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Abstract. Grothendieck’s theory of blended extensions (extensions panachées) gives a natural
framework to study 3-step filtrations in abelian categories. We give a generalization of this
theory that is suitable for filtrations with an arbitrary finite number of steps. We use this
generalization to study two natural classification problems for objects with a fixed associated
graded in a filtered tannakian category over a field of characteristic zero. We then give an
application to the study of mixed motives with a given associated graded and maximal unipotent
radicals of motivic Galois groups. We prove a homological classification result for such motives
when the given associated graded is “graded-independent”, a condition defined in the paper.
The special case of this result for motives with 3 weights was proved with K. Murty in [22]
under some extra hypotheses. The paper also includes some discussions on periods.
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1. Introduction

1.1. About this paper. Let T be a tannakian category over a field of characteristic zero,
equipped with a weight filtration W• similar to the weight filtration on the category of rational
mixed Hodge structures or any reasonable tannakian category of mixed motives over a field of
characteristic zero. That is, W• is indexed by Z, functorial, exact, increasing, finite on every
object, and compatible with the tensor structure. Consider a graded object

A =

k⊕
r=1

Ar,

where the Ar are pure and in an increasing order of weights. One may consider the following
two classification problems:

(1) Classify the equivalence classes of all pairs (X,φ) of an object X of T whose associated
graded

GrWX =
⊕
n

WnX/Wn−1X

is isomorphic to A, and an isomorphism φ : GrWX → A. Here, the equivalence relation
for such pairs is defined as follows: two pairs (X,φ) and (X ′, φ′) are considered equivalent
if there exists an isomorphism f : X → X ′ such that φ′ ◦GrW f = φ.

(2) Classify, up to isomorphism in T, all objects X whose associated graded GrWX is
isomorphic to A. Note that the data of a choice of isomorphism GrWX → A is not
recorded here at all.

In general, the group

Aut(A) =
∏
r

Aut(Ar)

acts on the collection of equivalence classes of pairs (X,φ) as in (1), and the orbits of this action
will be in bijection with the collection of isomorphism classes of X as in (2).

When k = 2 and A = A1 ⊕ A2, the homological concept that classifies the pairs (X,φ) up
to equivalence of such pairs is the Ext group Ext1(A2, A1). As for the isomorphism classes of
X, the answer is given by the quotient of Ext1(A2, A1) by the group

Aut(A1)×Aut(A2),

where the actions of automorphisms of A1 and A2 on extension classes is by pushforward and
pullback.

When k = 3, the homological concept related to problems (1) and (2) is the concept of a
blended extension1, introduced by Grothendieck in SGA 7.I [27, §9.3] to study 3-step filtrations.
A nice detailed discussion of the relation between problem (1) in the case k = 3 and blended
extensions can be found in the appendix of the work [36] of Ramis, Sauloy and Zhang.

The first main objective of the present paper is to give a new approach towards problems (1)
and (2) for an arbitrary k. We introduce a new concept, which we call a generalized extension,
that is a generalization of the notion of a blended extension and provides a natural homological
framework for the study of problems (1) and (2). This concept naturally leads to an inductive
approach (namely, induction on the level) towards the problems that seems more interesting and
powerful than the more obvious approach of induction on the number of weights.

The other main objective of the paper, which was our original motivation for the work, is to
consider the problem of classifying the isomorphism classes of motives X with associated graded

1The original French term for the concept is extension panachée. The English translation to the term blended
extension, which we first found in [9], is attributed by Bertrand to L. Breen.
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isomorphic to a given semisimple motive A and with maximal unipotent radicals of motivic
Galois groups. By maximality of the unipotent radical here we mean that the Lie algebra of the
unipotent radical of the motivic Galois group of X is equal to W−1Hom(X,X), where Hom is
the internal Hom (that is, the unipotent radical is as large as it can be under the constraints
imposed on it by the weight filtration). The interest in motives with maximal unipotent radicals
is inspired by Grothendieck’s period conjecture, which predicts that the transcendence degree
of the field generated by the periods of any motive over Q should be equal to the dimension of
the motivic Galois group of the motive. See André’s letter to Bertolin published at the end of
[8] for more about this deep conjecture, including some very interesting remarks on the history
of it. It would follow from this conjecture that among motives over Q with the same associated
graded, the field generated by the periods of a motive with a maximal unipotent radical should
have the largest transcendence degree.

When A satisfies a certain property (what we call graded-independence), we give a partic-
ularly nice homological answer to the classification problem of motives with associated graded
isomorphic to A and maximal unipotent radicals. The special case of this result for when
A = A1 ⊕ A2 ⊕ A3 with the Ar pure and in an increasing order of weights, A3 = 1 and
Ext1(1, A1) = 0 was proved with K. Murty in [22].

As an example that illustrates the result beyond the case with 3 weights, in the final section
of the paper we give a classification of graded-independent 4-dimensional mixed Tate motives
over Q with 4 weights and maximal unipotent radicals. This builds on the discussion of the
3-dimensional case in [22] and raises some interesting questions about periods.

1.2. A more detailed overview of the paper and summary of the main results.

1.2.1. Contents of §3: Classification of objects in a filtered tannakian category with a given
associated graded. Let T be a filtered tannakian category over a field of characteristic zero, i.e.
a neutral tannakian2 category T over a field of characteristic zero, equipped with a filtration
W• satisfying similar properties to the weight filtration on mixed Hodge structures, i.e. W• is
indexed by Z, functorial, exact, increasing, finite on every object, and it respects the tensor
structure. This means that for every integer n we have an exact linear functor Wn : T → T
such that for every object X of T we have

Wn−1X ⊂ WnX (∀n)

WnX = 0 (∀n� 0)

WnX = X (∀n� 0),

and such that the inclusions WnX ⊂ X for various X give a morphism of functors from Wn to
the identity. Compatibility with the tensor structure means that for every objects X and Y and
every n,

Wn(X ⊗ Y ) =
∑
p+q=n

Wp(X)⊗Wq(Y ).

We will refer to W• as the weight filtration. Adopting the terminology of mixed Hodge structures
(or mixed motives), an object X will be called pure if there is an integer n such that Wn−1X = 0
and WnX = X. If X is nonzero and pure, there is a unique such an integer, which is called the
weight of X.

Fix nonzero pure objects A1, . . . , Ak of increasing weights p1 < · · · < pk, respectively. Set
A to be the direct sum of the Ar over 1 ≤ r ≤ k. We are interested in objects X of T such that
GrWX is isomorphic to A. We denote the set of isomorphism classes of such X by S(A), and

2We will freely use the language of of tannakian categories. The reader can refer to [17] for the basic theory
of tannakian categories.
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the set of equivalence classes of pairs (X,φ) as described in problem (1) earlier by S′(A). As a
minor detail, we note that since T is tannakian, S(A) and S′(A) are indeed sets (rather than
proper classes).

The classification problem for S′(A) has been considered previously in the setting of dif-
ference modules over difference rings by Ramis, Salouy and Zhang [36] and in the setting of
real mixed Hodge structures in Ferrario’s PhD thesis3 [24]. In the former setting, Ramis et al
show that S′(A) is actually a scheme. The study of S′(A) in the latter setting leads Ferrario to
obtains some interesting results on a complex analogue of Grothendieck’s section conjecture. In
both works, the authors study S′(A) by an inductive approach on the number of weights. We
will say a few more words about this approach later in this Introduction.

The goal of §3 of the present paper is to study S′(A) and S(A) in the general setting of an
arbitrary T by a different approach, which has better naturalness properties than the approach
of induction on the number of weights. We should point out that we find the classification
problem for S(A) more interesting, even though one sometimes prefers to work with S′(A)
because of its potential for better moduli properties (as the work [36] in the setting of difference
modules illustrates). Note that in passing from S′(A) to S(A) we do not content ourselves with
a cursory description of S(A) as S′(A) modded out by the obvious action of Aut(A) (see §3.1
for more details on this action). In fact, one of the advantages of the approach proposed in
this paper is that it allows us to trace this action more explicitly, resulting in a particularly
simplified outcome in the important totally nonsplit case (see below).

Let us first discuss the case k = 3 in more details. What we will say here is a special case
of what will be proved in the case of arbitrary k ≥ 3. Given an object X of T with

GrWX ' A = A1 ⊕A2 ⊕A3

where Ar is nonzero pure of weight pr and p1 < p2 < p3, set Xr := WprX so that the Xr form
a 3-step filtration. Choosing an isomorphism φ : GrWX → A we obtain a blended extension

(1)

0 0

0 A1 X2 A2 0

0 A1 X X/X1 0

A3 A3

0 0

with obvious arrows. It is easy to see that by sending the equivalence class of (X,φ) to the
classes of the extensions of the top row and the right column we obtain a (well-defined) map

(2) S′(A)→ Ext1(A2, A1)× Ext1(A3, A2).

Given N∈ Ext1(A3, A2) and L∈ Ext1(A2, A1), after choosing representative extensions for N

and L denote the set of equivalence classes of blended extensions of N by L with respect to the

3I thank Peter Jossen for bringing this to my attention. Note that Ferrario calls a pair (X,GrWX
φ,'−−→ A)

an amalgam of A, see Definition 3.2.4 of [24]. Our S′(A) is the same as Am(A) in his notation (= the set of
isomorphism classes of amalgams of A).
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standard equivalence (morphisms between the middle objects that are identity on the top row
and the right column) by Extpan(N,L). In view of the fact that

Hom(A2, A1) ∼= Hom(A3, A2) ∼= 0,

one easily sees that the fiber of the map (2) above (L,N) is in a canonical bijection with
Extpan(N,L). This bijection sends the equivalence class of a pair (X,φ) above (L,N) to the
class of the blended extension (1), with the top row and right column replaced by the chosen
representatives of L and N via the canonical isomorphisms. (Note that since Hom(A2, A1) and
Hom(A3, A2) vanish, there is a canonical isomorphism between any two extensions representing
L or N.) Thanks to the general theory of blended extensions (see §2.1 for a brief review), each
fiber of (2) is thus either empty or a torsor over Ext1(A3, A1). Moreover, one can see that the
torsor structure on the fiber of (2) above (L,N) (when nonempty) is canonical, in the sense that
it does not depend on the choice of representative extensions for N and L. Finally, it follows
also from the theory of blended extensions that the image of (2) is the kernel of the Yoneda
composition

Ext1(A2, A1)× Ext1(A3, A2)→ Ext2(A3, A1).

