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Abstract. Let T be a neutral tannakian category over a field of characteristic 0. Let M be
an object of T with a filtration 0 = F0M ( F1M ( · · · ( FkM = M , such that each succes-
sive quotient FiM/Fi−1M is semisimple. Assume that the unipotent radical of the tannakian
fundamental group of M is as large as it is permitted under the constraints imposed by the
filtration (F•M). In this note, we first describe the Ext1 groups in the tannakian subcategory
of T generated by M . We then give two applications for motives, one involving 1-motives and
another involving mixed Tate motives, leading to some implications of Grothendieck’s period
conjecture.

1. Statement of the result

Let T be a neutral tannakian category (as in [11]) over a field F of characteristic 0. Let M
be an object of T, equipped with a filtration

(1) 0 = F0M ( F1M ( · · · ( FkM = M

such that the associated graded

GrF (M) =

k⊕
i=1

GrFi (M) =

k⊕
i=1

FiM

Fi−1M

is semisimple. The prototype examples to keep in mind are when T is the category of graded-
polarizable rational mixed Hodge structures or any reasonable tannakian category of mixed
motives over a subfield of C, and (FiM)0≤i≤k is the weight filtration on M with re-labelled
indices (with k = the number of weights of M). But what we will say below does not require a
functorial filtration. Note that even in motivic applications, we do not always have an interesting
functorial weight filtration in the categories of interest. For example, no such filtration is known
for the de Rham-Betti realization (as in [1, §7.1.6]).

Given a fiber functor ω for T over F, let U(M,ω) be the kernel of the natural surjection from
the tannakian group of M with respect to ω (i.e., Aut⊗(ω|〈M〉⊗) in the standard notation [11])

to the tannakian group of GrF (M) with respect to ω. Since GrF (M) is semisimple, U(M,ω)
is the unipotent radical of the tannakian group of M with respect to ω. Tannakian formalism
provides us with a canonical subobject

u(M) ⊂ End(M) := Hom(M,M)

(where Hom means the internal Hom) such that for every choice of a fiber functor ω, the Lie
subalgebra

ωu(M) ⊂ ωEnd(M) = End(ωM)

is the Lie algebra of U(M,ω) (see for instance, [12, §2] for a detailed explanation of this).
Moreover, since the elements of U(M,ω) act trivially on ωGrF (M), we have

u(M) ⊂ F−1End(M),
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where F−1End(M) is the subobject of End(M) such that for every fiber functor ω,

(2) ωF−1End(M) = {f ∈ EndF(ωM) : f(ωFiM) ⊂ ωFi−1M for all i}.

(Here and in what follows, for convenience, we set FiM = 0 for i < 0.)

Definition 1.1. We say u(M) or the unipotent radical of the tannakian group of M is maximal
(with respect to the given filtration (F•M) on M) if

u(M) = F−1End(M).

Some criteria for maximality of u(M) in various special cases are given in [5], [7], [12], [13],
and [14]. A necessary and sufficient criterion for maximality of u(M) in the generality of a
filtration (F•M) in a neutral tannakian category over a field of characteristic zero with no other
hypotheses is given in [15], generalizing the criteria given in the previously mentioned references.
From arithmetic and algebro-geometric viewpoints, for example, one may be interested in the
notion of maximality of u(M) in relation to (1) periods and Grothendieck’s period conjecture
(which predicts the dimension of the motivic Galois group of a motive over Q should be equal
to the transcendence degree of the field generated by the periods of the motive), and (2) the
motivic versions of Hodge and Tate conjectures (which predict equality of motivic Galois groups
of motives over suitable fields with their Hodge-theoretic and `-adic analogues, see [1]). In
relation to (1), among all motives with the same associated graded with respect to the weight
filtration, the field generated by the periods of a motive with a maximal unipotent radical of
motivic Galois group should have the highest transcendence degree. In relation to (2), for
motives whose Hodge (resp. `-adic) realization satisfies this maximality property, the motivic
version of the Hodge (resp. Tate) conjecture will hold at the unipotent level for trivial reasons.

