Special values of the Riemanin zeta function
- a journey from concrete to abstract
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L. Euler (1707-17%3)




5 el converqges i a > 1
2

£ diverqes if a = 1

o First analytic er00¥ of the infinitude of primes (Euler):

1 0
= I I (1+ 1/p+ 1/p*+ ) = E 1/n
H 1 —1/p =

p=prime p=prime

<0 Iif # primes < oo

o tuler (around 1740):



Euler’s proof:
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o kbuler:

£(2) = n%/6 £(4) = /90 £(6) = 7°/945

| £(2k) = 77 - (o rakional number)

® Lambert (1760): 7 is irrakional.

@ Lindemann (1g¥2): 7 is transcendental (ie. there is no nonzero
fe Qx] such that f(x) = 0.

Corollary: {(2k) is Eranscendental. l




A different picture : 0dd zeta values

o Almost nothing known about transcendence/irrationality,

° Liwei.v pr@.{i%&ﬁom i modern btimes: {7, (3),0(5),0(7), ...} should be
&Lgebraicauv independent (Le. 3 nonzero f € Q[x;, X, x3,...] such that

o Apérv (197%): {(3) is irrational.

® We dont even Know irra&iomati&v of £(5). Nothing is known about
Eranscendence of any odd zeta value,



B. Riemann (1¥26-1%66)



o Distribution of primes: nx) =#{p<x:.: p= PT‘EM@-}
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Prime number theorem (Hadamard, de la Valée Poussin, 1¥96):

. 7(x)
lim =1
x—oo X/10g x
o Riemann’s visionary work (1¥59)
Consider { as a function of a
|
()= ) —  (Re(s)> 1)
n=1 4

Analytic on the half plane {s € C: Re(s) > 1}



Riemann’s visionary work {(cont.)
Analytic continuation an functional equation

Riemwanin (1¥59): {(5) extends to an analytic function on C\{1} with a
single pole of order 1 ot s = 1, and satisfies a funckional equation
relating {(s) and (1 — s):

o9

@1><:<s>=sf1—s[

1
{s:Re(s) > 0}\{1} with a single pole at 1.

X}

xS+1

dx = { extends to an analytic function on

@ 2) Set A(s) = JZ'_S/ZF(%)Z:(S) where ['(s) = st_le_xdx nfc*)r f?;e(s)?Oq Thewn:
0

| A=A |

7 A\ is called the

| ﬁampiﬁ%ed zelta
\ function,




TR = i Corollary: A extends to an amalytic fumction
g on C\{0,1} with single poles at 0,1, It has no
zeros oubside the erikical s&rap

{s : 0 < Re(s) <1},
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{ extends to an analytic function on

|
C\{1l} with a single Fwt@. ot 1. It has zeros |
of order 1 at neqative even inteqers. Tkese:
are the only zeros of { outside the |
critical s&rE:E {s: 0 < Re(s) < 1}. JH
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/ Riemanin vac}&kesis: ALl other zeros are on \
| the line Rels)=1/2. (Riemann proved the |
PNT assuming this.)




Summarv: Two mvséermus phemamena:

A. Contrast in the situakions for ((odd > 1)
and ((even > 1).

B. ((even < 0) =0 with a zero of order 1, and
((edd < 0) # 0.




A. Grrothendieck P. Deligne
(192%-2014) (born n 194-4)



® An affine variety over Q is the zero set of a collection of polynomials wikh
rational coefficients:

lze Ul Jitz) = -==afit) — U} (fis .. € Qe 7. 1)

® A variety over Q is obtained by “patching together” affine varieties.
° Examples: (1) C” (2 CX=C = [0 = {(x;y) el e 1]
(3) the projeﬂﬁve line: P! =C* - {0}/(z ~ 7 4 7 = cz for some c € C)
(4) elliptic curves {(x, V)= y*=x"% ax+ b} (a,b € Q)

(8) Fermat curves {(x,y) : x"+y" =1}



Betti (singular) cohomology Hy(X)™ V.S./ Q

| , Vector spaces V. S/ O
{ wikth additional

' skructure \;.1 S / @ J

X

de Rham cohomology H(X)
(Var./Q) E

L-adic cohomology H'(X)

Exampt&. 1) For all connected X, Hg(X) o HC(;R(X) ~ ()
Example 2) C* = C\{0}

dim Hi(CY) = dim H ,(CX) = 1

HP(CY) = spanned bj

;- Paired by integration: J dzlz = 2ni
H.(C*) spanined bv L ‘
A F.?@.ri;ocl of C*X



Philosophy of motives (Grothendieck’s dream)

Alg. Geometry Various non-alqg. gqeometbric Llinearizations

Beltti (singular) eokamotagv Hp(X) ~

Var.,/Q === ‘ ey de Rhham cohomo Logv H, (X)

L-adic cohomology H'(X)



Philosophy of motives (Grothendieck’s dream)

Alg, Geometry Various non-alqg. gqeometric Linearizations

Beltti (singular) cohomology Hp(X)~

Linearization NV P Perio ds

X H"(X)

de Rham cohomology H’.(X)

L-adic aakmmoiugj H'(X)

E (realizations)

The category of motives should be abelian (there should be kernels and
colkernel s).

