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ABSTRACT. We prove that B. Harris’ harmonic volume of the Fermat curve of degree n is of infinite
order if n has a prime divisor greater than 7. The statement is equivalent to the statement that the
Griffiths’ Abel-Jacobi image of the Ceresa cycle of such a curve is of infinite order for every choice of
base point. In particular, these cycles are of infinite order modulo rational equivalence.

1. INTRODUCTION

Let X be a smooth projective curve over C. The harmonic volume of X , originally defined
and studied by B. Harris in [Ha83a], is an invariant of the curve that is closely related to its Ceresa
cycles. Let H1

Z = H1(X,Z) and denote the kernel of the cup product

H1
Z ⊗H1

Z −→ H2(X,Z)

by (H1
Z ⊗H1

Z)′. Given e ∈ X , the pointed harmonic volume of X with base point e is a homomor-
phism

Ie : H1
Z ⊗ (H1

Z ⊗H1
Z)′ −→ R/Z

defined using Chen’s iterated integrals as follows: given harmonic 1-forms η1, η2, η3 on X with
integral periods and such that η2 ∧ η3 is exact, set

(1) Ie([η1]⊗ [η2]⊗ [η3]) =

∫
γ1

η2η3 + ν (mod Z),

where γ1 is a loop based at e whose homology class is Poincaré dual to [η1], and ν is a smooth form
onX satisfying the equation η2∧η3+dν = 0, living in the spaceH⊥ of differential forms orthogonal
to harmonic forms with respect to the inner product defined using the Hodge star operator.

Let Jac be the Jacobian of X . Let Xe be the image of X under the Albanese map X −→ Jac
with base point e andX−e = (−1)∗Xe. Harris showed that (after suitable identifications, see Section
4.3) the pointed harmonic volume is related to the Ceresa cycle Xe − X−e on the Jacobian via the
formula

2Ie = AJ(Xe −X−e ),

where AJ is (Griffiths’) Abel-Jacobi map. Later Pulte [Pu88] further studied the pointed harmonic
volume and reinterpreted the work of Harris in the framework of Hain’s mixed Hodge structure
on the space of quadratic iterated integrals on the curve X .

The pointed harmonic volume depends on the choice of the base point e. However, Harris
showed in [Ha83a] that a certain restriction of Ie, namely its restriction to the preimage of the
primitive cohomology under the natural surjection

H1
Z ⊗ (H1

Z ⊗H1
Z)′ −→

∧3
H1

Z
∼= H3(Jac,Z),

is indeed independent of the base point. This restriction is called the harmonic volume of X .
The connection between the harmonic volume and Ceresa cycles was exploited in [Ha83b] to

prove that the Ceresa cycle of the Fermat curve of degree 4 (and hence a multiple of 4) is alge-
braically nontrivial. This was done by approximating of a certain value of the harmonic volume,
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showing that it was not integral. The calculation also showed that the harmonic volume of such a
Fermat curve must have a large order, if finite at all. The purpose of this note is to combine results
of Pulte [Pu88], Kaenders [Ka01], and Darmon, Rotger, and Sols [DRS12] on the geometry and
arithmetic of the mixed Hodge structure on the space of quadratic iterated integrals on a curve
together with a theorem of Gross and Rohrlich [GR78] to show the following:

Theorem 1. Let n be an integer divisible by a prime greater than 7. Then the harmonic volume of
the Fermat curve F (n) of degree n has infinite order.

The statement is equivalent to the statement that for a Fermat curve as above, for every choice
of base point, the image of the Ceresa cycle under the Abel-Jacobi map is of infinite order.

A few words on some other prior related work are in order. A detailed account of Harris’ proof
of algebraic nontriviality of the Ceresa cycle of F (4) can be found in [Ha04] (among other things).
Shortly after Harris’ original proof, Bloch used the étale Abel-Jacobi map in [Bl84] to show that the
Ceresa cycle of F (4) is of infinite order modulo algebraic equivalence. More recently, using Harris’
method, Otsubo [Ot12] and Tadokoro (see [Ta16] and references therein) have obtained some other
results on nontriviality of the Ceresa cycles of Fermat curves and their quotients modulo algebraic
equivalence. Roughly speaking, in these works, one finds a sufficient condition for nontriviality
with respect to algebraic equivalence in terms of non-integrality of certain values of the harmonic
volume. These values can be expressed in term of special values of generalized hypergeometric
functions, and their non-integrality can be easily verified numerically for an explicit given degree
(Otsubo verifies this for F (n) with n ≤ 1000). One also obtains sufficient conditions for the Ceresa
cycle to be of infinite order modulo algebraic equivalence, but these conditions cannot be verified
numerically and hence are harder to use. While Theorem 1 does not say anything about whether
the Ceresa cycles of the Fermat curves in question are nontrivial modulo algebraic equivalence, it
does imply that they are of infinite order modulo rational equivalence (i.e. in the Chow group).
To our knowledge, this statement was not known until now for many of the curves in question.
The key additional ingredient is the realization that Gross-Rohrlich’s points of infinite order on
the Jacobians of Fermat curves of prime degree > 7 can be obtained from Darmon-Rotger-Sols’
construction of rational points on the Jacobian using the mixed Hodge structure on the space of
quadratic iterated integrals on a punctured curve.