The purpose of this short note is to make an observation about Yoneda Ext1 groups in
tannakian subcategories generated by objects with maximal u and draw some consequences of
it in relation to Grothendieck’s period conjecture. The observation is the following:

Theorem 1.2. Suppose T and M are as above (i.e., T is a neutral tannakian category over a
field F of characteristic 0 and M is an object of T equipped with a finite filtration (1) such that
GrFM is semisimple). Set

(3) V (M) :=
k−1⊕
i=1

Hom(GrFi+1M,GrFi M).

If u(M) is maximal, then for every semisimple object X in 〈M〉⊗ there is a natural (i.e., func-
torial in X) isomorphism

(4) Ext1〈M〉⊗(1, X) ∼= Hom(V (M), X).

Here, 〈M〉⊗ means the tannakian subcategory of T generated by M , and Ext1〈M〉⊗ means

the Yoneda Ext1 group in 〈M〉⊗. The notation Hom without any subscript refers to the Hom
group in T (or 〈M〉⊗).

Below we will first consider some special cases of Theorem 1.2, and then prove the result.
Finally, we will give two applications in motivic contexts.

2. Special cases

Unless otherwise indicated, T and M are as in Theorem 1.2.
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2.1. Theorem 1.2 has the following implication:

Corollary 2.1.1. Suppose u(M) is maximal. For any i, j, the Ext group

Ext1〈M〉⊗(GrFj M,GrFi M)

vanishes if and only if Hom(GrFj M,GrFi M) and V (M) (defined in Theorem 1.2) have no
nonzero isomorphic subobjects.

This is immediate from Theorem 1.2 in view of semisimplicity of GrF (M) and the canonical
isomorphism

Ext1(A,B) ∼= Ext1(1, Hom(A,B))

in a tannakian category.

2.2. Suppose T is filtered, i.e., there exists a filtration W• (referred to as the weight filtration)
on objects of T satisfying similar properties to the weight filtration on the category of rational
mixed Hodge structures: indexed by Z, increasing and finite on every object, functorial, exact,
and preserving the tensor structure. By a weight of an object M we mean an integer p such
that Wp−1M 6= WpM . Let M be an object of T with k weights p1 < · · · < pk such that its
associated graded GrWM with respect to the weight filtration is semisimple. In this case, unless
otherwise indicated, we will always take the earlier filtration (F•M) to be the weight filtration
with re-labelled indices (i.e., with FiM = WpiM). Then the object u(M) is maximal if and only
if u(M) = W−1End(M). The object V (M) defined in Theorem 1.2 is then

k−1⊕
i=1

Hom(GrWpi+1
M,GrWpi M).

2.3. In the situation of the previous remark, suppose that M has k = 3 weights p1 < p2 < p3.
A comparison of the weights shows that Hom(GrWp3M,GrWp1M) and

V (M) = Hom(GrWp2M,GrWp1M)⊕Hom(GrWp3M,GrWp2M)

have no nonzero isomorphic subobjects. We thus obtain:

Corollary 2.3.1. Suppose T is a filtered tannakian category over a field of characteristic 0,
M is an object of T with 3 weights p1 < p2 < p3 such that GrWM is semisimple and u(M) is
maximal. Then

Ext1〈M〉⊗(GrWp3M,GrWp1M) = 0.

3. Proof of Theorem 1.2

Theorem 1.2 follows from the following two lemmas:

Lemma 3.1. Let G be a linear algebraic group over F (a field of characteristic zero). Denote
the category of finite-dimensional representations of G over F by Rep(G). Denote the Hom
and Yoneda Ext1 groups for Rep(G) by HomG and Ext1G. Let U be the unipotent radical of
G. Let u be the Lie algebra of U, considered as an object of Rep(G) through the adjoint action,
and let uab := u/[u, u] be the abelianization of u, also considered as an object of Rep(G) via the
induced action (note that uab is semisimple, as the action of G on uab factors through an action
of the reductive group G/U). Then for every semisimple object X of Rep(G), there is a natural
isomorphism

Ext1G(1, X) ∼= HomG(uab, X).
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Proof. This result should be well known (see for instance, [18, §16]), although it is not easy
to reference to a place in the literature where it is explicitly written in this format. A very
explicit proof working with “bare hands” can be found in [14] (see Proposition 3.1.1 therein).
For the sake of completeness, here we will include a compact argument using group cohomology
for algebraic groups. There are natural isomorphisms

