓ < i ≤ k, then τs(G) ≤ ℓ− 1+
∑k

i=ℓ+1⌈log2 |Vi|⌉.
2. If |V1| ≥ 2, then τs(G) ≤

∑k
i=1⌈log2 |Vi|⌉.
10
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roof. 1. We add edges to G to form a supergraph H for which βs(H) ≤ ℓ − 1 +
∑k

i=ℓ+1⌈log2 |Vi|⌉. We start by adding
all additional edges between the distinct pairs of colour classes necessary to form the complete k-partite supergraph
KV1,V2,...,Vk of G. This graph has diameter 2, so for vertices u and v, uMMDv if and only if u and v are universal vertices
or u and v are nonadjacent. Each colour class Vi is an independent set. For each i ∈ {ℓ + 1, ℓ + 2, . . . , k} choose a subset
Wi ⊆ Vi such that |Wi| = ⌈log2 |Vi|⌉. Then |P(Wi)| ≥ |Vi|. For each i ∈ {ℓ + 1, . . . , k}, assign to each v ∈ Vi − Wi a
member of P(Wi)−{Wi} such that every two vertices in Vi −Wi are assigned distinct subsets of Wi. This is possible since
|P(Wi) − {Wi}| ≥ |Vi| − 1 ≥ |Vi − Wi|. Add edges to KV1,V2,...,Vk so that the set assigned to each vertex v of Vi − Wi is
the Wi-neighbourhood of v in the resulting graph. So every pair of vertices in Vi − Wi have distinct Wi-neighbourhoods.
inally, H is obtained by adding edges between vertices of Vi − Wi so that they form a clique in H .
Now we construct the strong resolving graph HSR of H . The ℓ vertices of V1 ∪ V2 ∪ · · · ∪ Vℓ are all universal vertices

nd hence are pairwise MMD. Also, for each i ∈ {ℓ + 1, . . . , k}, the vertices of Wi are pairwise MMD, and each vertex
∈ Vi − Wi is MMD with any vertex in Wi − NWi (v). There are no other MMD pairs of vertices in H . Hence, the strong

esolving graph HSR of H contains the clique KV1∪V2∪···∪Vℓ
(∼= Kℓ) and the clique KWi for each i where ℓ + 1 ≤ i ≤ k.

part from the edges in these cliques, HSR may contain some edges joining vertices in Wi with vertices in Vi − Wi,
or ℓ + 1 ≤ i ≤ k. Let W = (V1 ∪ V2 ∪ · · · ∪ Vℓ−1) ∪ (Wℓ+1 ∪ Wℓ+2 ∪ · · · ∪ Wk). Then W is a minimum vertex
overing of HSR, and so βs(H) = |W | = ℓ − 1 +

∑k
i=ℓ+1⌈log2 |Vi|⌉. Since G is a spanning subgraph of H , it follows that

τs(G) ≤ ℓ − 1 +
∑k

i=ℓ+1⌈log2 |Vi|⌉.
2. The proof of this case is similar to the proof of part 1. We construct a supergraph H of G using the same process as in

the proof of case 1, assigning a unique Wi-neighbourhood to each vertex of Vi−Wi, where Wi ⊆ Vi with |Wi| = ⌈log2 |Vi|⌉.
Then Wi induces a clique in the strong resolving graph HSR, for 1 ≤ i ≤ k. In addition, HSR may contain edges joining
vertices of Wi with vertices in Vi − Wi. Hence W = W1 ∪ W2 ∪ · · · ∪ Wk is a minimum vertex covering of HSR, and so
βs(H) = |W | =

∑k
i=1⌈log2 |Vi|⌉. Since G is a spanning subgraph of H , it follows that τs(G) ≤

∑k
i=1⌈log2 |Vi|⌉. □

We now present an improved bound for trees.

Theorem 5.2. If T is a tree with n ≥ 2 vertices, then τs(T ) ≤ ⌈log2 n⌉.

Proof. Suppose a tree T = (V , E) has n vertices and ℓ leaves. If ℓ < ⌈log2 n⌉, then TSR ∼= Kℓ which has vertex covering
number ℓ−1. In this case βs(T ) = ℓ−1 < ⌈log2 n⌉. It follows that τs(T ) ≤ ⌈log2 n⌉, as claimed. Suppose that T has at least
⌈log2 n⌉ leaves. We add edges to T to construct a supergraph H for which βs(H) = ⌈log2 n⌉. LetW be a set of ⌈log2 n⌉ leaves
f T . Then |P(W )| ≥ n. Now assign to each vertex v ∈ V−W a subset of vertices from W that will be its W -neighbourhood
n H . We do this in such a way that every two vertices of V − W are assigned distinct W -neighbourhoods in H . Let V ′

