
Special values of the Riemann zeta function 
- a journey from concrete to abstract


Payman Eskandari

University of Winnipeg, Nov 2023



Chapter 1:

The concrete - I

L. Euler (1707-1783)



   


First analytic proof of the infinitude of primes (Euler):





Euler (around 1740): 


∞
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nα {

converges if α > 1
diverges if α = 1

∏
p=prime

1
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Euler’s proof:


 





Compare coefficients of :
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−1/3! = − (1/π2)(1 + 1/4 + 1/9 + ⋯)



Definition: 


   ζ(α) =
∞

∑
n=1

1
nα

(α > 1)

Euler:     


 ζ(2) = π2/6 ζ(4) = π4/90 ζ(6) = π6/945
⋮

ζ(2k) = π2k ⋅ (a rational number)

Lambert (1760):  is irrational.


Lindemann (1882):  is transcendental (i.e. there is no nonzero 
 such that ).

π

π
f ∈ ℚ[x] f(π) = 0

Corollary:  is transcendental. ζ(2k)



A different picture : Odd zeta values

Almost nothing known about transcendence/irrationality.


Likely expectation in modern times:  should be 
algebraically independent (i.e.  nonzero  such that 

). 


Apéry (1978):  is irrational.


We don’t even Know irrationality of . Nothing is known about 
transcendence of any odd zeta value.

{π, ζ(3), ζ(5), ζ(7), …}
/∃ f ∈ ℚ[x1, x2, x3, …]

f(π, ζ(3), ζ(5), …) = 0

ζ(3)

ζ(5)



Chapter 2:

The concrete - II

B. Riemann (1826-1866)



Prime number theorem (Hadamard, de la Valée Poussin, 1896):


 lim
x→∞

π(x)
x/log x

= 1

Distribution of primes:  π(x) = #{p ≤ x : p = prime}

Riemann’s visionary work (1859)


Consider  as a function of a complex variable:


    


Analytic on the half plane  

ζ

ζ(s) =
∞

∑
n=1

1
ns

(Re(s) > 1)

{s ∈ ℂ : Re(s) > 1}



Riemann’s visionary work (cont.)

Analytic continuation and functional equation

Riemann (1859):  extends to an analytic function on  with a 
single pole of order 1 at , and satisfies a functional equation 
relating :


1)    extends to an analytic function on 

 with a single pole at 1.


2) Set   where   for  Re(s)>0. Then:


ζ(s) ℂ∖{1}
s = 1

ζ(s) and ζ(1 − s)

ζ(s) =
s

s − 1
− s

∞

∫
1

{x}
xs+1

dx ⇒ ζ

{s : Re(s) > 0}∖{1}

Λ(s) := π−s/2Γ(
s
2

)ζ(s) Γ(s) =
∞

∫
0

xs−1e−xdx

 Λ(s) = Λ(1 − s)
 is called the 

completed zeta 
function.

Λ



 Λ(s) = Λ(1 − s)

11/2-2

Corollary:  extends to an analytic function 
on  with single poles at 0,1. It has no 
zeros outside the critical strip 

.

Λ
ℂ∖{0,1}

{s : 0 ≤ Re(s) ≤ 1}

 extends to an analytic function on 
 with a single pole at 1. It has zeros 

of order 1 at negative even integers. These 
are the only zeros of  outside the 
critical strip .

ζ
ℂ∖{1}

ζ
{s : 0 ≤ Re(s) ≤ 1}

Riemann Hypothesis: All other zeros are on 
the line Re(s)=1/2. (Riemann proved the 
PNT assuming this.)



11/2-2

Summary: Two mysterious phenomena:


A. Contrast in the situations for  
and . 


B.  with a zero of order 1, and 
.

ζ(odd > 1)
ζ(even > 1)

ζ(even < 0) = 0
ζ(odd < 0) ≠ 0

even <0 odd >1
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Chapter 3:

The abstract

A. Grothendieck 
(1928-2014)

P. Deligne 
(born in 1944)



An affine variety over  is the zero set of a collection of polynomials with 
rational coefficients:





A variety over  is obtained by “patching together” affine varieties.