Ext1G(1, X)
(∗)∼= H1(G, X)

(∗∗)∼= H1(U, X)G/U,

where (∗) is by the definition of group cohomology and the fact that Yoneda Ext groups
agree with those defined using injective resolutions. The isomorphism (∗∗) is by the inflation-
restriction exact sequence for the G-module X and the subgroup U of G, on noting that G/U
is reductive and so H i(G/U,−) vanishes for i > 0. Since X is a semisimple G-representation,
the action of U on X is trivial, so that

H1(U, X) ∼= HomAlgGr(U, X) ∼= HomAlgGr(U
ab, X),

where HomAlgGr is Hom for the category of algebraic groups over F and Uab is the abelianization

of U. Since Uab and X are both additive groups, by passing to the Lie algebras we have

HomAlgGr(U
ab, X) ∼= HomF(uab, X).

The condition of G/U-invariance on H1(U, X) translates to G/U-invariance on HomF(uab, X),
so that

H1(U, X)G/U ∼= HomG/U(uab, X) = HomG(uab, X).

�

Lemma 3.2. Let T be a neutral tannakian category over a field F of characteristic 0 and M
an object of T equipped with a finite filtration (1) such that GrFM is semisimple. Then(

F−1End(M)
)ab ∼= V (M).

(See equations (2) and (3) for the definitions of F−1End(M) and V (M). Here and in what
follows, for a Lie algebra object g of T, the abelianization g/[g, g] (also an object of T) is
denoted by gab.)

Proof. Let F−2End(M) be the subobject of End(M) whose image under any fiber functor ω con-
sists of the linear endomorphisms f of ωM such that f(ωFiM) ⊂ ωFi−2M for every i (where as
before, we set FiM = 0 for i < 0). It is clear from definitions that [F−1End(M), F−1End(M)] ⊂
F−2End(M). We shall show that F−2End(M) = [F−1End(M), F−1End(M)] and construct a
surjective morphism

(5) F−1End(M) −→
k−1⊕
i=1

Hom(GrFi+1M,GrFi M)

whose kernel is F−2End(M).
Choose a fiber functor ω over F. Set FiωM := ωFiM for each i. Let G(M,ω) be the

tannakian group of M with respect to ω. For each 2 ≤ i ≤ k choose a linear section si of the
map FiωM � GrFi ωM to identify FiωM ∼= Fi−1ωM ⊕GrFi ωM as vector spaces. By successive
applications of these we have identifications

ωM = FkωM ∼= Fk−1ωM ⊕GrFk ωM ∼= Fk−2ωM ⊕GrFk−1ωM ⊕GrFk ωM ∼= · · ·
and finally an identification

(6) ωM ∼=
k⊕
i=1

GrFi ωM
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and subsequently an identification

(7) EndF(ωM)
(6)∼= EndF(

k⊕
i=1

GrFi ωM) ∼=
⊕

1≤i,j≤k
HomF(GrFj ωM,GrFi ωM).

Via these identifications, we have FjωM ∼=
j⊕
i=1

GrFi ωM and

(8) ωF−`End(M) ∼=
⊕
j−i≥`

HomF(GrFj ωM,GrFi ωM) (` = 1, 2).

An easy exercise in linear algebra now verifies that

ωF−2End(M) ⊂ [ωF−1End(M), ωF−1End(M)],

hence giving the equality of F−2End(M) and the derived algebra of F−1End(M).
Let

π : ωF−1End(M) �
k−1⊕
i=1

HomF(GrFi+1ωM,GrFi ωM)

be the composition of the identification (8) for ` = 1 with the projection to the components with
j = i+1. From (8) the kernel of π is ωF−2End(M). We claim that (i) the map π is independent
of the choices of the sections (si) used to obtain identifications (6) and (7), and (ii) π is equi-

variant under the actions of G(M,ω) on ωF−1End(M) and
⊕k−1

i=1 HomF(GrFi+1ωM,GrFi ωM)

corresponding to the objects F−1End(M) and
⊕k−1

i=1 Hom(GrFi+1M,GrFi M) under the equiva-
lence of categories

(9) 〈M〉⊗ ω−−→ Rep(G(M,ω)).