Below, we first fix some notation. Then we briefly recall some facts and make some observa-
tions about extensions of mixed Hodge structures. In Section 4 we recall some results regarding an
extension of mixed Hodge structures which arises from the space of quadratic iterated integrals on
a curve, and set the stage for the proof of Theorem 1. We will then complete the proof in the final
section.

Acknowledgement. We would like to thank B. Harris for his informative comments on a
draft of this article. We would also like to thank the anonymous referees for a careful reading of
the paper and their comments, which helped improve the exposition of the paper.

2. NOTATION

All integral mixed Hodge structures are assumed to have free underlying Z-modules. We de-
note the category of integral (resp. rational) mixed Hodge structures byMHS(Z) (resp. MHS(Q)).
With the exception of Z(n) and Q(n) (which are, respectively, the integral and rational Hodge
structures of weight −2n on Z and Q), we use the same notation for an object of MHS(Z) and
its forgetful image in MHS(Q). For any integral (resp. rational) mixed Hodge structure H , as
usual, H(n) denotes H ⊗ Z(n) (resp. H ⊗ Q(n)) and H∨ denotes the dual of H . By ExtMHS(Z)

and ExtMHS(Q) we mean the Yoneda extension (Ext1) groups in the subscript categories. If the
category is clear from the context, we may drop the subscript from the notation. Given an integral
Hodge structure H , we denote the underlying Z-module (resp. rational vector space, etc.) by HZ
(resp. HQ, etc.). Given a pure integral Hodge structure H of odd weight 2k − 1, we denote by JH
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the intermediate Jacobian

JH :=
HC

F kHC +HZ
(this is a compact complex torus). Given an integral or rational pure Hodge structure of weight
2k − 1, we denote

JQH :=
HC

F kHC +HQ
.

For H integral, this is JH modded out by its torsion subgroup.
Given any smooth complex variety X , by H i(X) we mean the mixed Hodge structure on the

degree i cohomology of X . When X is projective, the Chow group of i-dimensional algebraic
cycles on X (modulo rational equivalence) is denoted by CHi(X). We write CHhom

i (X) for the
homologically trivial subgroup of CHi(X). One has the (Griffith’s) Abel-Jacobi map

CHhom
i (X) −→ J(H2i+1(X)∨)

defined by Z 7→
∫
C , where C is an integral topological chain whose boundary is Z. (See [Vo02], for

instance. Note that throughout the paper, Abel-Jacobi maps are all “homological”, that is, without
applying Poincaré duality to go from J(H2i+1(X)∨) to JH2 dim(X)−2i−1(X).)

3. REMARKS ON EXTENSIONS OF MIXED HODGE STRUCTURES

Let us recall a few facts about extensions of mixed Hodge structures and make some easy
observations. Let A be a pure integral Hodge structure of weight 1.

3.1. There are canonical isomorphisms (functorial in A)

(2) Ext(A,Z(0)) ∼= JA∨ ∼= Hom(AZ,R/Z).

The first isomorphism is due to Carlson ([Ca80]); given an extension class E given by

0 −→ Z(0) −→ E −→ A −→ 0,

the element of JA∨ corresponding to E is the class of r ◦ s, where s is a section of the surjec-
tion EC −→ AC compatible with the Hodge filtrations, and r is a retraction of the injection C =
Z(0)C −→ EC defined over Z (i.e. sending EZ to Z). As for the second isomorphism in (2), it is
easy to see that any element of JA∨ has a representative defined over R (i.e. that restricts to a map
in AR

∨). One simply sends [f ] for a functional f ∈ AC
∨ defined over R, to the restriction of f to AZ

composed with the quotient map R −→ R/Z. (See Lemma 3.5 of [Pu88].)
Similarly, there are canonical isomorphisms

(3) Ext(A,Q(0)) ∼= JQA
∨ ∼= Hom(AZ,R/Q)

(the Ext group now in MHS(Q)). The constructions and arguments are similar to the ones in the
integral case.