Nowadays, we finally have non-conjectural geometric constructions of the
category of motives (Ayoub ‘14, Nori ‘cos),



Exbensions

® o = an abelian category (e.q. category of abelian grou[ps)

 BCE BS E S E/B with Im(i) = Ker(q)

® Given A and B, an extension of A by B is diagram B S E 2 A such
that Im(i) = Ker(g) (and i is injective And g is surjective).

o Equivalence of extensions: Two exbtensions £ and £’ of A bj B are
called equivalent if there is a map £ -> £’ fitting inko a commutative
diagram:

B E—>» A

Bl
B E' > A



Extensions (cont.)

o Ext(AB) := the set of equivalence classes of extensions of A by B

o Theorem (Baer ‘34, Cartan-Eilenberq ‘42, Yoneda '60): There is a
natural bi;mm'v opera&iom under which Ext(AB) is an abelian group.

The identity element of Ext(AB) is the extension class of
BSBHA—>»A

o In our case of interest, Ext groups will be vector spaces.



Back ko mobkives

o l-dimensional motives: for each inteqger n, there is a 1-dimensional
motive Q(n).

Q(=1) := HY(CX); F?eriod 27l
Q(—=n) := Q(=1)®" = H*(P") ; erri;od (27mi)"
Q0) =1 = the unikt ob\}@.«c& = HY(C)

o Theorem (Borel ‘72, Soulé ‘7%, Voevodsky/Levine): Let n»>0. Then

n=3,8,7...
dim Ext1,0()) = <

n=R,4,6,...
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A. Beilinsown S. Bloch
(born 1957) (born 194-4)



We had 2 pkemamena:

(Up to a rational factor)

AY ((2k) l@x 1% for k>0, while {2k + 1) (>0) seemed much

more mys Ferious.

B) {(odd < 0) # 0, while ((even < 0)=0 with a zero of order 1:

=36 7...
C"T‘c;kszl—n C(S) %

n=e,4,6,...
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Rorel’s theorem resktabted:




Beilinson’s conjecture (&rouv\ci-’ 5;23 i _F; e —___T

Let M=H'(X) for a smooth prajec&ive variety X over Q. |1 the backaround of &

Then for i-2n<-2, i

W Modified statements
ord_iy1-, LM, 5) = dim ExE(L, M(n)). T for tam € {=2,- 1)

R L e R L e I

Borel’s theorem verifies this for the brivial motive 1.

Beilinson’s conjecture: With M, n as above, the “higher requlator map”

|
| Ext(l, M(n)) ® R — Ext 4 4+(1, M(n))
;

|

|

LS an Esamarpmsm and its determinant with res[p@.& to nakural rational
7|structures is up to a rational factor equal to the leading coefficient of
'{ ékg j 0_‘3;1;01 expansioh of LIM,s) as s=irl-n,
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I background of (2K) ~gx 12 Ext(, Q(=2k) = 0 = det(r) = 1 = (1 — 2K) € Q = {(2K) ~gx 7
=3 E?q«

BC kihowh for very few cases: X = a single point (<—> Dedekind zeta

ﬂfuwc&mms) bv woTk o-df Borel in '70s,



Grothendieck Period conjecture

o We havent yet explamed half of Phenomenon A,

o Motivic Galois Groups: The category of motives is actually tannakian
(has tensor products and dual objects).

In any tannakian category:  Each object > An alg. group

The group attached to a motive M via tannakian formalism is called the
motivic Gralois group of M.

I e _ R L _ R _ R L L L L e B e L

(mid-Llate '60s): For every motive M

over O, |

| dim GQLMO&(M) = branscendence deqgree of field generated bv periods

B e g AR R TSR M el laagea o]




o Recall: dim ExE(1,0(n)) = 1 for n=3,57...

® Theorem (Deligne '¥9): For odd wn »1, the nonkrivial extension of 1 bv
Q(n) has a permd makbrix
Lri)™" Qa)~"C(n)
0 | “
o Corollary: Let n>1 be odd.

GPC for the nontrivial

{7,{(n)} is algebraically
extension of 1 by Q(n)

mdepemdem&

Follows by an easy argument using the
machinery of kannakian cateqories and
um;po&emﬁ radicals oﬂf Gralois grou,g's

Pf: Stince the exteinsie Al mom%rwml dim Gatm"% 2. Combining with
Deligne’s theorem we get the implication.



Some recent work

umigo&en& radicals of
galeldi

o Ext groups in categories
lvic Gralois groups.

of motives

o Unipotent radicals of motivic Galois groups have been studied
previ;oustj bv Deligne, Bertrand, Hardouin, Bertolin, Jossen, ete,

o Recent work (PIM 23, ANT 23 with K. Murty and a recent preprim@ on
arXiv) further studies unipotent radicals 0? motivic Gralois groups.

o Theorem (E.): Fix integers a,b,c>1 with bc distinet and odd. There is a
family of motives with period matrices of the form

Qi) iyt (o) *13 *1.4
0 Gey” ' Qo) o) oy
0 0 (27ri)_1 (27ri)_110g(a)
0 0 0 1

and 7-dimensional motivie Galois groups, I particular, U GPC holds,
then {7, C(b),C(c),log(a), ™| 3,%24,% 14} s atgebrawauv &mdepemdem&



Historical note: In 17%85 Euler spe&uta&ed Ehat perhaps there are
a, € Q such thak

£(3) = a(log?2)’ + pr*log 2.

GPC would imply that this speculation is false.

Thawnl :jou,! 5