This will complete the proof of the lemma.
Write elements of EndF(GrFωM) as k × k matrices via the canonical decomposition

EndF(GrFωM) ∼=
⊕

1≤i,j≤k
HomF(GrFj ωM,GrFi ωM).

Under the isomorphism (7), ωF−1End(M) consists of all the strictly upper-triangular elements
of EndF(GrFωM). The isomorphisms (7) for two choices of sections (si) and (s′i) differ by
conjugation by an upper-triangular element of EndF(GrFωM) whose diagonal entries are all
identity maps. Such a conjugation leaves the super-diagonal entries fi,i+1 of a strictly upper-
triangular matrix (fi,j) unchanged. This shows the independence of π from our choice of sections.

As for G(M,ω)-equivariance, the action of G(M,ω) ⊂ GL(ωM) on ωF−1End(M) (resp.
HomF(GrFj ωM,GrFi ωM)) corresponding to the object F−1End(M) (resp. Hom(GrjM,GriM))

under (9) is given by conjugation (resp. by σ · fi,j = σGrFi M
◦ fi,j ◦ σGrFj M

−1, where σX denotes

the action of σ on ωX for any object X of 〈M〉⊗). The subgroup G(M,ω) of GL(ωM) respects
the filtration F• on ωM . Identifying GL(ωM) with GL(GrFωM) via (6) (for a choice of sections
(si)) and writing its elements as k×k matrices, G(M,ω) is thus contained in the upper-triangular
subgroup of GL(GrFωM). Given σ = (σi,j) ∈ G(M,ω) and f = (fi,j) ∈ ωF−1End(M) (with σ
upper-triangular and f strictly so), a direct computation shows that the super-diagonal entry
(i, i+ 1) of σfσ−1 is σi,i ◦ fi,i+1 ◦ σ−1i+1,i+1. On noting that σGrFj M

= σj,j for all j, we thus have

π(σ · f) = σ · (π(f)), as desired. �

We are ready to deduce Theorem 1.2. Let T and M be as in the statement of the theorem
(with u(M) not yet assumed to be maximal). Let ω a fiber functor for T over F. Apply Lemma
3.1 taking G to be the tannakian group G(M,ω) of M with respect to ω. The unipotent radical
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of G is the group U(M,ω) with Lie algebra ωu(M). The representations of G on ωu(M) and
ωu(M)ab under the equivalence of categories (9) are induced by the adjoint action of G. In view
of the same equivalence of categories and Lemma 3.1, for every semisimple object X of 〈M〉⊗
we thus have a natural isomorphism

(10) Ext1〈M〉⊗(1, X) ∼= Hom(u(M)ab, X).

When u(M) is maximal, combining with Lemma 3.2 we obtain Theorem 1.2.

Remark 3.3. The construction of the isomorphism (4) of Theorem 1.2 given above depends on
the choice of a fiber functor ω for T. The isomorphism itself however is independent of this
choice. Indeed, a detailed proof of the fact that the isomorphism (10) is independent from the
choice of ω can be found in [14] (see Lemma 3.2.1 therein). That the isomorphism of Lemma
3.2 is independent of the choice of ω can be seen from a more natural description of the map
(5) along the lines of [14, §2.6] (where this more natural description is given when k = 3).

4. Applications

In what follows, we will give two examples related to motives. Given a tannakian category
MM(K) of mixed motives over a field K ⊂ C, by the motivic Galois group of an object M of
MM(K) we mean the tannakian group of M with respect to the fiber functor given by the Betti
realization (with coefficients in Q). If K is algebraic over Q, by Grothendieck’s period conjecture
(in the context of the category MM(K)) we mean the following statement: for every object M
of MM(K), the dimension of the motivic Galois group of M is equal to the transcendence degree
of the field generated over K (or Q) by the periods of M . We refer to this statement for a fixed
object M of MM(K) as Grothendieck’s period conjecture for M . The reader can consult an
appendix of [6] due to André for an excellent exposition of Grothendieck’s conjecture. Note that
the statement of the conjecture involves the choice of a tannakian category of motives.