3.2. One has a commutative diagram

(4)

Ext(A,Z(0)) ∼= JA∨ ∼= Hom(AZ,R/Z)y y y
Ext(A,Q(0)) ∼= JQA

∨ ∼= Hom(AZ,R/Q),

where the horizontal isomorphisms are as in (2) and (3), and the vertical maps are the obvious
ones: the map on the left is given by the forgetful functor MHS(Z) −→ MHS(Q), the map in
the middle is the quotient map, and the one on the right is composition with the quotient map
R/Z −→ R/Q. Note that the vertical maps on the right have kernels equal to the torsion subgroups
of their domains. It follows that the same is true for the vertical map on the left. In particular, an
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extension in Ext(A,Z(0)) is torsion if and only if its image in Ext(A,Q(0)) is zero (i.e. it splits as
an extension of rational mixed Hodge structures).

4. ALGEBRAIC CYCLES AND HODGE THEORY OF QUADRATIC ITERATED INTEGRALS ON A CURVE

The goal of this section is to set the stage for the proof of Theorem 1 and review certain results
from [Ha83a], [Pu88], [Ka01], and [DRS12]. Since the discussion of this section is not specific to
Fermat curves, we shall work with a general smooth projective curve of positive genus.

4.1. Let X be a smooth complex projective curve of genus g > 0, and∞, e ∈ X(C) distinct points.
Set U = X − {∞}. We shall identify H1(X) and H1(U) via the map induced by the inclusion
U ⊂ X , and simply write H1 for them. Let L2(X, e) (resp. L2(U, e)) be Hain’s mixed Hodge
structure with the underlying Z-module (

I

I3

)∨
,

where I is the kernel of the map Z[π1(X, e)] −→ Z (resp. Z[π1(U, e)] −→ Z) sending elements
of the fundamental group to 1. We refer the reader to [Pu88], [Ka01], or [DRS12] for a detailed
discussion of L2(X, e) and L2(U, e). The general construction of the mixed Hodge structure on the
fundamental group ring of a smooth complex variety modded out by powers of the augmentation
ideal (or its dual) can be found in [Ha87]. Here we shall take the mixed Hodge structures L2(X, e)
and L2(U, e) as black boxes, recalling only certain facts about them that are necessary to give the
proof of Theorem 1.

Let (H1 ⊗H1)′ denote the kernel of the cup product map

H1 ⊗H1 −→ H2(X).

One has a commutative diagram of mixed Hodge structures with exact rows:

(5)
0 −→ H1 −→ L2(X, e) −→ (H1 ⊗H1)′ −→ 0

= ∩ ∩
0 −→ H1 −→ L2(U, e) −→ H1 ⊗H1 −→ 0.

(See [Pu88] and [DRS12], for instance.) The middle vertical inclusion is induced by the inclusion
U ⊂ X , and the injective horizontal arrows are the duals of the natural surjections

I

I3
−→ I

I2
∼= (H1

Z)∨.

The bottom surjective horizontal arrow is the map

L2(U, e) −→ H1 ⊗H1

which sends f : I −→ Z vanishing on I3 (where I is the augmentation ideal for U ) to the element
of

H1
Z ⊗H1

Z
∼=
(
H1(U,Z)⊗H1(U,Z)

)
∨

given by
[γ1]⊗ [γ2] 7→ f((γ1 − 1)(γ2 − 1)).

(Here γi is an element of π1(U, e). This map is indeed well-defined.)
We refer to the extension classes given by the sequences in the top and bottom rows of (5)

respectively by Ee and E∞e . Thus Ee is an element of

ExtMHS(Z)((H
1 ⊗H1)′, H1) ∼= Ext((H1)∨⊗ (H1 ⊗H1)′,Z(0))

(∗)∼= Ext(H1(1)⊗ (H1 ⊗H1)′,Z(0))

and E∞e is an element of

ExtMHS(Z)(H
1 ⊗H1, H1) ∼= Ext((H1)∨⊗H1 ⊗H1,Z(0))

(∗)∼= Ext(H1(1)⊗H1 ⊗H1,Z(0)),
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where the isomorphisms (∗) are induced by Poincare duality H1(1)
'−→ (H1)∨ defined by [ω] 7→∫

X

ω ∧ − (with ω a closed smooth 1-form on X). It is clear that Ee is the restriction of E∞e to (H1 ⊗

H1)′ ⊂ H1 ⊗H1 (i.e. the pullback of E∞e along the inclusion map (H1 ⊗H1)′ −→ H1 ⊗H1).