Let us turn our attention to S(A). The claims that will be made in this discussion will be
proved as we prove the general result for an arbitrary k. The map (2) descends to a map

(3) S(A)→
(
Ext1(A2, A1)× Ext1(A3, A2)

)
/Aut(A),

where the action of Aut(A) is by pushforwards and pullbacks of extensions: an element

(σ1, σ2, σ3) ∈ Aut(A1)×Aut(A2)×Aut(A3) = Aut(A)

sends (L,N) to ((σ1)∗(σ
−1
2 )∗L, (σ2)∗(σ

−1
3 )∗N). The fiber of (3) above the Aut(A)-orbit of

(L,N) is the image in S(A) of the fiber of (2) above (L,N). One can show that there is a group
Γ(L,N) with a natural action on Extpan(N,L) such that the fiber of (3) above the orbit of
(L,N) can be identified with

Extpan(N,L)/Γ(L,N).

Thus the fiber of (3) above the orbit of (L,N) is either empty or the quotient of an Ext1(A3, A1)-
torsor by the group Γ(N,L).

We briefly include the description of Γ(L,N) as it will give some intuition for the picture
for an arbitrary k. Fixing representatives

0 A1 L A2 0

and

0 A2 N A3 0

for L and N, the group Γ(L,N) is the subgroup of Aut(L)×Aut(N) consisting of pairs (σL, σN )
such that the automorphisms of A2 induced by σL and σN coincide. Then the action of Γ(L,N)
on Extpan(N,L) is by twisting the arrows: the class of the blended extension of the left below
is sent to the class of the one on the right (here, σAr is the automorphism of Ar induced by σL
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or σN ):

(4)

0 0

0 A1 L A2 0

0 A1 X N 0

A3 A3

0 0

ι

j

ω

π

0 0

0 A1 L A2 0

0 A1 X N 0.

A3 A3

0 0

ισ−1
L

jσ−1
A1

σA3
ω

σNπ

Note that the arrows on the top row and the right column remain unchanged. The stabilizer
of the class of the blended extension on the left under this action is the image of the natural
injection

Aut(X) ↪→ Aut(L)×Aut(N).

With applications to motives with maximal unipotent radicals in mind, of particular interest
is the case in which the extensions N and L are totally nonsplit (see Definition 2.2.1 to recall
what this means). One can see that in this case, the subgroup Γ(L,N) of Aut(L)× Aut(N) is
just the diagonal copy of the group of nonzero scalar maps, so that Aut(X) ∼= Γ(L,N) for every
X as in the diagram. Thus the action of the group Γ(L,N) on Extpan(N,L) is trivial, so that
in passing from (2) to (3) the fibers above totally nonsplit extension pairs do not change.

The goal of §3 is to establish a generalization of the above picture for the case of an arbitrary
number of steps in the weight filtration. The main result is as follows:

Theorem 1.2.1. Let k ≥ 2. There exist sets S′`(A) for 1 ≤ ` ≤ k − 1 and maps

S′k−1(A)
Θk−1−−−→ S′k−2(A)

Θk−2−−−→ S′k−3(A)→ · · · → S′2(A)
Θ2−−→ S′1(A)

with the following properties:

(a) There are canonical bijections S′k−1(A) ∼= S′(A) and S′1(A) ∼=
∏
r
Ext1(Ar+1, Ar).

(b) Let 2 ≤ ` ≤ k−1. Every nonempty fiber of the map Θ` : S′`(A)→ S′`−1(A) is canonically
a torsor for ∏

r

Ext1(Ar+`, Ar).

(c) Let 2 ≤ ` ≤ k − 1. If the Ext2 groups

Ext2(Ar+`, Ar) (1 ≤ r ≤ k − `)

vanish, then the map Θ` is surjective.
(d) There is a natural action of Aut(A) on each S′`(A) (1 ≤ ` ≤ k − 1) such that setting

S`(A) = S′`(A)/Aut(A), the maps of (a) and (b) descend to maps

Sk−1(A)→ Sk−2(A)→ Sk−3(A)→ · · · → S2(A)→ S1(A)

and

Sk−1(A) ∼= S(A) and S1(A) ∼=
( ∏

r

Ext1(Ar+1, Ar)
)/

Aut(A)



BLENDED EXTENSIONS AND MOTIVES WITH MAXIMAL UNIPOTENT RADICALS 7

(the action of Aut(A) =
∏

1≤j≤k
Aut(Aj) on

∏
r
Ext1(Ar+1, Ar) being by pushforwards and

pullbacks; see §3.5 for more details).
(e) Let 2 ≤ ` ≤ k − 1. Denote the induced map S`(A) → S`−1(A) also by Θ`. For every

ε ∈ S`−1(A) and every ε′ ∈ S′`−1(A) above ε, the fiber Θ−1
` (ε) is the image of the fiber

Θ−1
` (ε′) under the quotient map S′`(A) � S`(A). Moreover, there exists a group Γ(ε′)

acting on the fiber Θ−1
` (ε′) such that the map Θ−1

` (ε′) � Θ−1
` (ε) induces a bijection

Θ−1
` (ε′)/Γ(ε′) ∼= Θ−1

` (ε).

(f) With `, ε and ε′ as in (e), if ε is weakly totally nonsplit (see the comments below), then
the action of Γ(ε′) is trivial and the map S′`(A)→ S`(A) restricts to a bijection

Θ−1
` (ε′) ∼= Θ−1

` (ε).

In particular, when ε is weakly totally nonsplit, then the choice of ε′ above ε makes Θ−1
` (ε)

a torsor for
∏
r
Ext1(Ar+`, Ar).

We now discuss the idea of the construction of the sets S′`(A). Let X be an object of T

whose associated graded is isomorphic to A. Fix an isomorphism GrWX → A to identify the
two. For any integers m,n with 0 ≤ m < n ≤ k, set

Xm,n := WpnX/WpmX,

where we have set p0 = p1 − 1 (so that Wp0X = 0). It is convenient to introduce the following

notation: for m,n with 0 ≤ m < n ≤ k and n−m ≥ 2, let Xh
m,n and Xv

m,n be the following two
extensions with Xm,n in the middle:

Xh
m,n : 0 Am+1 Xm,n Xm+1,n 0

and
Xv
m,n : 0 Xm,n−1 Xm,n An 0

where we have used our fixed isomorphism GrWX → A to identify each Xr−1,r with Ar. Here,
the superscripts h and v stand for horizontal and vertical, respectively; the reason for the choice
of notation is that these will be considered respectively as horizontal and vertical extensions in
diagrams of blended extensions.

The Xm,n fit into the commutative diagram

(5)

A1

X0,2 A2

X0,3 X1,3 A3

X0,4 X1,4 X2,4 A4

...
...

...
...

. . .

X0,k−1 X1,k−1 · · · Xk−3,k−1 Ak−1

X0,k X1,k · · · Xk−3,k Xk−2,k Ak.



8 PAYMAN ESKANDARI

Every Xm,n appears in the diagram exactly once. Each horizontal arrow is surjective and is
given by modding out by the first step in the weight filtration on the domain. The vertical
arrows are all injective and are the inclusions Xm,n−1 ↪→ Xm,n given by the weight filtration.

Roughly speaking, our goal is to obtain all X or (X,GrWX → A) up to the appropriate
equivalence relation. Our approach is to do this step by step as follows: First consider possibil-
ities for (Xr−1,r+1)r (i.e. the first diagonal below the Ar); the object Xr−1,r+1 is an extension
of Ar+1 by Ar. So we must look at ∏

r

EXT (Ar+1, Ar)

up to some equivalence. Here, EXT (Ar+1, Ar) means the collection of extensions of Ar+1 by
Ar before modding out by any equivalence relation. Fixing (Xr−1,r+1)r, we now consider the
possibilities for (Xr−1,r+2)r (i.e. the second diagonal below the Ar. The object Xr−1,r+2 will be
the middle object of the blended extension

0 0

0 Ar Xr−1,r+1 Xr,r+1 0

0 Ar Xr−1,r+2 Xr,r+2 0

Ar+2 Ar+2

0 0

of Xv
r,r+2 by Xh

r−1,r+1. We must thus look at∏
r

EXTPAN(Xv
r,r+2,X

h
r−1,r+1)

up to some equivalence, where following [27] the notation EXTPAN(Xv
r,r+2,X

h
r−1,r+1) means

the collection of all blended extensions of Xv
r,r+2 by Xh

r−1,r+1 (before taking any equivalence

relations into account). We continue in the same fashion until we get to the possibilities for
X0,k = X. Of course, one also has to keep track of the appropriate equivalence relations in each
step.

To make this approach precise, we introduce the notion of a generalized extension of A of
a given level ` (1 ≤ ` ≤ k− 1) (see Definitions 3.2.1 and 3.2.2). A generalized extension of level
` of A is the abstract data of a diagram as in (5), but only with the first ` diagonals below
the Ar included. Thus a generalized extension of level k − 1 is an abstract version of the full
diagram (5). When k = 2, a generalized extension of level 1 of A is simply an extension of A2

by A1. When k = 3, a generalized extension of level 2 of A is simply the data of a blended
extension as in the left diagram of (4), with varying L and N , but A1, A2, A3 fixed. For any k,
the data of a generalized extension of level 1 of A consists of an extension of Ar+1 by Ar for
each 1 ≤ r ≤ k− 1. We highlight that our notion of a generalized extension becomes interesting
when the level is less than k − 1 (as in level k − 1, everything is determined by the bottom left
object).
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The sets S′`(A) and S`(A) in Theorem 1.2.1 are the quotients of the collection of all gen-

eralized extensions of level ` of A by suitable equivalence relations.4 A pair (X,φ) gives rise to
a generalized extension of level k − 1, inducing the identification S′(A) ∼= Sk−1(A). The maps
S′`(A)→ S′`−1(A) and S`(A)→ S`−1(A) are simply induced by truncation.

The weakly5 totally nonsplit case of Theorem 1.2.1 is crucial in §4 (reviewed below shortly),
where we give an application to the classification problem of motives with maximal unipotent
radicals and a fixed associated graded. A weakly totally nonsplit generalized extension of any
level is one in which certain extensions arising from the objects on the lowest diagonal are totally
nonsplit (see Definition 3.9.1). The notion descends to elements of S`(A). The weakly totally
nonsplit elements of

S1(A) ∼=
( ∏

r

Ext1(Ar+1, Ar)
)/

Aut(A)

are simply orbits of tuples of extension classes (Er) in which all the Er are totally nonsplit.
Of course, as mentioned earlier, there is a somewhat more straightforward inductive ap-

proach towards the study of S′(A) and S(A), namely to induct on the number of weights of A.
Setting

A≤` :=
⊕
r≤`

Ar,

the weight filtration gives rise to maps

S′(A) = S′(A≤k)→ S′(A≤k−1)→ · · · → S′(A≤3)→ S′(A≤2)

and

S(A) = S(A≤k)→ S(A≤k−1)→ · · · → S(A≤3)→ S(A≤2).

The fiber of S′(A≤`)→ S′(A≤`−1) above the equivalence class of (X,φ) is in a canonical bijection
with Ext1(A`, X) (this is written in detail in [24], see Proposition 3.2.9 and Remark 3.2.10
therein).