enote the set of vertices in V − W whose W -neighbourhoods in T are nonempty. If the W -neighbourhood of v in T is
nonempty, then v is adjacent to a set of leaves of T that belong to W and no other vertex of V − W has the same leaf
eighbours in T . In this case the assigned W -neighbourhood of v in H remains same as its W -neighbourhood in T . We now
emove these assigned neighbourhoods from P(W ). Let P ′ be the subset of P(W ) that remains. To each of the remaining
ertices in (V −W )−V ′ we assign a unique member of P ′ in such a way that no two vertices of (V −W )−V ′ are assigned
he same element of P ′. For each v ∈ V −W , the vertices of the assigned member of P(W ) becomes its W -neighbourhood
n H . We ensure that exactly one vertex of V − W , say u, is assigned the whole set W as its W -neighbourhood. Observe
hat this is possible since |P(W )| ≥ n > |V − W |. Finally, we obtain H by adding edges between the vertices of V − W
o that they form a clique. Since the resulting graph H has the universal vertex u ∈ V −W , H has diameter 2, and so the
MD pairs of vertices of H are the nonadjacent pairs of vertices. Since W is an independent set, the vertices of W are
airwise MMD, and each vertex v ∈ V − W is MMD with each vertex in V − NW (v). There are no other pairs of MMD
ertices in H . The vertices of W form a clique in the strong resolving graph HSR of H . All other edges of HSR join vertices
f W with vertices in V − W . Thus W is a minimum vertex covering of HSR, and so βs(H) = |W | = ⌈log2 n⌉. Since T is a
panning subgraph of H , it follows that τs(T ) ≤ ⌈log2 n⌉. □

. The threshold strong dimension of trees

In this section we show that for trees with strong dimension 3 or 4, the threshold strong dimension is 2. To see that
his does not extend to trees of higher strong dimension, we note that it was observed in [7] that K1,6 does not have
hreshold dimension 2. Since βs(K1,6) = 5 and τ (K1,6) ≤ τs(K1,6), we see that the threshold strong dimension of trees with
trong dimension 5 need not be 2. We also observe that there are trees of arbitrarily large dimension that have threshold
trong dimension 2. We use the following known results from [9].

heorem 6.1 ([9]). Let T be a tree. Then βs(T ) = ℓ − 1 if and only if T has ℓ leaves.

To prove that the threshold strong dimension, for a tree T with strong dimension 3 or 4, is 2, we describe a
-resolved embedding of T in P⊠,2

D+1 where W is a set of two vertices of T and D is the diameter of T . By observing
hat these embeddings are isometric subgraphs of P⊠,2

D+1 the result follows from Theorem 3.2. In order to describe these
mbeddings, we define two useful notions. We assume, as before that the vertices of the path PD+1 have been labelled
, 1, . . . ,D such that i and i + 1 are adjacent for 0 ≤ i < D.
11
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Fig. 10. Illustrations of Definition 6.2(1)

Fig. 11. Illustrations of Definition 6.2(2)

efinition 6.2.

1 • A northwest–southeast (abbreviated NW–SE) diagonal of P⊠,2
D+1 is the subpath induced by {(x, y) : x + y = k} for

some integer 0 < k ≤ D, i.e., it is the unique (0, k)–(k, 0) geodesic for some integer 0 < k ≤ D (see Fig. 10(a)).
• A southwest–northeast (abbreviated SW–NE) diagonal of P⊠,2

D+1 is the subpath induced by {(x, y) : x − y = k} or
{(x, y) : x − y = −k} for some integer 0 ≤ k < D, i.e., it is the unique geodesic passing either through (k, 0) and
(D,D − k) or through (0, k) and (D − k,D), respectively for some integer 0 ≤ k < D (see Fig. 10(b)).

2 • If (x, y) is a vertex on a NW–SE diagonal Q , then the vertices (a, b) of Q satisfying a < x will be referred to as the
vertices of Q that lie NW of (x, y) while those vertices (a, b) on Q satisfying a > x will be referred to as the vertices
of Q that lie SE of (x, y) (see Fig. 11(a)).
• If (x, y) is a vertex on a SW–NE diagonal Q , then the vertices (a, b) of Q satisfying b < y will be referred to as the
vertices of Q that lie SW of (x, y) while those vertices (a, b) of Q satisfying b > y will be referred to as the vertices
of Q that lie NE of (x, y) (see Fig. 11(b)).

Note that for every vertex in P⊠,2
D+1, there is a unique NW–SE diagonal and a unique SW–NE diagonal that passes through

it. In the sequel, when illustrating an embedding ϕ(T ) of a given tree T in P⊠,2
D+1, the solid black edges correspond to the

edges of T while the dashed black edges are the edges that are added to T to obtain the embedding. When illustrating an
embedding of a tree T of diameter D, as described in the proofs of our theorems, we may occasionally embed T in P⊠,2

m
where m < D + 1 provided P⊠,2

m admits the described embedding.