Examples:  (1)            (2)  


  (3) the projective line: 


  (4) elliptic curves 


  (5) Fermat curves 

ℚ

{z ∈ ℂn : f1(z) = ⋯ = fk(z) = 0} ( f1, …, fk ∈ ℚ[z1, …, zn])

ℚ

ℂn ℂ× = ℂ − {0} ≅ {(x, y) ∈ ℂ2 : xy = 1}

ℙ1 = ℂ2 − {0}/(z ∼ z′￼ iff z′￼ = cz for some c ∈ ℂ)

{(x, y) : y2 = x3 + ax + b} (a, b ∈ ℚ)

{(x, y) : xn + yn = 1}



(Var./ )ℚ

ℂ× = ℂ∖{0}

Betti (singular) cohomology Hn
B(X)

de Rham cohomology Hn
dR(X)

l-adic cohomology Hn
l (X)

⋮

Vector spaces 
with additional 
structure

0

dz/z

Example 1) For all connected X, H0
B(X) ≅ H0

dR(X) ≅ ℚ

X

Example 2)

V. S./ ℚ

V. S./ ℚ

V. S./ ℚl

dim  = dim  = 1H1
B(ℂ×) H1

dR(ℂ×)

 = spanned by HB
1 (ℂ×)

 spanned byH1
dR(ℂ×) ∫

|z|=1

dz/z = 2πiPaired by integration:

A period of  ℂ×



Var./ℚ

Betti (singular) cohomology Hn
B(X)

de Rham cohomology Hn
dR(X)

l-adic cohomology Hn
l (X)

⋮

Alg. Geometry Various non-alg. geometric linearizations

X

Periods

Philosophy of motives (Grothendieck’s dream)



Var./ℚ

Betti (singular) cohomology Hn
B(X)

de Rham cohomology Hn
dR(X)

l-adic cohomology Hn
l (X)

⋮

Alg. Geometry Various non-alg. geometric linearizations

X Hn(X)

linearization
Motives

Periods

(realizations)

Philosophy of motives (Grothendieck’s dream)

The category of motives should be abelian (there should be kernels and 
cokernels).

Nowadays, we finally have non-conjectural geometric constructions of the 
category of motives (Ayoub ’14, Nori ’00s).   



Extensions

 = an abelian category (e.g. category of abelian groups)𝒜

Given A and B, an extension of A by B is diagram  such 
that  (and i is injective And q is surjective). 

B ↪ E ↠ A
Im(i) = Ker(q)

i q

 B ⊂ E   with B ↪ E ↠ E/B Im(i) = Ker(q)i q

Equivalence of extensions: Two extensions E and E’ of A by B are 
called equivalent if there is a map E -> E’ fitting into a commutative 
diagram:


B ↪ E ↠ A

B ↪ E′￼ ↠ A



Extensions (cont.)

Theorem (Baer ’34, Cartan-Eilenberg ’42, Yoneda ’60): There is a 
natural binary operation under which Ext(A,B) is an abelian group.


  The identity element of Ext(A,B) is the extension class of

B ↪ B ⊕ A ↠ A

Ext(A,B) := the set of equivalence classes of extensions of A by B

In our case of interest, Ext groups will be vector spaces.



Back to motives

1-dimensional motives: for each integer n, there is a 1-dimensional 
motive . ℚ(n)

; period ℚ(−1) := H1(ℂ×) 2πi

; period (2πi)n

 = the unit object = ℚ(0) = 1 H0(ℂ)

Theorem (Borel ’72, Soulé ’78, Voevodsky/Levine): Let n>0. Then

dim Ext( , ) =1 ℚ(n)
1     n=3,5,7,…

0     n=2,4,6,…

ℚ(−n) := ℚ(−1)⊗n = H2n(ℙn)



Chapter 4: 

From the abstract 
to the concrete 

A. Beilinson 
(born 1957)

S. Bloch 
(born 1944)



We had 2 phenomena:

1
1
2

1-n nBorel’s theorem restated:



ords=1−n(ζ(s)) = dim Ext(1, ℚ(n))

ords=1−n ζ(s) =
1     n=3,5,7,…

0     n=2,4,6,…

(Up to a rational factor)

A)  for k>0, while  (k>0) seemed much 
more mysterious. 


