Periods in number theory and algebraic geometry

Payman Eskandari

University of Winnipeg

PIMS-UBC, December 2022

Payman Eskandari

PIMS-UBC, December 2022

2 Periods and period relations II

Operation of motives and Grothendieck's period conjecture

Joint work with K. Murty

Definition (Kontsevich-Zagier)

A period is a complex number whose real and imaginary parts are absolutely convergent integrals of rational^{*} functions with rational^{*} coefficients over subsets of \mathbb{R}^n given by polynomial inequalities with rational^{*} coefficients.

Examples:

• Algebraic numbers, e.g.
$$\sqrt{2} = \int\limits_{x^2 - 2 \le 0, x \ge 0} dx$$

 $\mathbb{Q} \ \subset \ \text{algebraic numbers} \ \subset \ \textit{periods} \ \subset \ \mathbb{C}$

•
$$\pi = \int_{x^2 + y^2 \le 1} dx dy$$

• logarithms of algebraic numbers, e.g.

$$\log(a) = \int\limits_{1 \le x \le a} rac{dx}{x} \quad (a \in \mathbb{Q}, \ a \ge 1)$$

• Special values of the Riemann zeta function:

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \int_{0 \le x_1 \le x_2 \le \cdots \le x_s \le 1} \frac{dx_1 dx_2 \cdots dx_s}{(1-x_1)x_2 \cdots x_s}$$

• Multiple zeta values:

$$\zeta(s_1,\ldots,s_r) := \sum_{0 < n_1 < \cdots < n_r} \frac{1}{n_1^{s_1} \cdots n_r^{s_r}}$$

Periods form a countable set. The number *e* is not expected to be a period.

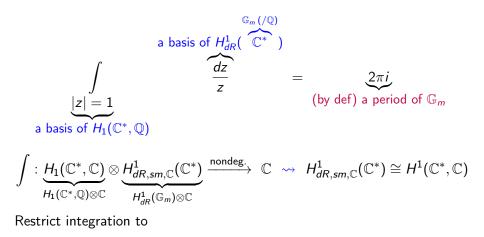
Obvious sources of relations between periods:

- linearity properties of integration (in the integrand and the domain of int.)
- change of variables
- Stoke's theorem

Conjecture (Kontsevich-Zagier, 2001)

Any two integral representations (as above) for a period can be transformed to each other by a sequence of the above operations, in which all functions are algebraic and all domains of integration are semi-algebraic with coef. in \overline{Q} .

Periods II



$$\int : H_1(\mathbb{C}^*, \mathbb{Q}) \otimes H^1_{dR}(\mathbb{G}_m) \longrightarrow \mathbb{C} \quad \text{Image} = 2\pi i \cdot \mathbb{Q}.$$

$$\begin{cases} X \text{ (smooth) variety } / \mathbb{Q} \\ n \in \mathbb{Z}_{\geq 0} \end{cases} \xrightarrow{\sim} \begin{cases} H_n(X^{an}, \mathbb{Q}) = \text{sing. hom. of } X^{an} \\ H_{dR}^n(X) = \text{alg. dR coh.} \\ \text{both vec. spaces } / \mathbb{Q} \text{ with} \\ \int : \underbrace{H_n(X^{an}, \mathbb{Q})}_{H_n(X^{an}, \mathbb{C})} \otimes \underbrace{H_{dR}^n(X)}_{H_{dR,sm,\mathbb{C}}^n(X^{an})} \to \mathbb{C} \end{cases}$$

Definition (Periods, II)

Periods of $H^n(X)$ are the integrals of elements of $H^n_{dR}(X)$ over elements of $H_n(X^{an}, \mathbb{Q})$. That is, numbers in the image of the integration pairing above (restricted to the rational lattices).

3

Equivalently, periods of $H^n(X)$ are the numbers than can appear in a change of basis matrix for the period (or de Rham) comparison isomorphism

$$H^n_{dR}(X)\otimes \mathbb{C} \longrightarrow H^n(X^{an},\mathbb{Q})\otimes \mathbb{C}$$

for bases taken in the rational lattices.

Fixing bases for the rational lattices \rightsquigarrow the period matrix (wrt the bases).

- Similar story for the relative groups $H^n(X, A)$.
- When all possibilities included, same set of numbers as with the KZ definition.

Geometry gives rise to period relations.