The inductive approach using the level proposed in this paper is not merely more elegant.
The application to mixed motives with maximal unipotent radicals given in §4 illustrates the
usefulness of the approach proposed in this paper. We also draw the reader’s attention to the
better naturalness properties of the approach of induction on the level compared to induction
on the number of weights: Every nonempty fiber of S′`(A) → S′`−1(A) is canonically a torsor

for the same group
∏
r Ext

1(Ar+`, Ar) (compare with the structure of the fibers of S′(A≤`) →
S′(A≤`−1)). Also, the fiber of S(A≤`) → S(A≤`−1) above the isomorphism class of X is in
bijection with

Ext1(A`, X)
/
Aut(X)×Aut(A`),

where the actions of Aut(X) and Aut(A`) are by pushforward and pullback of extensions. Unless
Ext1(A`, X) is trivial, the action of Aut(X)×Aut(A`) on Ext1(A`, X) is never trivial. Compare
this situation with part (f) of Theorem 1.2.1. It would be very interesting to see if the improved
properties of the approach of inducting on the level can lead to new moduli results.

We end our review of §3 by noting that while we have written the article working in the
setting of filtered tannakian categories, under some standard hypotheses, one should be able to
adapt, with some minor adjustments, much of the constructions and results above to the study
of k-step filtrations in tannakian (in fact, aside from the results about the totally nonsplit case,
abelian) categories, even if the filtrations do not come from a functorial filtration. The standard

4This characterization of S`(A) will be equivalent to taking S`(A) to be the quotient of S′`(A) by Aut(A).
5In the later parts of the paper we will also introduce a stronger notion of total nonsplitting for elements of

S`(A).
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hypotheses that one needs are that Hom(Aj , Ai) = 0 whenever i < j. (These hypotheses also
appeared in [11] and [36].)
Map of the proof of Theorem 1.2.1: In §3.1 we briefly recall the definitions of S′(A) and S(A)
and describe the action of Aut(A) on S′(A). The machinery of generalized extensions of A of a
given level is developed in §3.2 - §3.3. This is used in §3.4 to define the sets S′`(A) and S`(A)
and the maps Θ`. The characterization of the sets S′`(A) and S′`(A) in levels ` = 1 and ` = k−1
asserted in parts (a) and (d) of the theorem is established in §3.5. The remaining assertions are
addressed in the remainder of §3. Parts (b) and (c) are the subject of §3.6-3.7. Part (e) is the
subject of §3.8. Finally, in §3.9 we define the notion of weakly totally nonsplit elements of S`(A)
and establish part (f) of the theorem.

1.2.2. Contents of §4: Application to mixed motives with maximal unipotent radicals. We now
assume that T is a filtered tannakian category over a field K of characteristic 0 such that the
pure objects of T are semisimple. The prototype examples are the category of graded-polarizable
mixed Hodge structures over Q and any reasonable tannakian category of mixed motives over
subfields of C, e.g. those of Ayoub [3] and Nori [31], or those of Deligne [18] and Jannsen [32]
defined earlier using realizations, or Voevodsky’s category of mixed Tate motives over a number
field. In fact, inspired by these prototype examples, we refer to the objects of T as motives,
even though aside from §4.5 the discussion is valid in the generality of T described above. We
note that when T is the category of graded-polarizable rational mixed Hodge structures or a
reasonable category of mixed motives over a number field, it is either known or expected that
the Ext2 groups all vanish6, so that the truncation maps in Theorem 1.2.1 are or should be all
surjective.

Let X be a motive. One has a canonical subobject u(X) of W−1End(X) (where End(X)
is the internal Hom Hom(X,X)) associated with the Lie algebra of the unipotent radical of
the tannakian group of X (see §4.1 for a brief review). The object u(X) has been studied in
various contexts by many, including Deligne ([18] and [34, Appendix]), André [1], Bertrand [10],
Bertolin ([6] and [7]), Hardouin ([29] and [30]), Jossen [34], and the author and Murty ([21] and
[22]).

Let us say that u(X) is maximal7, or that X has a maximal unipotent radical, if u(X) =
W−1End(X). It is easy to see that if X has a maximal unipotent radical, then so does each of its
subquotients. In [22, Theorem 6.3.1], with Murty we gave sufficient conditions, which we called
independence axioms, under which (at least in some situations) if WpX and X/Wp−1X have
maximal unipotent radicals, then so does X.8 This allowed us in §6.4-6.7 of the same article to
give a homological classification of the isomorphism classes of motives X with maximal unipotent
radicals and an associated graded isomorphic to

A1 ⊕A2 ⊕ 1,
where A1 and A2 are pure of negative weights p1 < p2, Ext1(1, A1) = 0, and A1 ⊕ A2 ⊕ 1

satisfies the following independence axiom: A2 and Hom(A2, A1) have no nonzero isomorphic
subobjects.

Broadly speaking, an independence axiom in this context is a property that guarantees that
GrWu(X) decomposes according to the decomposition of

GrWW−1End(X) =
⊕
i<j

Hom(GrWj X,Gr
W
i X)

6This is known for the categories of mixed Hodge structures [5] and mixed Tate motives over a number field
[19]. It is expected for the category of mixed motives over a number field. See for instance, [35] or [33].

7In [22] instead of “maximal” we used the word “large” for this.
8The statement becomes false if we remove the independence axioms from the hypotheses; see §6.3 of [22].
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given by a suitable partition of the set {(i, j) ∈ Z2 : i < j}. In [22], our independence axioms
simplified the relationship between the extensions of the form

(6) 0 WpX X X/WpX 0

and u(X), thereby refining a result of Deligne [34, Proposition A.3] regarding this relationship.
This refinement, stated as Corollaries 5.3.2 and 5.3.3 of [22], was one of the main ingredients
of the maximality criterion of [22, Theorem 6.3.1] and hence the classification result mentioned
earlier.

The aim of §4 of the present article is to generalize the classification result of [22, §6]
regarding motives with maximal unipotent radicals from the case of 3 weights to an arbitrary
number of weights. We also no longer need to assume that the graded piece with the highest
weight is 1, or assume anything about the Ext groups between the different graded pieces
(compare with the hypotheses of the classification result in the case of 3 weights in [22]). After
reviewing some background and basic observations, in §4.3 we define the notion of graded-
independence (Definition 4.3.1), which is an independence axiom in the above sense; in fact, in
the case where the associated graded is A1⊕A2⊕1 it becomes exactly the independence axiom
mentioned earlier. We then give a simple criterion for maximality of the unipotent radical of a
graded-independent motive (Theorem 4.3.2): it turns out that a graded-independent motive X
with weights p1 < · · · < pk has a maximal unipotent radical if and only if each of the extensions

0 GrWpj−1
X WpjX/Wpj−2X GrWpjX 0

is totally nonsplit. For context, note that without the graded-independence hypothesis, even
total nonsplitting of all of the extensions

0→WmX/W`X →WnX/W`X →WnX/WmX → 0 (` < m < n)

is not enough to guarantee maximality of u(X) (see Lemma 4.2.1(c)).
Assume as before that A =

⊕
1≤r≤k Ar with the Ar nonzero pure and in an increasing order

of weights. Let S∗(A) be the subset of S(A) consisting of the isomorphism classes of motives
with maximal unipotent radicals. Let S∗1(A) be the subset of

S1(A) ∼=
( ∏

r

Ext1(Ar+1, Ar)
)/

Aut(A)

(see Theorem 1.2.1) consisting of the Aut(A)-orbits of tuples in which every entry is totally
nonsplit. Combining the maximality criterion of Theorem 4.3.2 with the totally nonsplit case of
Theorem 1.2.1, we obtain that when A is graded-independent, there exist naturally defined sets
S∗` (A) for 2 ≤ ` ≤ k − 1 (defined as suitable subsets of the S`(A)) and maps

(7) S∗(A) ∼= S∗k−1(A)→ S∗k−2(A)→ S∗k−3(A)→ · · · → S∗2(A)→ S∗1(A)

(restrictions of the maps of Theorem 1.2.1(d)) such that every nonempty fiber of S∗` (A) →
S∗`−1(A) is a torsor over ∏

r

Ext1(Ar+`, Ar).

If the Ext2 groups of Theorem 1.2.1(c) vanish in T, then the map S∗` (A) → S∗`−1(A) above
is surjective. These are recorded as Theorem 4.4.4 in the text. The special case of this result
when k = 3, A3 = 1 and Ext1(1, A1) = 0 was proved in §6 (see in particular, §6.7) of [22]. (An
interesting feature of the construction is that the fiber of S`(A)→ S`−1(A) above an element of
S∗`−1(A) is entirely in S∗` (A), so that the fibers of (7) have the said algebraic structure.)

To illustrate our results, in [22, §6.8] with Murty we gave a classification of isomorphism
classes of 3-dimensional graded-independent mixed Tate motives over Q with 3 weights and
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maximal unipotent radicals. This classification led to some questions about periods. In §4.5 of
the present paper, as an example to illustrate Theorem 4.4.4 in a case with more than 3 weights
we consider the analogous problem for graded-independent 4-dimensional mixed Tate motives
over Q. More explicitly, we give a classification up to isomorphism of all mixed Tate motives
over Q with maximal unipotent radicals and associated graded isomorphic to

Q(a+ b+ c)⊕Q(a+ b)⊕Q(a)⊕ 1,

where a, b, c are distinct positive integers, c 6= a+ b and a 6= b+ c (the latter two conditions to-
gether with the distinctness of a, b, c being the graded-independence conditions in this situation).
This leads to more questions about periods.

The questions about the periods become particularly interesting when 1 ∈ {a, b, c}, in which
case our motives will have a Kummer motive as a subquotient. Let r be a squarefree integer > 1
and Lr the Kummer motive for log(r), i.e. an extension of 1 by Q(1) with (2πi)−1 log(r) as a
period (geometrically, Lr can be thought of as the relative homology H1(Gm, {1, r})). For each
odd integer n ≥ 3 let Zn be the motive that sits as the middle object of nonsplit extensions of 1
by Q(n) in the category of mixed Tate motives over Q. Then Zn is unique up to isomorphism
and has (2πi)−nζ(n) as a period. In view of the known description of Ext groups in the category
of mixed Tate motives over Q (thanks to Voevodsky and Borel), it follows from the results of
this paper that given any two distinct odd integers b, c ≥ 3, the set of isomorphism classes of
mixed Tate motives X over Q with

(8) GrWX ' Q(1 + b+ c)⊕Q(1 + b)⊕Q(1)⊕ 1

X/W−3X ' Lr, W−1X/W−2−2b−1X ' Zb(1), W−2−2bX ' Zc(1 + b)

is a torsor over

Ext1(1,Q(1 + b+ c)) ' Q.