Theorem 6.3. If T is a tree with βs(T ) = 3, then τs(T ) = 2.

Proof. Let T be a tree with strong dimension 3. Then, by Theorem 6.1, T has exactly four leaves as shown in Fig. 12 where
possibly k1 = 1. Let V (T ) = {v1, v2, . . . , vk1 , u1, u2, . . . , uk2 , x1, x2, . . . , xk3 , y1, y2, . . . , yk4 , z1, z2, . . . , zk5} where ki ≥ 1 for
i = 1, 2, 3, 4, 5, and let E(T ) = {vivi+1 : 1 ≤ i ≤ k1 − 1} ∪ {uiui+1 : 1 ≤ i ≤ k2 − 1} ∪ {xixi+1 : 1 ≤ i ≤ k3 − 1} ∪ {yiyi+1 :

1 ≤ i ≤ k4 − 1} ∪ {zizi+1 : 1 ≤ i ≤ k5 − 1} ∪ {v1y1, v1z1, vk1u1, vk1x1}, see Fig. 12.
We may assume without loss of generality that k2 ≥ k3 and k4 ≥ k5. Let k = ⌈

k1+1
2 ⌉+k2+k4−1. Let D be the diameter

of T . To describe an embedding of T in P⊠,2
D+1 assume the vertices of PD+1 have been labelled 0, 1, . . . ,D. We consider two

cases based on the parity of k1.

Case 1: k1 is odd. In this case we place the vertices yk4 , yk4−1, . . . , y1, v1, v3, . . . , vk1−2, vk1 , u1, u2, . . . , uk2 if k1 ≥ 3 (or
k4 , yk4−1, . . . , y1, v1, u1, u2, . . . , uk2 if k1 = 1) in this order along the NW–SE diagonal through (0, k) and (k, 0) starting
t (0, k). The remaining vertices are placed along the NW–SE diagonal through (0, k + 1) and (k + 1, 0) by placing zk5

in position (k − k + 1, k − (k − k )) followed by the remaining vertices z , . . . , z , v , v , . . . , v , x , x , . . . , x
4 5 4 5 k5−1 1 2 4 k1−1 1 2 k3

12
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Fig. 12. A tree with strong dimension 3.

Fig. 13. Illustrating the embedding of a tree in P⊠,2
10 as described in Case 1 of Theorem 6.3.

Fig. 14. Illustrating the embedding of a tree in P⊠,2
8 as described in Case 2 of Theorem 6.3.

n that order along this diagonal SE of zk5 (ending with xk3 in position (k4 + k3 +
k1−1
2 , k + 1 − (k4 + k3 +

k1−1
2 ))). This

mbedding is illustrated in Fig. 13.

ase 2: k1 is even. In this case we place yk4 , yk4−1, . . . , y1, v1, v3, . . . , vk1−1, vk1 , u1, u2, . . . , uk2 if k1 ≥ 4 (or yk4 , yk4−1, . . . ,

1, v1, v2, u1, u2, . . . , uk2 if k1 = 2) in this order along the NW–SE diagonal through (0, k) and (k, 0) starting at (0, k). The
remaining vertices are again placed along the NW–SE diagonal through (0, k + 1) and (k + 1, 0) by first placing zk5 in
position (k4 − k5 + 1, k − (k4 − k5)) followed by the remaining vertices zk5−1, . . . , z1, v2, v4, . . . , vk1−2, x1, x2, . . . , xk3 if
k1 ≥ 4 (or zk5−1, . . . , z1, x1, x2, . . . , xk3 if k1 = 2), in that order along this diagonal SE of zk5 (ending with xk3 in position
(k4 + k3 +

k1−2
2 , k + 1 − (k4 + k3 +

k1−2
2 ))). This embedding is illustrated in Fig. 14.

In either case the subgraph of P⊠,2
D+1 induced by the vertices of this embedding is a {yk4 , uk2}-resolved embedding of T

n P⊠,2
D+1 that is also an isometric subgraph of P⊠,2

D+1. Thus τs(T ) = 2. □
13



N. Benakli, N.H. Bong, S. Dueck et al. Discrete Mathematics 344 (2021) 112402

T

P
g

i
k

1

o

p
1
w
b

(

i
(
o

7

s

Fig. 15. A tree with strong dimension 4.