B) , while =0 with a zero of order 1:

ζ(2k) ∼ℚ× π2k ζ(2k + 1)

ζ(odd < 0) ≠ 0 ζ(even < 0)



Beilinson’s conjecture (around ’82) - p. I: 


Let M=  for a smooth projective variety X over . 

Then for i-2n<-2,


.

Hi(X) ℚ

ords=i+1−nL(M, s) = dim Ext(1, M(n))

Borel’s theorem verifies this for the trivial motive .1

In the background of B

Beilinson’s conjecture: With M, n as above, the “higher regulator map”




is an isomorphism and its determinant with respect to natural rational 
structures is up to a rational factor equal to the leading coefficient of 
the Taylor expansion of L(M,s) as s=i+1-n.

Ext(1, M(n)) ⊗ ℝ → Extℳℋ+
ℝ
(1, M(n))

Modified statements 
for i-2n ∈ {−2, − 1}

In background of :  ζ(2k) ∼ℚ× π2k Ext(1, ℚ(−2k)) = 0 ⇒ det(r) = 1 ⇒ ζ(1 − 2k) ∈ ℚ ⇒ ζ(2k) ∼ℚ× π2k

F. Eq.

BC known for very few cases: X = a single point (<-> Dedekind zeta 
functions) by work of Borel in ’70s.   



We haven’t yet explained half of Phenomenon A.

Grothendieck Period conjecture

Motivic Galois Groups: The category of motives is actually tannakian 
(has tensor products and dual objects).

In any tannakian category:

The group attached to a motive M via tannakian formalism is called the 
motivic Galois group of M. 

Each object An alg. group

Grothendieck period conjecture (mid-late ’60s): For every motive M 
over ,


dim  = transcendence degree of field generated by periods 
of M.

ℚ
Galmot(M)



Recall: dim Ext( , ) = 1 for n=3,5,7,…1 ℚ(n)

Theorem (Deligne ’89): For odd n >1, the nontrivial extension of  by 
 has a period matrix

1
ℚ(n)

.[(2πi)−n (2πi)−nζ(n)
0 1 ]

Corollary: Let n>1 be odd.

GPC for the nontrivial 
extension of  by 1 ℚ(n)

 is algebraically 
independent.
{π, ζ(n)}

Follows by an easy argument using the 
machinery of tannakian categories and 
unipotent radicals of Galois groups.

Pf: Since the extension is nontrivial, dim  = 2. Combining with 
Deligne’s theorem we get the implication.

Galmot



Recent work (PJM ’23, ANT ’23 with K. Murty and a recent preprint on 
arXiv) further studies unipotent radicals of motivic Galois groups.

Some recent work
Ext groups in categories 
of motives

unipotent radicals of 
motivic Galois groups.<—->

Unipotent radicals of motivic Galois groups have been studied 
previously by Deligne, Bertrand, Hardouin, Bertolin, Jossen, etc.

Theorem (E.): Fix integers a,b,c>1 with b,c distinct and odd. There is a 
family of motives with period matrices of the form

(2πi)−b−c−1 (2πi)−b−c−1ζ(c) *1,3 * 1,4

0 (2πi)−b−1 (2πi)−b−1ζ(b) *2,4

0 0 (2πi)−1 (2πi)−1log(a)
0 0 0 1

and 7-dimensional motivic Galois groups. In particular, if GPC holds, 
then  is algebraically independent.{π, ζ(b), ζ(c), log(a), *1,3 , *2,4 , *1,4 }



Historical note: In 1785 Euler speculated that perhaps there are 
 such that





GPC would imply that this speculation is false.


α, β ∈ ℚ

ζ(3) = α(log 2)3 + βπ2 log 2.

Thank you! :)