Moreover, it follows that these motives all have maximal unipotent radicals. Any such X is
unramified outside r, i.e. belongs to the category of mixed Tate motives over Z[1/r], and with
respect to suitable bases of Betti and de Rham realizations has a period matrix of the form

(2πi)−1−b−c (2πi)−1−b−cζ(c) (2πi)−1−b−czc,b (2πi)−1−b−cλc,b,r(X)
(2πi)−1−b (2πi)−1−bζ(b) (2πi)−1−bp′b,r

(2πi)−1 (2πi)−1 log(r)
1

 ,

where the (1,3) and (2,4) entries can be made to be fixed (i.e. independent of X). By the
maximality of its unipotent radical, the motivic Galois group of X has dimension 7. Thus
Grothendieck’s period conjecture predicts that the numbers π, ζ(c), ζ(b), log(r), zc,b, p

′
b,r, and

λc,b,r(X) (for a fixed X) are algebraically independent.
Since W−2X is a mixed Tate motive over Z, by Brown’s work [12] zc,b is in the algebra

generated by multiple zeta values and 1/(2πi). Unless r ∈ {2, 3, 6}, we do not know the nature
of p′b,r ( = the “new period” of the motive M1+b,r in the notation of [22, §6.8]) and λc,b,r(X).

For r ∈ {2, 3, 6}, one has Deligne’s work [20] for the full subcategory of the category of mixed
Tate motives over Q(µr) consisting of the motives unramified outside r. It follows that for these
values of r, the unknown periods are generated by the periods of the fundamental group of
Gm − µr (i.e. generated by 1/(2πi) and cyclotomic multiple zeta values, see [19]). For more
general r, as far as the author knows, little is understood about the periods of the category of
mixed Tate motives over Z[1/r]. We refer the reader to [15, §3] and the references therein (in
particular, [25]) for a nice discussion of this and some conjectures.
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The period λc,b,r(X) offers an extra layer of mystery, thanks to its dependence on X. Since

Ext1(1,Q(1 + b+ c))

is generated by the motive of ζ(1 + b+ c), it will be very interesting to understand if ζ(1 + b+ c)
plays a role in how λc,b,r(X) changes as X varies in a set of representatives of the isomorphism
classes. Is there a relation between these periods that reflects the role that Z1+b+c plays for the
set of isomorphism classes of X via the torsor structure?

In an appendix to the paper, we prove another result about graded-independent motives
with maximal unipotent radicals that is tangential to the rest of the paper, but adds to the dis-
cussion of periods. Going back to the generality of filtered tannakian categories with semisimple
pure objects and assuming A =

⊕
1≤r≤k Ar (the notation as in earlier) is graded-independent,

we show in Theorem A.1 that for any object X for which the unipotent radical is maximal and
GrWX is isomorphic to A, the Ext1 groups

Ext1〈X〉(Aj , Ai) (j − i ≥ 2)

for the tannakian subcategory 〈X〉 generated by X all vanish.
Going back to the example of the isomorphism classes of mixed Tate motives X over Q

satisfying (8), we thus see that in fact, for any such X one has

Ext1〈X〉(1,Q(1 + b+ c)) = 0.

From this one easily concludes (see §4.5) that assuming Grothendieck’s period conjecture, ζ(1 +
b+ c) is algebraically independent from the 7 numbers π, ζ(c), . . . , λc,b,r(X) listed above.

1.3. Conventions. Here we make some comments about the conventions and notations of the
paper. A tannakian category will always be assumed to be a neutral one, i.e. one for which
a fiber functor with values in the base field exists. By the term “filtered tannakian category”
we mean a tannakian category equipped with a filtration W• (called the weight filtration) as
described in the beginning of §1.2.1. By a weight of an object X of a filtered tannakian category
we mean an integer n such that Wn−1X 6= WnX.

For the purposes of this paper it is important to carefully distinguish between some terms
that are sometimes abused in the literature. By an extension we mean a 1-extension, i.e. a
short exact sequence. We will have to distinguish between an extension and the object that sits
in its middle. We will often use upper case English letters in script font (e.g. N, X) for an
extension or its class in the Ext1 group (which of the two is the intended interpretation will be
clear from the context or explicitly mentioned), and use upper case English letters in ordinary
font (e.g. N , X) for objects of T. The notation EXT i(X,Y ) (or simply EXT (X,Y ) when
i = 1) will be used for the collection of i-extensions (or simply, extensions when i = 1) of X by
Y . As usual, Exti(X,Y ) denotes the group (or vector space, since our categories are tannakian)
of the equivalence classes of i-extensions with respect to the standard equivalence given by
isomorphism of i-extensions, i.e. commuting morphisms between the middle objects that induce
identity on X and Y . Note that throughout, our notations for Ext and Hom groups as well as
for the proper classes EXT do not include a mention of the category under consideration (simply
denoting these by Exti, Hom, etc). In a few occasions where the category is not clear from the
context, it will be included in the notation as a subscript (e.g. as in Ext1〈X〉).

Finally, internal Homs are denoted by Hom and our group actions are always designed to
be left actions.

Acknowledgements. I would like to thank Kumar Murty for many helpful conversations. This
work is a natural continuation of the work [22] with him. I would also like to thank Peter Jossen
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and Daniel Bertrand for some helpful correspondences, and in particular for bringing possible
connections to [24] and [4] to my attention.

2. Background

2.1. Recollections on blended extensions. In this section we recall some of the basics of
the theory of blended extensions. The original reference is §9.3 of Grothendieck’s [27]. Another
excellent reference is Bertrand’s [11].

Let T be an abelian category. Let A1, A2, and A3 be objects of T . Fix two extensions

L : 0 A1 L A2 0

N : 0 A2 N A3 0

in T. A blended extension of N by L by definition is a diagram of the form

(9)

0 0

0 A1 L A2 0

0 A1 X N 0

A3 A3

0 0

where the rows and columns are exact. The collection of all blended extensions of N by L is
denoted by EXTPAN(N,L) (for extension panachées). We will refer to the object X in the
diagram as the middle object.

The standard notion of a morphism of blended extensions of N by L is a morphism in T
between the middle objects which induces identity on L and N (and hence on A1, A2, and A3).
Via this notion of morphisms, EXTPAN(N,L) is a category in which every morphism is an
isomorphism (i.e. is a groupoid category). The collection of isomorphism classes of blended
extensions of N by L is denoted by Extpan(N,L).

We recall three basic results about blended extensions here, which together form the con-
tents of Proposition 9.3.8 of [27]. The first is that when Extpan(N,L) is nonempty, it has a
natural structure of a torsor over Ext1(A3, A1).9 The action of Ext1(A3, A1) on Extpan(N,L)
can be described as follows. Denote the map N � A3 in N by ω. Let X ∈ EXTPAN(N,L)
be the blended extension (9). Let Xh ∈ EXT (N,A1) be its second row. Given an element
E∈ EXT (A3, A1), consider the Baer sum

Xh + ω∗E∈ EXT (N,A1).

There is a canonical map from L to the middle object of Xh+ω∗Eand a canonical map from this
middle object to A3, and these make Xh+ω∗E the second row of an element of EXTPAN(N,L).

9In fact, one can do this at the level of the categories and make EXTPAN(N,L) a torsor over EXT (A3, A1).
See page 105 of [27].
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Denote this element by E∗ X (we may call it the translation of X by E). One can check that
the map

EXT (A3, A1)× EXTPAN(N,L)→ EXTPAN(N,L) (E,X) 7→ E∗X

descends to a map

(10) Ext1(A3, A1)× Extpan(N,L)→ Extpan(N,L).

When Extpan(N,L) is nonempty, the map above makes it a torsor over Ext1(A3, A1). We also
use the symbol ∗ for the descended action.

Of course, there is an alternative way to try to define the translation of X by E, namely by
pushing an extension of A3 by A1 forward along the injection A1 ↪→ L in L, and then adding
it in EXT (A3, L) to the first vertical extension in X (in fact, this is the original construction
given in [27]). Bertrand [11, Appendix] has checked that the two constructions coincide after
passing to the level of equivalence classes (10).

For referencing purposes we record the other two basic results as a lemma below. Before
stating the lemma, recall the Yoneda product

EXT (A2, A1)× EXT (A3, A2)→ EXT 2(A3, A1)

given by splicing. With L and N as above, the Yoneda product of L and N is given by

0 A1 L N A3 0

where the maps A1 → L and N → A3 come from L and N, and L → N is the composition of
the map L→ A2 of L with the map A2 → N of N. (See [37, §3].)

Lemma 2.1.1. (a) Given N ∈ EXT (A3, A2) and L ∈ EXT (A2, A1), there exists a blended
extension of N by L if and only if the Yoneda product of L and N vanishes in Ext2(A3, A1).
(b) The automorphism group of a blended extension of N by L is in a canonical bijection with
Hom(A3, A1).

For proofs, see Proposition 9.3.8(a,c) of [27] (or Lemma 6.4.1 of [22] for part (a)). Note
that throughout the paper, we shall only deal with blended extensions for which

Hom(A3, A1) ∼= 0,

so that they always have a trivial automorphism group.
We end this subsection with a remark about various equivalence relations for blended ex-

tensions and an observation. Throughout the paper, by the standard equivalence relation on
blended extensions of Nby L we mean the one considered above (where two blended extensions
are considered equivalent if there exists a morphism between their middle objects that induces
identity on the first rows and second columns), and the notation Extpan(N,L) is always used
in reference to this relation. There are however two coarser equivalence relations that one may
alternatively consider. In the first alternative relation, two blended extensions of N by L are
considered equivalent if there is a morphism between the middle objects that induces morphisms
on the analogous objects of the two diagrams such that the induced morphisms on A1, A2 and
A3 (but not necessarily on L and N) are identity. In the second alternative relation, which is the
coarsest of all three equivalence relations, one declares two blended extensions to be equivalent
if there exists a morphism between the middle objects that induces isomorphisms between the
analogous objects of the two diagrams.

We should note that in the paper, our blended extensions will also always satisfy

(11) Hom(A2, A1) ∼= Hom(A3, A2) ∼= 0.
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In this case, the only automorphism of L (resp. N) that induces identity and A2 and A1 (resp.
A3) is the identity, so that the standard notion of equivalence on EXTPAN(N,L) coincides
with the one only requiring morphisms to be identity on the Ai. Later in the paper, when we
introduce the notion of generalized extensions, the equivalence that requires inducing identity
on the Ai is denoted by ∼′, whereas the one that allows for arbitrary automorphisms of the Ai
is denoted by ∼.10

Finally, we make a further observation about blended extensions in the case where (11)
holds. In general, without assuming (11), thanks to the fact that isomorphisms in EXTPAN(N,L)
are identity on N and L, by sending the isomorphism class of a blended extension to the class
of the second row of a representative we have a well-defined map

−h : Extpan(N,L)→ Ext1(N,A1).