4.2. The Hodge structure (H1)⊗3 can be decomposed in the category of rational Hodge structures
as follows. Let ξ∆ be the H1 ⊗H1 Künneth component of the cohomology class of the diagonal of
X (in CH1(X ×X)). Then

H1 ⊗H1 = Qξ∆ ⊕ (H1 ⊗H1)′,

so that

H1 ⊗H1 ⊗H1 = H1 ⊗ ξ∆ ⊕ H1 ⊗ (H1 ⊗H1)′.

To decompose the second summand, consider the obvious map

(6) φ : H1 ⊗ (H1 ⊗H1)′ −→
∧3

H1

(obtained by restricting the natural quotient map (H1)⊗3 −→
∧3H1). This is a surjective mor-

phism of Hodge structures (see Lemma 4.7 of [Pu88] for surjectivity). Since the Mumford-Tate
group of H1 is reductive, φ admits a section σ in the category of rational Hodge structures, and we
have

H1 ⊗ (H1 ⊗H1)′ = ker(φ) ⊕ σ(
∧3

H1)

(the second summand being a copy of
∧3H1). Finally, identify the cohomology of the Jacobian

variety Jac with the exterior algebra on H1. Let ξ∆ be the image of ξ∆ in
∧2H1. Then ξ∆ is an

integral Kähler class of Jac, giving rise to the Lefschetz decomposition on H3(Jac) =
∧3H1:∧3

H1 = H1 ∧ ξ∆ ⊕
( ∧3

H1
)
prim

,

where the second summand (the primitive part) is the kernel of the map
∧3H1 −→

∧2g−1H1

given by wedging by ξg−2
∆ . To summarize, we have

(7) H1 ⊗H1 ⊗H1 = H1 ⊗ ξ∆ ⊕ ker(φ) ⊕ σ(H1 ∧ ξ∆) ⊕ σ(
( ∧3

H1
)
prim

)︸ ︷︷ ︸
H1⊗(H1⊗H1)′

in the category MHS(Q).

4.3. We now consider the restrictions of E∞e to each summand in (7) (twisted by Q(1)). These
restrictions have been studied in [Ha83a], [Pu88], and [Ka01]. We shall recall the results below.

4.3.1. Identify H1(1)⊗ ξ∆ with H1 via the isomorphism H1 −→ H1⊗ ξ∆(1) sending ω 7→ ω⊗ ξ∆.
We have

(8) Ext(H1,Q(0)) ∼= JQ(H1)∨ ∼= J(H1)∨
/

torsion
Abel-Jacobi∼= CHhom

0 (X)
/

torsion.

By Theorem 1.2 of [Ka01] (and in view of the left square in (4)), under the identifications above, the
restriction of E∞e to H1(1) ⊗ ξ∆ is −2g∞ + 2e + K mod torsion, where K is the canonical divisor
of X . (Note: The restriction of E∞e to H1(1)⊗ ξ∆ is −ke∞ in the notation of Kaenders [Ka01]. Also
note that he considers this restriction in the category MHS(Z).)
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4.3.2. The morphism φ of integral Hodge structures (see (6)) gives an injection

(9) J
(

(
∧3

H1)(1)
)
∨ φ∗−→ J(H1 ⊗ (H1 ⊗H1)′(1))∨ ∼= Ext(H1 ⊗ (H1 ⊗H1)′(1),Z(0)).

Let
AJ : CHhom

1 (Jac) −→ JH3(Jac)∨

be the Abel-Jacobi map. Denote the image of the map X −→ Jac given by x 7→ x − e by Xe, and
as usual, let X−e := (−1)∗Xe. Then a theorem of Harris and Pulte (Theorem 4.10 of [Pu88], also see
Section 3 of [Ha83a]) asserts that

(10) φ∗ ◦AJ(Xe −X−e ) = 2Ee.
(Note that for a pure integral Hodge structureA of odd weight, JA = J(A(1)).) The exact sequence

0 −→ ker(φ)(1) −→ H1 ⊗ (H1 ⊗H1)′(1)
φ−→ (

∧3
H1)(1) −→ 0

gives an exact sequence

0 −→ Ext((
∧3

H1)(1),Z(0)) −→ Ext(H1 ⊗ (H1 ⊗H1)′(1),Z(0)) −→ Ext(ker(φ)(1),Z(0)) −→ 0.