Example: X = a compact Riemann surface of genus g; dim $H^1_{dR,sm}(X) = 2g$

ω₁,...,ω_{2g} = a basis of H¹_{dR}(X), ω₁,...,ω_g = holomorphic on X
η₁,...,η_{2g} = a basis of H¹_{dR,sm}(X) in H¹(X, Q)

Write

$$\omega_i = \sum_j p_{ij} \eta_j$$
 so $(p_{ij}) =$ period martix.

Let $Z \subset X \times X$ be a subvariety of dimension 1 (e.g. Z is the graph of a map $X \longrightarrow X$). For any r, s,

$$\int_{Z} \omega_r(x_1) \omega_s(x_2) = \sum_{i,j} p_{ri} p_{sj} \underbrace{\int_{Z} \eta_i(x_1) \eta_j(x_2)}^{\text{rational number}}$$

For each $r, s \leq g$, we get a period relation

$$\sum_{i,j} \left[\int_{Z} \eta_i(x_1) \eta_j(x_2) \right] p_{ri} p_{sj} = 0.$$

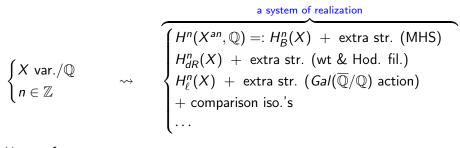
Grothendieck's period conjecture, rough version

All period relations should come from geometry.

PIMS-UBC, December 2022

- The first mention of a possible conjecture is in a footnote of a letter from Grothendieck to Atiyah in 1966. In the letter he only alludes to the existence of a conjecture.
- Grothendieck formulated a precise conjecture using the language of motives and motivic Galois groups, also ideas of his ("Grothendieck's dream").
- At the time there was no formal theory of motives, but nonetheless Grothendieck gave a precise formulation of the conjecture in this language (his unpublished notes from mid-late 60's, now available).

Philosophy of motives



Have a functor

Varieties/ $\mathbb{Q} \longrightarrow \text{Realizations.}$

Grothendieck's idea: There should be an intermediate category $Mot_{\mathbb{Q}}$ of motives over \mathbb{Q} , which is "linear" but yet of geometric nature.

$$Varieties/\mathbb{Q} \xrightarrow{H^n(-)} \mathsf{Mot}_{\mathbb{Q}} \xrightarrow{\mathsf{realization functor}} \mathsf{Realizations}$$

- "linear" = Tannakian (i.e. having properties of the category of f.d. lin. representations of a group)
- Grothendieck's own attempt: Case of smooth projective (semisimple/pure case). Idea: Use correspondences (algebraic cycles in X × Y) as morphisms from mot. of X to mot. of Y; get a nice category assuming the Standard Conjectures
- Grothendieck already thought the picture should also hold in the non-projective case (mixed case)
- Hⁿ(X) for sm. proj. X of weight n (pure); in general a wt. filt. (mixed)
- \bullet Morphisms in $\mathsf{Mot}_\mathbb{Q}$ should have a geometric nature.
- Other mentions: Serre, Deligne, Jannsen, André, Levine, Voevodsky, until:
- Now we finally have genuinely geometric candidates for the category of (mixed) motives, due to Nori (2000's) and Ayoub (2014). Their constructions are different, but the categories are equivalent.)

 $G^{mot}(M)$

 $M \in \operatorname{Mot}_{\mathbb{Q}} \xrightarrow{\operatorname{Tan. formalism}}$ the motivic Galois group of Ma subgr. of $GL(M_B)$ $(/\mathbb{Q}))$

Grothendieck's period conjecture (GPC), precise version*

For any motive M over \mathbb{Q} (e.g. $H^n(X)$),

tr. deg $\mathbb{Q}(\text{periods of } M) = \dim G^{mot}(M)$.

- The \leq assertion is known (and is not hard).
- Q can be replaced with Q.
- Many conjectures in tr. number theory are special cases of GPC.

- Part of a web of conjectures about motives and their realizations (various formulations of Hodge, Mumford-Tate)
- KZ conj. \iff GPC (as stated here) + ... (Kontsevich, Huber Müller-Stach)
- $\bullet\,$ There is a generalized version due to André for over arb. subfields of $\mathbb{C}.$

Examples:

- $M = H^1(\mathbb{G}_m) = H^2(\mathbb{P}^1) =: \mathbb{Q}(-1): \ G^{mot} = GL_1; \ \text{GPC for } M$
 - \iff transcendence of π . (Known, a classical theorem of Lindemann.)
- $M = H^1$ of an elliptic curve E: Then

$$\dim(G^{mot}) = \begin{cases} 2 \text{ CM case} \\ 4 \text{ non-CM} \end{cases}$$

GPC for $M \iff$ tr. deg. of the field gen. by periods is 2 (resp. 4) in the CM (resp. non-CM) case.