As before, let ω be the map N � A3 in N. Let ι be the map A2 ↪→ N . Given X∈ Extpan(N,L)
and E∈ Ext1(A3, A1), by definition of the torsor structure on Extpan(N,L) we have

(E∗X)h = ω∗E+ Xh.

Thus (E∗X)h = Xh in Ext1(N,A1) if and only if

E∈ ker
(
Ext1(A3, A1)

ω∗−−−→ Ext1(N,A1)
)
= Im

(
Hom(A2, A1)→ Ext1(A3, A1)

)
,

where the latter map is the connecting homomorphism in the long exact sequence obtained by
applying Hom(−, A1) to N. Since the action of Ext1(A3, A1) on Extpan(N,L) is transitive,
we obtain the following statement:

Lemma 2.1.2. Suppose that Hom(A2, A1) ∼= 0. Then the map

Extpan(N,L)→ Ext1(N,A1)

which sends the class of a blended extension to the class of its second row is injective.

2.2. Totally nonsplit extensions. In this subsection we recall the notion of a totally nonsplit
extension. This notion, which as far as the author knows is due to Bertrand [10], will play a
crucial role in §3.9 and §4.

Assume that T is a tannakian category over a field of characteristic zero.

Definition 2.2.1. Let X and Y be objects of T.
(a) An extension or an extension class E of 1 by X is called totally nonsplit if for every proper
subobject X ′ of X the pushforward of E along the quotient map X → X/X ′ is nonsplit.
(b) An extension or an extension class E of Y by X is called totally nonsplit if the extension
class of 1 by Hom(Y,X) corresponding to E under the canonical isomorphism

(12) Ext1(Y,X) ∼= Ext1(1, Hom(Y,X))

is totally nonsplit.

We first make a remark about the special case of the definition about extensions of 1 by X.
In view of the long exact sequence obtained by applying the functor Hom(1,−) to the sequence

0 X ′ X X/X ′ 0,

10To avoid confusion, the reader is warned that in our definition of morphisms of generalized extensions (to
be given in §3.2) we will only require commutativity of diagrams. The morphisms on the Ai will be allowed to
be arbitrary (even zero).
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an extension (or extension class) E of 1 by X is totally nonsplit if and only if for every proper
subobject X ′ of X, the extension class of E is not in the image of the pushforward map

Ext1(1, X ′)→ Ext1(1, X).

We also make a cautionary remark about the general case of the definition, when E is an
extension of Y by X. The reader should keep in mind that in this definition, for E to be totally
nonsplit we need to first consider Eas an extension of 1. The notion would remain the same if we
considered the extension as an extension by 1 (with the statements being dualized). However,
the more naively defined notion in which given an extension E of Y by X one only considers
quotients by subobjects of X and pullbacks to subobjects of Y is not as well behaved. In any
case, we do not work with that weaker notion.

We end this subsection by recalling an important property of totally nonsplit extensions,
which follows immediately from [23, Theorem 1.2].

Lemma 2.2.2. Suppose that T is a filtered tannakian category over a field of characteristic
zero. Let X and Y be two nonzero objects of T. Let E be a totally nonsplit extension of Y by X,
with its middle object denoted by E. Suppose that every weight of X is less than every weight
of Y . Then the only endomorphisms of E are the scalar maps.

3. Objects with a prescribed associated graded

3.1. Two classification problems. From this point on, T is a filtered tannakian category
over a field K of characteristic zero. Let A1, . . . , Ak be nonzero pure objects of T, respectively
of weights p1, . . . , pk with p1 < · · · < pk. Set

A :=
⊕

1≤r≤k
Ar.

In this section we study the sets S(A) and S′(A) introduced in §1.2.1. Let us recall the definitions.

Definition 3.1.1. (a) We denote by S(A) the set of isomorphism classes of objects of T whose
associated graded (with respect to the weight filtration) is isomorphic to A:

S(A) := {X ∈ Obj(T) : GrWX is isomorphic to A}
/

isomorphism in T.

Note that here, we do not keep track of the data of the isomorphisms between the associated
gradeds and A.
(b) We denote by S′(A) the set of equivalence classes of pairs

(X, GrWX
φ,'−−→ A)

of an object X of T whose associated graded is isomorphic to A together with a choice of
an isomorphism φ : GrWX → A. Here, two pairs (X,φ) and (X ′, φ′) are declared to be
equivalent if there exists an isomorphism f : X → X ′ for which we have φ′GrW f = φ, where
GrW f : GrWX → GrWX ′ is the isomorphism induced by f .

The group Aut(A) acts on S′(A) by twisting the isomorphism between the associated graded
and A. More precisely, given a pair (X,φ) as in (b) and σ ∈ Aut(A), we set

σ · (X,φ) = (X,σφ).

This defines an action of Aut(A) on the collection of pairs (X,φ) as in (b) which is easily seen
to descend to an action on S′(A).

There is an obvious surjection

S′(A) � S(A)
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induced by forgetting the data of φ. The reader can easily see that two elements of S′(A) are
mapped to the same element of S(A) if and only if they belong to the same orbit of Aut(A).
For future referencing, we record the conclusion:

Lemma 3.1.2. The natural surjection S′(A) � S(A) induced by (X,φ) 7→ X descends to a
bijection

S′(A)/Aut(A) ∼= S(A).

Our goal in this section is to prove Theorem 1.2.1. As it was explained in §1.2.1, the
constructions rely on the concept of generalized extensions of A of various levels. This concept
is the subject of the next two subsections. The remaining subsections contain the proof of
Theorem 1.2.1. We refer the reader to the end of §1.2.1 for a map of the argument.

3.2. Generalized extensions - Definitions. In this subsection we define our notion of gener-
alized extensions of a given level. This notion will be the key to our approach to the classification
problems of interest in the paper.

From this point on in this section, we fix

A =
⊕

1≤r≤k
Ar

as in §3.1. That is, for each 1 ≤ r ≤ k, the object Ar is nonzero pure of weight pr and
p1 < · · · < pk. For now, we assume k ≥ 2, but the real case of interest is when k ≥ 3.

As mentioned in §1.2.1, given any pair (X,φ) of an object X of T and an isomorphism
φ : GrWX → A, setting Xm,n = WpnX/WpmX for 0 ≤ m < n ≤ k with p0 := p1−1, the natural
inclusions and quotient maps among the Xm,n give rise to the diagram (5). The following
definition, modelled based on this diagram, formalizes the situation.

Definition 3.2.1 (Generalized extensions of level k − 1 of A).
(a) By a generalized extension of level k − 1 of A we mean the data of a collection of objects

(Xm,n)0≤m<n≤k

of T with Xr−1,r = Ar for all 1 ≤ r ≤ k, together with a surjective morphism Xm,n → Xm+1,n

and an injective morphism Xm,n−1 → Xm,n for every m,n in the eligible11 ranges, such that the
following axioms hold:

(i) Every diagram of the form

(13)

Xm,n−1 Xm+1,n−1

Xm,n Xm+1,n

(with the maps as in the given data) commutes.
(ii) The diagram

(14) 0 Xm,n−1 Xm,n An 0

is an exact sequence for every m,n in the eligible range. Here, the morphism Xm,n → An
is the composition

Xm,n � Xm+1,n � Xm+2,n � · · ·� Xn−1,n = An.

11Here and elsewhere throughout, by the adjective eligible in the context of indices we mean the range in which
the indices in question make sense. So here, for instance, we have an injective map Xm,n−1 → Xm,n for every
pair of integers (m,n) with 0 ≤ m < n ≤ k and m < n− 1.
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(b) The collection of all generalized extensions of level k − 1 of A is denoted by Dk−1(A).

The reason for including axiom (ii) in the definition is to make sure that the Xm,n cannot
be larger than what we like. With (ii) included as a requirement, one is guaranteed to also get
exact sequences

0 Am+1 Xm,n Xm+1,n 0

(see Lemma 3.3.1).
Given an object X of T whose associated graded is isomorphic to A, choosing an isomor-

phism φ : GrWX → A to identify the two, the subquotients (Xn/Xm)0≤m<n≤k with Xr = WprX
together with the natural successive inclusion and projection maps between them form a gener-
alized extension of level k − 1 of A. We call this the generalized extension of A associated with
(X,φ) and denote it by ext(X,φ).

In general, a generalized extension of level k − 1 of A can be visualized by a diagram as in
(5). We will simply speak of a generalized extension (Xm,n)0≤m<n≤k, or often merely (Xm,n) or
(X•,•) without including the arrows or range of indices in the notation. For simplicity and to
save space we might sometimes drop the arrows even from our diagrams.

Note that while the definition of a generalized extension (X•,•) only includes maps between
objects in adjacent positions in the diagram, for every pairs (m,n) and (m′, n′) with m′ ≥ m
and n′ ≥ n by composing the morphisms along any path from Xm,n to Xm′,n′ we get a map

Xm,n → Xm′,n′ .

Commutativity of the diagram for (X•,•) guarantees that the outcome does not depend on the
choice of the path.

Example. Let k = 3. Then the data of a generalized extension of level 2 is the same as the data
of a blended extension whose top row is an extension of A2 by A1 and whose right column is an
extension of A3 by A2. Indeed, given a generalized extension (Xm,n) (with 0 ≤ m < n ≤ 3), we
have a blended extension

0 0

0 A1 = X0,1 X0,2 X1,2 = A2 0

0 A1 X0,3 X1,3 0

A3 A3 = X2,3,

0 0

where the maps are all compositions of the structure maps. The passage from blended extensions
to generalized extensions is also clear from this.

Back to working with an arbitrary k, we crucially also need truncated versions of the notion,
which only include the data of the top several (top left to bottom right) diagonals of (5).

Definition 3.2.2 (Generalized extensions of various levels of A).
(a) Let 1 ≤ ` ≤ k − 1. By a generalized extension of level ` of A we mean the data of an
object Xm,n of T for each pair (m,n) of integers with 0 ≤ m < n ≤ k and n−m ≤ `+ 1, with
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Xr−1,r = Ar for all 1 ≤ r ≤ k, together with the data of a surjective morphism Xm,n → Xm+1,n

and an injective morphism Xm,n−1 → Xm,n for every m and n in the eligible range such that
axioms (i) and (ii) of Definition 3.2.1(a) hold.
(b) The collection of all generalized extensions of level ` of A is denoted by D`(A). For conve-
nience, we set Dk′(A) = Dk−1(A) for k′ ≥ k.

Note that this definition agrees with the previous one in level k − 1. We visualize a gener-
alized extension of level ` (with 1 ≤ ` ≤ k − 1) by a truncated version of (5), with ` diagonals
below the diagonal consisting of the Ar.