By the theorem of Harris and Pulte (and functoriality of Carlson’s isomorphism), we see that in
the category of integral mixed Hodge structures, the restriction of 2Ee (= the restriction of 2E∞e ) to
ker(φ)(1) is zero. It follows that the restriction of Ee to ker(φ)(1) is zero in MHS(Q) (see Section
3.2).

4.3.3. The restriction of Ee (or E∞e ) to σ(H1 ∧ ξ∆)(1) in MHS(Q) can be described as follows.
Identify σ(H1∧ξ∆)(1) withH1 via the isomorphismH1 −→ σ(H1∧ξ∆)(1) sending ω 7→ σ(ω∧ξ∆).
Combining Harris-Pulte’s (10) and Corollary 6.7 of [Pu88], we see that via the identifications given
in (8), the restriction of Ee to σ(H1 ∧ ξ∆)(1) is the point

(2g − 2)e−K ∈ CHhom
0 (X)

/
torsion.

4.3.4. The restriction of Ee to
σ(
( ∧3

H1
)
prim

)(1)

in the category of rational Hodge structures can be thought of as the harmonic volume of X mod
torsion. More precisely, Theorem 3.9 of [Pu88] asserts that the pointed harmonic volume Ie with
base point e (given by (1)) corresponds to the extension Ee under the canonical isomorphisms

Ext(H1 ⊗ (H1 ⊗H1)′(1),Z(0)) ∼= J
(
H1 ⊗ (H1 ⊗H1)′(1))∨ ∼= Hom(H1

Z ⊗ (H1 ⊗H1)′Z,R/Z).

Thus (by functoriality of the isomorphisms in (2)) the harmonic volume I of X , i.e. the restriction
of Ie to

φ−1
(( ∧3

H1
)
prim

)
Z

= φ−1
(( ∧3

H1
C
)
prim

)
∩ (H1

Z ⊗ (H1 ⊗H1)′Z),

corresponds to the restriction of the extension Ee to φ−1
(( ∧3H1

)
prim

)
(1) under the canonical

isomorphisms

Ext(φ−1
( ∧3

H1
)
prim

(1),Z(0)) ∼= J
(
φ−1

(∧3
H1
)
prim

(1)
)∨

∼= Hom(φ−1
(( ∧3

H1
)
prim

)
Z
,R/Z).

In view of Section 3.2, under the identifications

Ext(φ−1
( ∧3

H1
)
prim

(1),Q(0)) ∼= JQ
(
φ−1

(∧3
H1
)
prim

(1)
)∨

∼= Hom(φ−1
(( ∧3

H1
)
prim

)
Z
,R/Q),
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I (mod Q) corresponds to the restriction of Ee to φ−1
(( ∧3H1

)
prim

)
(1) in the category of ratio-

nal Hodge structures. Since

φ−1
(( ∧3

H1
)
prim

)
(1) = ker(φ)(1) ⊕ σ(

( ∧3
H1

)
prim

)(1)

in MHS(Q) and the restriction of Ee to ker(φ)(1) is zero, it follows that I is torsion if and only if
the restriction of Ee to the second summand above is trivial (in MHS(Q)).

Remark. (1) Harris’ original definition of the harmonic volume was by an explicit formula, without
reference to the extension Ee. Pulte then observed the connection between the harmonic volume
and the extension Ee, as described above.

(2) The harmonic volume I is independent of the choice of the base point e (see [Ha83a]).
Combining this with the results of Sections 4.3.4 and 4.3.2 above, we see that if the harmonic
volume of X is of infinite order, then so are Ee (and hence, E∞e ) and AJ(Xe−X−e ) for every choice
of base point e (and every choice of∞).

4.4. We now recall a result of Darmon, Rotger, and Sols [DRS12]. Let Z ∈ CH1(X × X). Let
∆ ∈ CH1(X×X) be the diagonal of X . Set Z12 = Z ·∆, Z1 = Z · (X×{e}), and Z2 = Z · ({e}×X),
considered as elements of CH0(X). Let

PZ = Z12 − Z1 − Z2 − deg(Z12)e+ deg(Z1)e+ deg(Z2)e.