Denote the category of rational mixed Hodge structures by MHS. The Mumford-Tate
group of a rational mixed Hodge structure H is the tannakian group of H in MHS with respect
to the forgetful fiber functor. Any reasonable candidate for MM(K) for any subfield K ⊂ C is
equipped with a Hodge realization functor RH : MM(K)→MHS, which is exact faithful linear
and respects tensor products. For every motive M , the functor RH identifies the Mumford-Tate
group of RHM (or for simplicity, of M) as a subgroup of the motivic Galois group of M .

4.1. Application I: 1-motives. Fix an embedding Q ⊂ C. We will take the background on

the theory of Deligne 1-motives [10] for granted. Let M = [Zn µ−→ G] be a 1-motive over Q,
where G is an extension of a nonzero abelian variety A by a torus Gs

m. Denote the dual abelian
variety to A by A∗. Let

Q = (Q1, . . . , Qs) ∈ A∗(Q)s (resp. P = (P1, . . . , Pn) ∈ A(Q)n)

correspond to G (resp. M/Gs
m = [Zn µ−→ G→ A]) under the canonical isomorphism

Ext1(A,Gm) ∼= A∗(Q) (resp. Ext1(Z, A) ∼= A(Q)),

where the Ext groups are in the category of 1-motives over Q.
Let NM(Q) be Nori’s tannakian category of (non-effective) motives over Q [19]. Let RH :

NM(Q) → MHS be the Hodge realization functor. We denote the Nori motive associated
to our 1-motive M also by the same symbol. By [3, Corollary 6.7], RHM (resp. de Rham
and `-adic realizations of M as a Nori motive) is the usual Hodge (resp. de Rham and `-adic)
realization of the 1-motive M as constructed by Deligne in [10].

André [2] has proved that the motivic Galois group of M (in the context of NM(Q))
coincides with its Mumford-Tate group. Moreover, by [20, Theorem 6.2] (or [14, Corollary
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3.8.1], in view of the fullness of the Hodge realization functor on the category of 1-motives over
Q up to isogeny [2, Proposition 2.1]) the following two statements are equivalent:

(i) The unipotent radical of the Mumford-Tate group of M is maximal. That is, in the
notation of §1, u(RHM) is maximal, where T is taken to be MHS (and the filtration
on RHM is the weight filtration with relabelled indices, see §2.2).

(ii) The only complex abelian subvariety of An ×A∗s that contains the point

k · (P ,Q) ∈ An ×A∗s

for some nonzero integer k is An ×A∗s.
As an application of Theorem 1.2 one obtains the following:

Proposition 4.1. Suppose that the 1-motive M satisfies the equivalent conditions (i) and (ii)

above. Suppose r ∈ Q× is not a root of unity. Assuming Grothendieck’s period conjecture, (any
value of) log(r) is algebraically independent from the periods of M .

Proof. Statement (i) implies that u(M) (for the motivic Galois group) is maximal. By Theorem
1.2, the Ext group Ext1(1,Q(1)) vanishes for the subcategory 〈M〉⊗ of NM(Q). Now consider
the Kummer motive Lr := H1(Gm, {1, r}) in NM(Q). It is a nontrivial extension of 1 by
Q(1) and hence does not belong to 〈M〉⊗. Thus the natural surjection from the motivic Galois
group of M ′ := M ⊕ Lr to the motivic Galois group of M is not an isomorphism. We have a
commutative diagram

1 U(M ′, ωB) G(M ′, ωB) G(GrWM ′, ωB) 1

1 U(M,ωB) G(M,ωB) G(GrWM,ωB) 1

where ωB is the Betti functor on NM(Q) and G(−, ωB) denotes the motivic Galois group, and the
maps are either inclusion or by restriction. It follows that the surjection U(M ′, ωB)→ U(M,ωB)
is not an isomorphism. Since the groups U(−, ωB) are unipotent, we obtain that U(M ′, ωB)
has a larger dimension than U(M,ωB). Assuming Grothendieck’s period conjecture for M ′, it
follows that the transcendence degree of the field generated by the periods of M ′ must be larger
than the transcendence degree of the field generated by the periods of M . This gives the claim
since Lr has a period matrix with entries 1/(2πi), log(r)/(2πi), 0 and 1. (Note that 1/(2πi) is
already in the algebra of periods of M .) �

Remark 4.2. Here we worked with Nori’s category to make the discussion concrete. Proposition
4.1 is valid in the setting of any candidate for the tannakian category MM(Q) of mixed motives
over Q, as long as pure objects of MM(Q) are semisimple and the Hodge and de Rham realization
functors on 1-motives, considered as objects of MM(Q), agree with those constructed in [10].
The equality of the motivic Galois and Mumford-Tate groups for arbitrary 1-motives over Q
(which is specifically known in the context of NM(Q)) is not needed by the argument for
Proposition 4.1: the assumption of maximality of u(RHM) forces the maximality of u(M).