Example. A generalized extension of level 1 of A can be visualized as a diagram of the form

A1

X0,2 A2

X1,3 A3

. . .
. . .

Xk−3,k−1Ak−1

Xk−2,k Ak

where the arrows, dropped from the writing for convenience, satisfy axiom (ii) of the definition.
This is simply the data of k − 1 extensions

0 Ar Xr−1,r+1 Ar+1 0 (1 ≤ r ≤ k − 1).

Note that these are short exact sequences, rather than elements of Ext1, since we have not yet
introduced any equivalence relations on D1(A).

We make each D`(A) (1 ≤ ` ≤ k− 1) the collection of objects of a category by defining the
notion of morphisms of generalized extensions as follows: Let (X•,•) and (X ′•,•) be generalized
extensions of A of the same level. A morphism of generalized extensions (X•,•) → (X ′•,•) is a
collection of morphisms fm,n : Xm,n → X ′m,n (one for each pair (m,n) in the eligible range) that
commute with the structure morphisms of (X•,•) and (X ′•,•); that is, such that each diagram
below commutes for all eligible (m,n):

(15)

Xm,n Xm+1,n

X ′m,n X ′m+1,n

fm,n fm+1,n

Xm,n−1 Xm,n

X ′m,n−1 X ′m,n

fm,n−1 fm,n

Note that the morphisms

fr−1,r : Ar → Ar

here are not necessarily isomorphisms. With abuse of notation, the category of generalized
extensions of level ` of A is also denoted byD`(A). A morphism (f•,•) inD`(A) is an isomorphism
if and only if all the fm,n are isomorphisms. (It will follow from Lemma 3.3.1 below that (f•,•)
is an isomorphism if and only if every fr−1,r : Ar → Ar is an isomorphism.)

Truncation and cropping functors: One can naturally define two types of forgetful functors be-
tween categories of generalized extensions. The first are the functors

Θ` : D`(A)→ D`−1(A) (2 ≤ ` ≤ k − 1)
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defined when k ≥ 3 as follows: For each `, the functor Θ` merely erases the lowest diagonal of
each generalized extension of level ` (together with the arrows going to and coming from the
lowest diagonal). Its action on morphisms of generalized extensions is by restricting the data to
the part of the diagrams that survive. We refer to the functors Θ` as truncation functors.

The second are the functors that crop diagrams horizontally and vertically to include only
the part between two particular graded pieces of A. Given integers i and j with 0 ≤ i, j ≤ k
and i+ 1 < j, we have a functor

(16) D`(A)→ D`(
⊕
i<r≤j

Ar)

which only keeps the part of diagrams that lie in the intersection of the columns between Ai+1

and Aj inclusively, and the rows between Ai+1 and Aj inclusively. The action on morphisms is
again by restricting the data. We call the second type of functors cropping functors.

3.3. Basic properties of generalized extensions. In this section we gather some basic re-
sults about generalized extensions which will be used in the remainder of the paper. Throughout,
unless otherwise indicated, a generalized extension means a generalized extension of A (with A
as introduced earlier in §3.2). We visualize a generalized extension by a diagram of the form (5)
(with general objects X•,• and arrows that form the data of a generalized extension) or trun-
cated versions of it if the level is < k − 1. The references in the text to “the lowest diagonal”,
“the above and right of an object”, “entry (m,n)”, etc. all refer to this visualization (with the
object at entry (m,n) of (X•,•) being Xm,n).

For any generalized extension (X•,•) of any level, for convenience we set Xr,r = 0 for
0 ≤ r ≤ k. To simplify the writing, as before, if there is no ambiguity we will often simply refer
to “indices in the eligible range” or “eligible indices”; this simply means that the indices are in
the range for which the objects in the equations are available.

Lemma 3.3.1. Let (X•,•) be a generalized extension of any level `.
(a) For every m ≤ r ≤ n in the eligible range (depending on the level), we have

Im(Xm,r ↪→ Xm,n) = WprXm,n.

That is, the weight filtration for each object of the diagram is given by the objects directly above
it. (Note that in particular, the statement asserts that WpnXm,n = Xm,n.)
(b) The isomorphisms

(17) GrWXm,n
∼=

⊕
m<r≤n

Ar

given by

GrWXm,n

(a)∼=
⊕

m<r≤n

Xm,r

Xm,r−1

(14)∼=
⊕

m<r≤n
Ar

for every (m,n) in the eligible range are compatible with the natural injective and surjective
maps. That is, we have commutative diagrams

(18)

GrWXm,n−1 GrWXm,n

⊕
m<r≤n−1

Ar
⊕

m<r≤n
Ar

and

GrWXm,n GrWXm+1,n

⊕
m<r≤n

Ar
⊕

m+1<r≤n
Ar
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in which the top arrows are GrW applied to the structure arrows of (X•,•) and the bottom
arrows are the natural embedding and projection maps. The identifications shown as equality in
the diagrams are given by the isomorphisms (17).
(c) For each m,n in the eligible range, we have an exact sequence

(19) 0 Am+1 Xm,n Xm+1,n 0,

where the morphism Am+1 → Xm,n is the composition

Am+1 = Xm,m+1 ↪→ Xm,m+2 ↪→ Xm,m+3 ↪→ · · · ↪→ Xm,n.

(d) Let (f•,•) : (X•,•)→ (X ′•,•) be a morphism in D`(A). For each eligible (m,n), the canonical
isomorphisms (17) for (X•,•) and (X ′•,•) fit into a commutative diagram

GrWXm,n
⊕

m<r≤n
Ar

GrWX ′m,n
⊕

m<r≤n
Ar.

GrW fm,n (fr−1,r)

Proof. (a) Fixing m, this is seen by induction on n in view of the extension (14). In the induction
step, we first apply the exact functor Wpn−1 to (14). Since Wpn−1An = 0 we get the assertion for
r ≤ n−1. As for when r = n, this follows from exactness of Wpn and the fact that WpnAn = An.
(b) This follows from the construction of the canonical isomorphisms and the commutativity of
the diagram of a generalized extension. We leave the details to the reader.
(c) The exactness of (19) is clear at the first and third object. As for at the middle, from part (a)
we know that Wpm+1Xm,n = Am+1 and Wpm+1Xm+1,n = 0. Applying Wpm+1 to Xm,n � Xm+1,n

we see that Am+1 is in the kernel of Xm,n � Xm+1,n. On the other hand, by part (b) the
dimension of the kernel of Xm,n � Xm+1,n is equal to the dimension of Am+1.
(d) Let m < r ≤ n. By definition of the canonical isomorphism (17) we have a commutative
diagram

Ar

Xm,r GrWprXm,n

where the horizontal surjective arrow is given by Xm,r ↪→ Xm,n (mapping Xm,r isomorphically
to WprXm,n) and then passing to GrWprXm,n, and the slanted surjective arrow is the composition
of the surjective arrows Xm′,r � Xm′+1,r for m ≤ m′ < r − 1. The side donated by equality
is the identification of (17). There is an analogous triangle for (X ′•,•). The two triangle can be
put into a (to be seen to be commutative) diagram:

(20)

Ar

Xm,r GrWprXm,n

Ar

X ′m,r GrWprX
′
m,n

fm,r GrWpr fm,n

where the map Ar → Ar on the top is fr−1,r. The front and back (triangular) faces are
commutative. The rectangular faces on the top left and the bottom are both commutative, the
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former (resp. latter) by compatibility of morphisms of generalized extensions with the surjective
(resp. injective) structure arrows. It follows that the top right face is also commutative. �

Note that in particular, the previous lemma asserts that for every generalized extension
(X•,•) of level k − 1 of A we have

GrWX0,n
∼=
⊕

1≤r≤n
Ar

for all 1 ≤ n ≤ k.
Part (d) of the previous lemma has the following consequence:

Lemma 3.3.2. Let (X•,•) be a generalized extension of level ` of A. The forgetful map

Aut((X•,•))→ Aut(A) =
∏

1≤r≤k
Aut(Ar)

given by (σ•,•) 7→ (σr−1,r) is injective. (That is, every automorphism of (X•,•) is uniquely
determined by its action on A. Of course, the forgetful map above need not be surjective.)

Proof. Suppose (σ•,•) is an automorphism of (X•,•) which is identity on A. Applying Lemma
3.3.1(d) with (X ′•,•) = (X•,•) and (f•,•) = (σ•,•) we obtain that each GrWσm,n and hence σm,n
is identity. �

Before we proceed any further, let us introduce a notation:

Notation 3.3.3. Given a generalized extension (X•,•) of A of any level, we denote the two

extensions (14) and (19) respectively by Xv
m,n and Xh

m,n.

The following two lemmas will be useful in constructing morphisms between generalized
extensions. The first lemma asserts that given two generalized extensions (X•,•) and (X ′•,•) of
the same level, every morphism from an object of (X•,•) to an object of (X ′•,•) at the same entry
extends (or spreads) uniquely to the part of the diagrams to the above and right of that entry.

Lemma 3.3.4. Let (X•,•) and (X ′•,•) be generalized extensions of level ` of A.
(a) Given any i, j in the eligible range with j − i > 1 (so that Xi,j is below the diagonal of the
Ar) and a morphism f : Xi,j → X ′i,j, there exists a unique collection of morphisms

fm,n : Xm,n → X ′m,n (i ≤ m < n ≤ j)
such that fi,j = f and the fm,n commute with the morphisms in (X•,•) and (X ′•,•). (That is,
such that the fm,n give a morphism between the parts of (X•,•) and (X ′•,•) between Ai+1 and Aj.
See (16).)
(b) The extension of f to (fm,n) as above behaves well with respect to compositions: if (X ′′•,•) is
also a generalized extension of level ` of A and f ′ : X ′i,j → X ′′i,j is a morphism, then

(f ′ ◦ f)m,n = f ′m,n ◦ fm,n
for all eligible m,n.

Proof. We may assume that the level is k − 1 and (i, j) = (0, k), as the seemingly more general
statements follow from applying this case to the cropped generalized extensions (cropped in the
sense of (16)).