The point PZ ∈ CHhom
0 (X) is related to the extension E∞e as follows. Denote by ξZ the H1 ⊗ H1

Künneth component of the class of Z in H2(X × X). Then pulling back extensions along the
morphism H1 −→ (H1)⊗3(1) defined by ω 7→ ω ⊗ ξZ gives a map

ξ−1
Z : Ext((H1)⊗3(1),Z(0)) −→ Ext(H1,Z(0)) ∼= J(H1)∨

Abel-Jacobi∼= CHhom
0 (X).

By Corollary 2.6 of [DRS12] (also see Proposition 1.4 therein)1, one has

(11) ξ−1
Z (E∞e ) = (

∫
∆

ξZ)(∞− e)− PZ .

5. PROOF OF THEOREM 1

We shall continue to use notation as in the previous section, specializing to X = F (n) the
Fermat curve of degree n, defined in projective coordinates by the equation xn + yn = zn. We
take e and∞ to be two cusps (points satisfying xyz = 0). Recall that any point on the Jacobian of
F (n) which is supported on the set of cusps is torsion (see [Ro77]). Hence, both K − (2g − 2)e and
−2g∞+2e+K are torsion points on the Jacobian. By the results recalled in Sections 4.3.1 and 4.3.3,
the restrictions of E∞e in the category MHS(Q) to the summands H1⊗ ξ∆(1) and σ(H1 ∧ ξ∆)(1) of
(H1)⊗3(1) are trivial. Combining with the results of Sections 4.3.2 and 4.3.4 and the decomposition
(7), we see that the following statements are equivalent:

- The extension E∞e is trivial in MHS(Q) (or is torsion in MHS(Z)).
- The extension Ee is trivial in MHS(Q).
- The Abel-Jacobi image of F (n)e − F (n)−e is torsion.
- The harmonic volume of F (n) is torsion.

Thus to establish Theorem 1, it is enough to show that E∞e is not torsion in MHS(Z) for the triple
(F (n), e,∞) if n has a prime divisor > 7 and e and∞ are cusp points.

1Note that there is a typo in the definition of PZ in Eq. (45) of [DRS12]; see the proof of Lemma 2.1 in the same
reference.
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Suppose n = p is an odd prime number (the case of composite degree follows easily from this,
see below). Let Z be the graph of the automorphism α of F (p) sending

(x, y, z) 7→ (−y, z, x).

This automorphism has two fixed points, namely

Q = (η, η−1, 1) and Q = (η−1, η, 1),

where η is a primitive sixth root of unity. Thus (with notation as in Section 4.4)

PZ = (Q+Q− 2e)− (α(e) + α−1(e)− 2e).

The point α(e) + α−1(e) − 2e of the Jacobian of F (p) is supported on the cusps, hence is a torsion
point. By a theorem of Gross and Rohrlich (Theorem 2.1 of [GR78]), for p > 7 the pointQ+Q−2e is
of infinite order. Thus PZ is a point of infinite order on the Jacobian of F (p). Since∞− e is torsion
(as both e and ∞ are cusp points), it follows from (11) that E∞e is of infinite order in MHS(Z),
completing the proof of Theorem 1 for the case where the degree is prime.

As for the case of composite degree, suppose n is divisible by a prime number p > 7. By
functoriality of Abel-Jacobi maps with respect to pushforwards along morphisms, the map

f : F (n) −→ F (p) (x, y, z) 7→ (xn/p, yn/p, zn/p)

gives rise to a commutative diagram

CHhom
1 (Jac(F (n)))

f∗−→ CHhom
1 (Jac(F (p)))y y

J
( ∧3H1(F (n))

)
∨ −→ J

( ∧3H1(F (p))
)
∨,

where the vertical arrows are Abel-Jacobi maps and the horizontal arrows are induced by the
pushforward map Jac(F (n)) −→ Jac(F (p)). Take e to be a cusp of F (n) and let e′ = f(e). Then
f∗(F (n)e−F (n)−e ) = (n/p)2(F (p)e′−F (p)−e′). SinceAJ(F (p)e′−F (p)−e′) has infinite order, the same
is true for AJ(F (n)e − F (n)−e ). Hence the harmonic volume of F (n) is of infinite order.
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(1984): 94-108

[Ca80] J. A. Carlson, Extensions of mixed Hodge structures, Journées de Géometrie Algébrique d’Angers, Juillet
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