Remark 4.3. We refer the reader to [5, §5.2] and [6, §2] for computations of period matrices of
1-motives, particularly in the case when A is an elliptic curve and n = s = 1.

4.2. Application II: Mixed Tate motives. What follows here supplements the examples in
[12, §6.9] and [13, §5.5]. In this second application we will work in the category MTM(Q) of
mixed Tate motives over Q, constructed by Levine [21] or Voevodsky [22]. As it is well known,
thanks to Borel [8], Beilinson [4] and the relationship between the Ext groups in MTM(Q) and
the K-theory of Q, for every odd integer n ≥ 3 the vector space Ext1(1,Q(n)) (where Ext1 here
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is for MTM(Q)) is 1-dimensional, generated by an object with a period matrix with entries
1/(2πi)n, ζ(n)/(2πi)n, 0, 1, where ζ is Riemann’s zeta function; we will denote this object by
Zn. The vector space Ext1(1,Q(1)) is isomorphic to Q×⊗Q, with the extension corresponding
to r ⊗ 1 ∈ Q× ⊗ Q given by the weight filtration on the Kummer motive Lr = H1(Gm, {1, r}).
The groups Ext1(1,Q(n)) for all other values of n, as well as all the Ext2 groups vanish.

Fix two distinct odd integers a, b > 1 and r ∈ Q× \ {1,−1}. Since the Ext2 groups
in MTM(Q) all vanish, using Grothendieck’s formalism of blended extensions (extensions
panachées [17]) one can see that there exists an object M of MTM(Q) such that

GrWM ' Q(1 + a+ b)⊕Q(1 + a)⊕Q(1)⊕ 1
and

(11) W−2−2aM ' Zb(1 + a), W−2M/W−2−2a−2bM ' Za(1), and M/W−2−2aM ' Lr
(see [13, Theorem 3.3.1(c)]). Then u(M) is maximal. Indeed, this follows from [13, Theorem
5.3.2] (note that the “graded-independence” hypothesis therein holds for our M thanks to its
weights). Alternatively, the maximality of u(M) can also be seen using the isomorphism (10):
The Ext groups Ext1〈M〉⊗(1,Q(n)) for n = 1, a, b do not vanish because of the nonsplit subquo-

tients of M given in (11), so that u(M)ab must have Q(1), Q(a) and Q(b) as subquotients. From
this one can deduce that u(M) is maximal.

It now follows from Corollary 2.1.1 that

Ext1〈M〉⊗(1,Q(1 + a+ b)) = 0.

Thus Z1+a+b does not live in the category 〈M〉⊗. A similar argument to the one for Proposition
4.1 now shows that Grothendieck’s period conjecture for M ⊕ Z1+a+b implies that ζ(1 + a+ b)
is algebraically independent from the periods of M .

Remark 4.1. Because of the subquotient Lr, the mixed Tate motive M is ramified at r and
so the nature of some of its periods is not known, although one has Goncharov’s conjectural
description [16, Conjecture 0.17(a)]. See [12, §1 & §6.8] (also [13, Remark 5.5.1]) and [9, §1.9 &
§3] for further discussions related to this.

Remark 4.2. It is worth mentioning that the object M of MTM(Q) satisfying (11) is not
unique. In fact, the set of isomorphism classes of such objects of MTM(Q) is a torsor over
Ext1(1,Q(1 + a+ b)) ' Q. This follows from Theorem 3.3.1(b) and Proposition 4.2.3 of [13], in
view of the fact that Ext1(1,Q(2k)) vanishes for all k - see §5.5. of the same reference for more
details.
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