By Lemma 3.3.1, for any n ≤ k we have WpnX0,k
∼= X0,n and WpnX

′
0,k
∼= X ′0,n (identifica-

tions via the injective structure arrows of the generalized extensions). By functoriality of the
weight filtration, the morphism f restricts to morphisms f0,n : X0,n → X ′0,n compatible with
each other. So far, we have extended f to the first column of the two generalized extensions.
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Assume f has been extended in the desired way to the fm,n for all m < m′. For each eligible
n we have a commutative diagram

0 Am′ Xm′−1,n Xm′,n 0

0 Am′ X ′m′−1,n X ′m′,n 0

fm′−1,m′ fm′−1,n

with rows Xh
m′−1,n and X′hm′−1,n. We thus get a morphism fm′,n : Xm′,n → X ′m′,n making this

diagram commute.
We have extended f to the column of entries (m′, n) (with m′ fixed), and the commutativity

with the surjective arrows from the column for m′−1 to the one for m′ is known by construction.
We have a diagram

Xm′−1,n−1 Xm′,n−1

Xm′−1,n Xm′,n

X ′m′−1,n−1 X ′m′,n−1

X ′m′−1,n X ′m′,n

f

f

where the top (resp. bottom) face is a part of (X•,•) (resp. (X ′•,•)), and the downward maps
are the maps induced by f . We know the top and bottom faces as well as the left, back and
front faces are commutative. In view of the surjectivity of Xm′−1,n−1 � Xm′,n−1 we get the
commutativity of the right face. This completes the proof of the fact that f extends to a
morphism of generalized extensions.

As for uniqueness, the map f0,k determines every map fm,n with 0 ≤ m < n ≤ k because of
the commutativity requirements. Indeed, f0,k determines each f0,n and in turn, f0,n determines
each fm,n by the commutativity of the following two diagrams:

X0,n X0,k

X ′0,n X ′0,k

f0,n f0,k

X0,n Xm,n

X ′0,n X ′m,n

f0,n fm,n

Part (b) is easily seen from the construction of the fm,n given above. �

The next lemma says that morphisms between the lowest diagonals of two generalized
extensions of the same level glue together to give a morphism of generalized extensions if and
only if they agree on the diagonal just above the lowest.

Lemma 3.3.5. Suppose (X•,•) and (X ′•,•) are generalized extensions of level ` of A. Suppose
that for each eligible pair (i, j) with j−i = `+1 (i.e. on the lowest diagonal) we have a morphism
fi,j : Xi,j → X ′i,j. For each such (i, j), let fvi,j−1 and fhi+1,j be the unique morphisms12 fitting in

12That these exist is by Lemma 3.3.1 and functoriality of the weight filtration.
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the commutative diagrams

Xi,j−1 Xi,j

X ′i,j−1 X ′i,j

fvi,j−1 fi,j

Xi,j Xi+1,j

X ′i,j X ′i+1,j .

fi,j fhi+1,j

Then there exists a morphism of generalized extensions (X•,•) → (X ′•,•) extending the given
fi,j from the lowest diagonals to the full diagrams if and only if for every eligible (m,n) with

n−m = ` (i.e. on the diagonal just above the lowest), we have fvm,n = fhm,n. Moreover, when such
an extension exists, it is unique. (In other words, if two morphisms of generalized extensions
agree on the lowest diagonal, then the two morphisms are the same.)

Proof. The uniqueness is immediate from the uniqueness statement in Lemma 3.3.4. That the
given condition is necessary follows from the same result and its proof. The new assertion here
is that the compatibility condition on the diagonal just above the lowest is sufficient for the
morphisms between the lowest diagonals to glue to make a morphism of generalized extensions.

By Lemma 3.3.4 the morphism f0,`+1 extends to the right and top of entry (0, `+1). Assume
that the morphisms on the lowest diagonal glue all the way up to and including the entry (i, j)
on the lowest diagonal, so that for all eligible pairs (m,n) of indices with n ≤ j we already have
morphisms fm,n : Xm,n → X ′m,n commuting with the structure injections and surjections. We
will argue that if j 6= k, we can also glue fi+1,j+1 to the current data.

Consider the map fi+1,j : Xi+1,j → X ′i+1,j (which is already available). Then fi+1,j is

induced by fi,j and hence is fhi+1,j . By Lemma 3.3.4, fi+1,j+1 extends uniquely to a morphism
of generalized extensions between the parts of the diagrams above and to the right of entry
(i + 1, j + 1), in particular, inducing the map fvi+1,j : Xi+1,j → X ′i+1,j . By the compatibility

condition, fhi+1,j = fvi+1,j . Applying the uniqueness statement of Lemma 3.3.4 at entry (i+ 1, j)

it follows that the map induced by fi+1,j+1 at every entry (m,n) with m ≥ i + 1 and n ≤ j
coincides with the map fm,n already there. Together with the new maps fm,j+1 for m ≥ i + 1
induced by fi+1,j+1 we have extended the maps between the diagrams one row further down.

There is nothing new to check for the commutativity with the structure injections and
surjections: every square that needs to commute is already known to commute. �

3.4. Equivalence relations on generalized extensions. In this subsection we define the
sets S′`(A) and S`(A) as well as the maps from level ` to ` − 1 in Theorem 1.2.1. Recall that
for each integer ` with 1 ≤ ` ≤ k − 1 the collection (as well as the category) of generalized
extensions of level ` of A is denoted by D`(A). (As before, we may drop the phrase “of A” from
the writing.)

There are two natural equivalence relations on each D`(A). The first is simply given by iso-
morphisms in the category D`(A), and the second is the finer equivalence given by isomorphisms
that are identity on A.

Notation 3.4.1. Let (X•,•) and (X ′•,•) be generalized extensions of the same level.
(a) We write (X•,•) ∼ (X ′•,•) if there exists an isomorphism of generalized extensions (X•,•)→
(X ′•,•). That is, if there an isomorphism fm,n : Xm,n → X ′m,n for each pair (m,n) in the eligible
range such that the diagrams (15) commute for all (m,n).
(b) We write (X•,•) ∼′ (X ′•,•) if there exists an isomorphism (f•,•) : (X•,•) → (X ′•,•) that is
identity on A, i.e. such that for every r the isomorphism fr−1,r : Ar → Ar is the identity map.
(c) For each 1 ≤ ` ≤ k−1, denote the set of equivalence classes of objects of D`(A) with respect
to ∼ (resp. ∼′) by S`(A) (resp. S′`(A)).
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There is a natural surjection S′`(A)→ S`(A) induced by the identity map on D`(A). Note
that by Lemma 3.3.2, if (X•,•) and (X ′•,•) are generalized extensions of level ` such that (X•,•) ∼′
(X ′•,•), then there is only one isomorphism (X•,•)→ (X ′•,•) that is identity on A.

Recall that for each 2 ≤ ` ≤ k − 1 we have a truncation functor Θ` : D`(A) → D`−1(A),
simply erasing the lowest diagonal of a generalized extension. The truncation functors clearly
preserve both ∼ and ∼′, inducing maps S′`(A)→ S′`−1(A) and S`(A)→ S`−1(A) both of which
we shall also refer to as truncation maps and (with abuse of notation) denote by Θ`. For each
`, we have a commutative diagram

(21)

D`(A) D`−1(A)

S′`(A) S′`−1(A)

S`(A) S`−1(A)

Θ`

Θ`

Θ`

where the vertical arrows are the natural maps: modding out by ∼′ first and then further by ∼.
The sets S`(A) and the maps Θ` : S`(A) → S`−1(A) were characterized differently in the

statement of Theorem 1.2.1 in §1.2.1. We now describe the action of Aut(A) on S′`(A) and
discuss the equivalence of definitions given here and the ones in the statement of Theorem 1.2.1.

The group Aut(A) acts on D`(A) by twisting the arrows to and from the Ar: making the
action a left action as usual, σ = (σr) in Aut(A) =

∏
r Aut(Ar) sends the diagram below on the

left to the one on the right. Note that the rest of the arrows in the diagram remain unchanged.
(22)

A1

X0,2 A2

... X1,3 A3

. . .
. . .

Xk−3,k−1 Ak−1

· · · Xk−2,k Ak

j1
ω2

j2

ω3

j3

ωk−1

jk−1
ωk

A1

X0,2 A2

... X1,3 A3

. . .
. . .

Xk−3,k−1 Ak−1

· · · Xk−2,k Ak

j1σ
−1
1

σ2ω2

j2σ
−1
2

σ3ω3

j3σ
−1
3

σk−1ωk−1

jk−1σ
−1
k−1

σkωk

We use the notation σ · (X•,•) for the image of (X•,•) under σ ∈ Aut(A).
If (f•,•) : (X•,•) → (X ′•,•) is an isomorphism that is identity on A, then (f•,•) is also such

an isomorphism σ · (X•,•)→ σ · (X ′•,•). Indeed, if either of the two diagrams

Ar Xr−1,r+1

Ar X ′r−1,r+1

jr

fr−1,r+1

j′r

or

Xr−2,r Ar

X ′r−2,r Ar

fr−2,r

ωr

ω′r

commutes, then so it does after twisting the horizontal arrows by σr or σ−1
r in Aut(Ar). Thus

the action of Aut(A) on D`(A) descends to an action on S′`(A). Moreover, it is clear from the
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definitions that the top horizontal map in (21) is Aut(A)-equivariant; thus so is the truncation
map S′`(A)→ S′`−1(A).

The equivalence of the two definitions of S`(A) and Θ` : S`(A) → S`−1(A) given in this
subsection and the ones given in the statement of Theorem 1.2.1 in §1.2.1 can now be seen from
the following lemma:

Lemma 3.4.2. Let 1 ≤ ` ≤ k − 1. The natural surjection

S′`(A) � S`(A)

descending from the identity map on D`(A) descends further to a bijection

S′`(A)/Aut(A) ∼= S`(A).

Proof. We will show that two generalized extensions (X•,•) and (X ′•,•) are ∼-equivalent (i.e.
isomorphic) if and only if there exists σ ∈ Aut(A) such that σ · (X•,•) ∼′ (X ′•,•).

Suppose (f•,•) : (X•,•)→ (X ′•,•) is an isomorphism. Then σr := fr−1,r is an automorphism
of Ar. For each eligible pair (m,n), let gm,n = fm,n if n−m > 1. Let gr−1,r be the identity on
Ar. Set σ = (σr) ∈ Aut(A). Then (g•,•) : σ · (X•,•) → (X ′•,•) is an isomorphism of generalized
extensions that is identity on A. Thus σ · (X•,•) ∼′ (X ′•,•).

Conversely, assume σ · (X•,•) ∼′ (X ′•,•). Let (g•,•) : σ · (X•,•)→ (X ′•,•) be an isomorphism
that is identity on A. Then f•,• : (X•,•) → (X ′•,•) defined by fm,n = gm,n if n − m > 1 and
fr−1,r = σr is an isomorphism. �

In what follows, we adopt the definitions given in this subsection for the sets S`(A) and the
maps between them.

3.5. Generalized extensions in levels 1 and k−1. We now study the sets S`(A) and S′`(A)
when ` is 1 or k − 1. The goal is to establish the characterizations given in parts (a) and (d) of
Theorem 1.2.1.