The CM case is known (Chudnovsky); the non-CM case is open.

Mixed examples

- Motives of logarithm values (Kummer motives, extentions of 1 by $\mathbb{Q}(1)$): Let $a \in \mathbb{Q}_{>0} \setminus \{1\}$. There is a motive with period matrix $\binom{(2\pi i)^{-1}}{0} \frac{(2\pi i)^{-1} \log(a)}{1}$ and motivic Galois group $\binom{* \ *}{0} \frac{1}{1} \subset GL_2$. In this case, GPC $\iff \{\pi, \log(a)\}$ is algebraically independent. (Open.)
- (Deligne) Motives of ζ values (ext. of $\mathbb{1}$ by $\mathbb{Q}(n)$, n > 1 odd): Let n > 1 be odd. There is a motive with period matrix $\begin{pmatrix} (2\pi i)^{-n} & (2\pi i)^{-n}\zeta(n) \\ 0 & 1 \end{pmatrix}$ and the same motivic Galois group as in the previous example. In this case,
 - $\mathsf{GPC} \quad \Longleftrightarrow \quad \{\zeta(n), \pi\} \text{ is algebraically independent. (Open.)}$

Report on recent work on unipotent radicals (joint with K. Murty)

- M = a mixed motive; M_B Betti realization; $G^{mot}(M) \subset GL(M_B)$
- Weight filtration:
 0 = W_{-N≪0}M ⊂ ··· ⊂ W_{n-1}M ⊂ W_nM ⊂ ··· ⊂ W_{N≫0}M = M gr(M) = ⊕ gr_n(M), gr^W_n(M) = W_nM/W_{n-1}M; gr(M) semisimple
 G^{mot}(M) ⊂ subgr. of GL(M_B) preserving W_●
- $U^{mot}(M) :=$ subgr. of $GL(M_B)$ preserving W_{\bullet} $U^{mot}(M) :=$ subgr. of $G^{mot}(M)$ act. trivially on $gr(M_B)$
- $U^{mot}(M) \leftrightarrow$ extension data in the cat. gen. by M; studied earlier by Deligne, Bertrand, Bertolin, Hardouin, Jossen, etc.
- $P^{-1}(M) :=$ subgr. of $GL(M_B)$ resp. W_{\bullet} and act. trivially on $gr(M_B)$

Definition

 $U^{mot}(M)$ is maximal if it is equal to $P^{-1}(M)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Why interesting?

 $1 \longrightarrow U^{mot}(M) \longrightarrow G^{mot}(M) \longrightarrow G^{mot}(gr(M)) \longrightarrow 1$

 $GPC \Rightarrow$ Periods of motives with max. U^{mot} have max. tr. deg. between all motives with the same gr.

• Idea: Form larger motives with max. U^{mot} from smaller ones.

Question

Suppose L has max. U^{mot} and $0 \longrightarrow L \longrightarrow M \longrightarrow 1 \longrightarrow 0$ is totally nonsplit. Does is follows that M has a max. U^{mot} ?

• Ans: Yes if *L* is semisimple (e.g. pure); this is a theorem of Hardouin 2006 building on Bertrand 2001. But no for non-semisimple *L*! Suppose

$$0 \longrightarrow W_{p}M \longrightarrow M \longrightarrow 1 \longrightarrow 0 \qquad (p < 0).$$

There are conditions that guarantee that if W_pM and $M/W_{p-1}M$ both have max. U^{mot} , then so does M.

Image: Image:

- Special case: Back to the previous Question, if L has neg. weights -n < -m with $n \neq 2m$, the answer is yes.
- This theorem doesn't say if W_pM and $M/W_{p-1}M$ can be "patched together". There is a nice homological criterion for that.
- The theorem + ideas from hom. algebra → homological classification results for motives with max. U^{mot}.
 For example, get a homological classification of all motives with ass. graded iso. to Q(n) ⊕ A ⊕ 1 with A pure of weight -p < 0 with -2n < -p < 0, n ≠ p.