Fig. 16. Illustrating an embedding of a tree in P⊠,2
8 as described in Theorem 6.4 if k1 is odd.

heorem 6.4. If T is a tree with βs(T ) = 4, then τs(T ) = 2.

roof. Let T be a tree with strong dimension 4. Then T has exactly five end-vertices, see Fig. 15. Without loss of
enerality, we may assume V (T ) = {t1, t2, . . . , tk6 , v1, v2, . . . , vk7 , . . . , vk1 , u1, u2, . . . , uk2 , x1, x2, . . . , xk3 , y1, y2, . . . , yk4 ,

z1, z2, . . . , zk5} where ki ≥ 1 for i = 1, 2, 3, 4, 5, 6, 7 and k7 ≤ k1, and E(T ) = {titi+1 : 1 ≤ i ≤ k6 − 1} ∪ {vivi+1 : 1 ≤

≤ k1 − 1} ∪ {uiui+1 : 1 ≤ i ≤ k2 − 1} ∪ {xixi+1 : 1 ≤ i ≤ k3 − 1} ∪ {yiyi+1 : 1 ≤ i ≤ k4 − 1} ∪ {zizi+1 : 1 ≤ i ≤

5 − 1} ∪ {v1y1, v1z1, vk1u1, vk1x1, vk7 t1}. Thus by deleting the path t1, t2, . . . , tk6 from T we obtain a tree, call it T ′, with
four leaves that appears like the tree shown in Fig. 12.

Depending on whether k1 is odd or even, we now embed T ′ in P⊠,2
D+1 (where D is the diameter of T ) as described in Case

or 2, respectively, of Theorem 6.3. To complete the embedding of T , we now embed the path t1, t2, . . . , tk6 in the SW–NE
diagonal that passes through vk7 along the portion NE of vk7 . Figs. 16 and 17 illustrate these embeddings for specific trees
falling into each of these two cases. The subgraph of P⊠,2

D+1 induced by this embedding is a {yk4 , uk2}-resolved embedding
f T that is also an isometric subgraph of P⊠,2

D+1. Thus τs(T ) = 2. □

It was shown in [7] that there are trees of arbitrarily large metric dimension that have threshold dimension 2. In
articular it was shown that if L3n, for n ≥ 2, is the tree obtained from a path P : v1v2 . . . vn by attaching, for each
≤ i ≤ n, two leaves ui and wi to vi, then the threshold dimension of L3n is 2 while the metric dimension is n. This
as shown by describing a {u1, w1}-resolved embedding in P⊠,2

n+1. The same embedding also shows that τs(L3n) = 2. We
riefly describe this embedding here. We again assume that the vertices of Pn+1 have been labelled 0, 1, . . . , n so that,

for 0 ≤ i < n, the vertex i is adjacent with i + 1. Embed the path v1v2 . . . vn along the SW–NE diagonal passing through
0, 0) and (n, n) by placing v1 in position (1, 1) and the remaining vertices of P in order along the diagonal NE of (1, 1).
Next the vertices u1, . . . , un are placed in order along the SW–NE diagonal through (0, 1) and (n − 1, n) starting with u1
n position (0, 1). Finally the vertices w1, w2, . . . , wn are placed in order along the SW–NE diagonal through (1, 0) and
n, n − 1) starting with w1 in position (1, 0). The subgraph induced by this embedding is a {u1, w1}-resolved embedding
f L3n in P⊠,2

n+1 that is an induced subgraph of P⊠,2
n+1. Fig. 18 shows such an embedding for L12.

. Concluding remarks

In this paper we introduced the threshold strong dimension of a graph. We established an expression for the threshold
trong dimension of a graph in terms of a minimum number of paths, each of sufficiently large order, whose strong product
14
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Fig. 17. Illustrating an embedding of a tree in P⊠,2
8 as described in Theorem 6.4 if k1 is even.

Fig. 18. A {u1, w1}-resolved embedding ϕ of the graph L12 in P⊠,2
5 .

admits a certain type of embedding of the graph. We used this embedding result to show that there are graphs whose
threshold dimension does not equal the threshold strong dimension. This embedding result also led to the main idea for
determining all graphs with vertex covering number 2 that can be realized as the strong resolving graph of a graph and
it was used to show that all trees with strong dimension 3 or 4 have threshold strong dimension 2. For graphs in general
we established sharp upper bounds for the threshold strong dimension.

We did not consider the computational complexity of finding the threshold strong dimension of a graph. In particular
it is not known whether the following problems are NP-complete:

Problem 1. For a given graph G and positive integer b, does there exist H ∈ U(G) and a set B ⊆ V (G) of cardinality b such
that B strongly resolves H?

Problem 2. Is Problem 1 NP-complete even if we restrict ourselves to the class of trees?

Recall that a graph G is βs-irreducible if βs(G) = τs(G). The paths are precisely the graphs with strong dimension 1
that are βs-irreducible. As remarked before, all graphs of strong dimension 2 are also βs-irreducible. The complete graphs
of order n are the graphs with strong dimension n − 1 that are βs-irreducible. However, the following problem remains
open.

Problem 3. For a given k, 3 ≤ k ≤ n−2, characterize all graphs of order n and strong dimension k that are βs-irreducible.
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