Example

• $n \text{ odd } >1, 1 \neq a \in \mathbb{Q}_{>0}$: There is a unique motive M over \mathbb{Q} with $gr(M) = \mathbb{Q}(n+1) \oplus \mathbb{Q}(1) \oplus \mathbb{1}$,

 $W_{-2}M = \text{"motive of } \zeta(n) , M/W_{-3} = \text{motive of } \log(a).$ Moreover, M has a max. U^{mot} and a period matrix $\begin{pmatrix} (2\pi i)^{-(n+1)} & (2\pi i)^{-(n+1)}\zeta(n) & ?\\ 0 & (2\pi i)^{-1} & (2\pi i)^{-1}\log(a)\\ 0 & 0 & 1 \end{pmatrix}.$ $U^{mot}(M) \text{ max.} \Rightarrow G^{mot}(M) = \{ \begin{pmatrix} a^{n+1} & * & *\\ 0 & a & *\\ 0 & 0 & 1 \end{pmatrix} \} \subset GL_3.$ GPC for $M \iff \{\pi, \log(a), \zeta(n), ?\}$ alg. indep.

Problem (open)

Find the missing period. (Rem: *M* is a mixed Tate motive over $\mathbb{Z}[1/a]$.)

Payman Eskandari

Thank you!

표 문 문

Deligne's characterization of $U^{mot}(M)$

- u^{mot}(M) = Lie algebra of U^{mot}(M); by Tan. formalism a submotive of W₋₁End(M).
- Let $\mathcal{E}_n(M)$ be the extension

$$0 \longrightarrow W_n M \longrightarrow M \longrightarrow M/W_n M \longrightarrow 0.$$

• Deligne's result in slogans: " $\sum_{n} \mathcal{E}_{n}(M) \rightsquigarrow \mathfrak{u}^{mot}(M)$ ".

$$\mathcal{E}_n(M) \in Ext^1(M/W_nM, W_nM)$$

$$\cong Ext^1(\mathbb{1}, \underline{\operatorname{Hom}}(M/W_nM, W_nM))$$

$$\hookrightarrow Ext^1(\mathbb{1}, W_{-1}\underline{\operatorname{End}}(M))$$

Theorem (Deligne, 2014)

 $\mathfrak{u}^{mot}(M)$ is the smallest submotive of $W_{-1}\underline{\operatorname{End}}(M)$ such that $(\sum_{n} \mathcal{E}_{n}(M))/\mathfrak{u}^{mot}(M)$ splits.

A refinement of Deligne's result

Let

$$J_1^n := \{(i,j) \in \mathbb{Z}^2 : i \le n < j\}$$

$$J_2^n := \{(i,j) \in \mathbb{Z}^2 : i < j\} \setminus J_1^n.$$

Theorem (E. - K. Murty)

Fix n. Suppose $gr^W M$ is semisimple and that M satisfies the following "independence axiom": the two objects

$$\bigoplus_{(i,j)\in J_1^n} \underline{Hom}(gr_j^W M, gr_i^W M) \quad \text{and} \quad \bigoplus_{(i,j)\in J_2^n} \underline{Hom}(gr_j^W M, gr_i^W M)$$

have no nonzero isomorphic subobjects. Then

 $\mathcal{E}_n(M)/\mathfrak{u}^{mot}(M)$

splits.

Theorem (E. - K. Murty)

Let n < 0 and M be a motive such that

$$M/W_nM \simeq 1, \quad Gr_n^WM \neq 0$$

(so that in particular, 0 and n are the highest two weights of M). Suppose moreover that:

- (i) $U^{mot}(W_nM)$ is maximal,
- (ii) $U^{mot}(M/W_{n-1}M)$ is maximal, and

(iii) *M* satisfies the same independence axiom as the previous theorem. Then $U^{mot}(M)$ is large.

Theorem (E. - K. Murty)

Let $-2k and <math>p \neq -k$. Let A be a nonzero simple motive of weight p. Suppose moreover that $Ext^{1}(\mathbb{1}, \mathbb{Q}(k)) = 0$. Then there is a bijection

the collection of objects Mthe collection of compatiblewith $gr^W M \simeq \mathbb{Q}(k) \oplus A \oplus \mathbb{1} \longrightarrow$ pairs of nonsplit extentions inand max. $U^{mot}(M)$, up to $Ext^1(A, \mathbb{Q}(k)) \times Ext^1(\mathbb{1}, A)$,isomorphismup to equivalence,

which assigns to the isomorphism class of an object M the equivalence class of the compatible pairs to which M is attached. If we omit the condition $\text{Ext}^1(\mathbb{1}, \mathbb{Q}(k)) = 0$, this map is well-defined and surjective.

< □ > < 同 > < 回 > < 回 > < 回 >