We start by recalling the action of

Aut(A) =
∏
r

Aut(Ar)

on ∏
r

Ext1(Ar+1, Ar)

that appeared in the statement of Theorem 1.2.1(d). Given σ = (σr) ∈ Aut(A) and

(Er) ∈
∏
r

Ext1(Ar+1, Ar),

the element σ · (Er) is the element whose r-entry is (σr)∗(σ
−1
r+1)

∗
Er. Note that after taking a

representative for Er, i.e. lifting it an extension

0 Ar Er Ar+1 0,
jr ωr+1

(σr)∗(σ
−1
r+1)

∗
Er is the class of the extension obtained by replacing ωr+1 (resp. jr) by σr+1ωr+1

(resp. jrσ
−1
r ).

As we already observed, by definition, the data of a generalized extension of level 1 of A is
equivalent to the data of a collection of objects X0,2, X1,3, . . . , Xk−2,k and short exact sequences

(23) 0 Ar Xr−1,r+1 Ar+1 0 (1 ≤ r ≤ k − 1).

Referring to the notation earlier introduced (see Notation 3.3.3), the extension above is both
Xh
r−1,r+1 and Xv

r−1,r+1. A morphism (f•,•) : (X•,•) → (X ′•,•) of generalized extensions of level



28 PAYMAN ESKANDARI

1 is the data of morphisms fr−1,r+1 : Xr−1,r+1 → X ′r−1,r+1 and fr−1,r : Ar → Ar (for each r)
making the diagrams

0 Ar Xr−1,r+1 Ar+1 0

0 Ar Xr−1,r+1 Ar+1 0

fr−1,r fr−1,r+1 fr,r+1

commute. By definition, two generalized extensions (X•,•) and (X ′•,•) of level 1 are ∼′-equivalent
if and only if there are morphisms fr−1,r+1 that together with the identity maps on the Ar make
the diagrams commute. In other words, (X•,•) ∼′ (X ′•,•) if and only if for every r the extensions

Xh
r−1,r+1 and X′hr−1,r+1 represent the same element in the corresponding Ext1 group. This is

summarized in part (a) below. Part (b) of the statement follows from the fact that the actions of
Aut(A) on both S′(A) and

∏
r Ext

1(Ar+1, Ar) are given by twisting the same arrows in the same
way, and the fact (just observed) that ∼′ translates to the usual equivalence of 1-extensions.

Lemma 3.5.1. (a) Two generalized extensions (X•,•) and (X ′•,•) of level 1 are ∼′-equivalent if

and only if for each r the extensions Xv
r−1,r+1 and X′vr−1,r+1 (i.e. (23) and its counterpart for

(X ′•,•)) coincide in Ext1(Ar+1, Ar). The association (X•,•) 7→ (Xh
r−1,r+1)r induces a bijection

S′1(A)
'−−→

∏
r

Ext1(Ar+1, Ar).

(b) Considering the previously defined actions of Aut(A) on S′1(A) and
∏
r
Ext1(Ar+1, Ar), the

bijection of part (a) is Aut(A)-equivariant and descends to a bijection

S1(A)
'−−→

(∏
r

Ext1(Ar+1, Ar)

) /
Aut(A).

We now turn our attention to the case ` = k − 1. Recall from §3.2 that for every pair
(X,φ) of an object X of T whose associated graded is isomorphic to A and an isomorphism
φ : GrWX → A, we have an associated generalized extension ext(X,φ) of level k − 1. The
object at (m,n) entry of ext(X,φ) is WpnX/WpmX, with the graded component WprX/Wpr−1X
identified with Ar via φ. The structure morphisms in ext(X,φ) are the natural injections and
projections. The following statement is easily seen from the definitions:

Lemma 3.5.2. For any pair (X,φ) as above, the canonical isomorphism (17) for ext(X,φ) with
(m,n) = (0, k) is φ.

It is easily seen from the constructions that for every σ ∈ Aut(A),

(24) ext(σ · (X,φ)) = ext(X,σφ) = σ · ext(X,φ).

Note that here σ · (X,φ) refers to the action of Aut(A) on the collection of pairs (X,φ). This
action was defined by σ · (X,φ) = (X,σφ) (see §3.1).

Recall from §3.1 that two pairs (X,GrWX
φ,'−−→ A) and (X ′, GrWX ′

φ′,'−−−→ A) are said to be
equivalent if there exists an isomorphism f : X → X ′ such that φ′ ◦GrW f = φ. Also recall that
we denoted the set of equivalence classes of such pairs by S′(A), and that the action of Aut(A)
on the collection of pairs (X,φ) descends to an action on S′(A).

Lemma 3.5.3. (a) Two pairs (X,φ) and (X ′, φ′) as above are equivalent if and only if the
generalized extensions ext(X,φ) and ext(X ′, φ′) are ∼′-equivalent.
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(b) Let (X•,•) be a generalized extension of level k − 1. Let φ : GrWX0,k → A be the canonical
isomorphism of (17) for (X•,•) and (m,n) = (0, k). Then the identity map on X0,k extends to
an isomorphism (X•,•)→ ext(X0,k, φ) that is identity on A.
(c) The association (X,φ) 7→ ext(X,φ) descends to a bijection

S′(A)
'−−→ S′k−1(A).

(d) Considering the previously defined actions of Aut(A) on S′(A) and S′k−1(A), the bijection
of part (b) is Aut(A)-equivariant and it descends to a bijection

S′(A)/Aut(A)
'−−→ S′k−1(A)/Aut(A).

(e) Using the bijections of Lemmas 3.1.2 and 3.4.2 to translate the bijection of part (d) to a map

S(A)
'−−→ Sk−1(A),

this bijection is described as follows: It sends the isomorphism class of X (an object whose
associated graded is isomorphic to A) to the isomorphism class (i.e. image in Sk−1(A)) of the
generalized extension ext(X,φ) for any choice of isomorphism φ : GrWX → A.

Proof. (a) Suppose (X,φ) and (X ′, φ′) are equivalent, with f : X → X ′ an isomorphism for which
φ′ ◦ GrW f = φ. By Lemma 3.3.4, f extends uniquely to an isomorphism (f•,•) : ext(X,φ) →
ext(X ′, φ′). In view of Lemmas 3.5.2 and 3.3.1(d) (the latter applied with (m,n) = (0, k)), the
fact that φ′ ◦GrW f = φ implies that (f•,•) is identity on A.

Conversely, suppose (f•,•) : ext(X,φ) → ext(X ′, φ′) is an isomorphism that is identity on
A. Then f0,k : X → X ′ is an isomorphism that satisfies φ′GrW f0,k = φ. This again follows from
Lemmas 3.5.2 and 3.3.1(d).
(b) By Lemma 3.3.4, the identity map on X0,k extends uniquely to an isomorphism (f•,•) :
(X•,•) → ext(X0,k, φ). Now apply Lemma 3.3.1(d) with (m,n) = (0, k), (X ′•,•) = ext(X0,k, φ)

and (f•,•) as in here. The left arrow of the diagram is GrW f0,k = GrW Id which is just the
identity. The top and bottom canonical isomorphisms are both φ. Hence the arrow on the right
is the identity map.
(c) By part (a), (X,φ) 7→ ext(X,φ) descends to an injection S′(A) → S′k−1(A), which is also
surjective by part (b).
(d) We have a commutative diagram{

(X,φ)
}

Dk−1(A)

S′(A) S′k−1(A),

ext(−)

part (b)

'

where {(X,φ)} means the collection of all pairs (X,GrWX
φ,'−−→ A). By (24), the top arrow is

Aut(A)-equivariant. By definition of the Aut(A)-actions on S′(A) and S′k−1(A), so are the two
side arrows. It follows that the map of part (b) is Aut(A)-equivariant and it descends to a map

S′(A)/Aut(A)→ S′k−1(A)/Aut(A),

which is surjective thanks to part (b). It remains to show that it is also injective.
Consider two pairs (X,φ) and (X ′, φ′) such that the classes of ext(X,φ) and ext(X ′, φ′) in

S′k−1(A) are in the same Aut(A)-orbit. In view of (24) this means that there exists σ ∈ Aut(A)
such that ext(X,σφ) is ∼′-equivalent to ext(X ′, φ′). That is, there exists an isomorphism (f•,•)
of generalized extensions ext(X,σφ)→ ext(X ′, φ′) such that for each r, the morphism fr−1,r is
the identity map on Ar.
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Consider f0,k : X → X ′. We claim that φ′ ◦ GrW f0,k = σφ; this would show that pairs
(X,σφ) = σ · (X,φ) and (X ′, φ′) are equivalent, so that the classes of (X,φ) and (X ′, φ′) in
S′(A) are in the same Aut(A)-orbit.

To see the claim, apply Lemma 3.3.1(d) to (f•,•) for (m,n) = (0, k). Since the canonical
isomorphism (17) for ext(X,σφ) (resp. ext(X ′, φ′)) is simply σφ (resp. φ′), we get that the
diagram

GrWX A

GrWX ′ A

GrW f0,k

σφ

'
(fr−1,r)=Id

φ′

'
commutes.
(e) The given description is clear from the definitions of the other three arrows of the commu-
tative diagram

S′(A)/Aut(A) S′k−1(A)/Aut(A)

S(A) Sk−1(A).

'

part (d)

'

'

'

�

The following diagram summarizes our picture so far.
(25)

{(X,φ)} Dk−1(A) Dk−2(A) · · · D1(A) ∼=
∏
r
EXT (Ar+1, Ar)

S′(A) S′k−1(A) S′k−2(A) · · · S′1(A) ∼=
∏
r
Ext1(Ar+1, Ar)

S(A) Sk−1(A) Sk−2(A) · · · S1(A) ∼=

∏
r
Ext(Ar+1, Ar)

Aut(A)

ext(−) Θk−1 Θk−2 Θ2

∼= Θk−1 Θk−2 Θ2

∼= Θk−1 Θk−2 Θ2

Here, {(X,φ)} means the collection of all pairs (X,φ) of consisting of an object X of T and an
isomorphism φ : GrWX → A. The map {(X,φ)} � S′(A) sends a pair to its ∼′-equivalence
class. The map S′(A) � S(A) is induced by (X,φ) 7→ X. The maps D`(A) � S′`(A) and
S′`(A) � S`(A), respectively, are given by modding out by ∼′ and (further) by ∼. All the maps
between the middle and bottom rows can also be thought of as modding out by the action of
Aut(A). What remains of Theorem 1.2.1 to be established is the assertions about the structure
of the fibers. This will be the subject of the rest of the section.

3.6. Fibers of truncation maps I: Torsor structures. Assume 2 ≤ ` ≤ k − 1. In this
subsection we fix a generalized extension (Xm,n)n−m≤` of level `− 1 and first describe the fiber
of the truncation functor Θ` : D`(A) → D`−1(A) above it, i.e., the collection of all generalized
extensions of level ` that become (Xm,n)n−m≤` once their lowest diagonal is erased. We then
consider the equivalence relation ∼′ on this fiber.

Recall that given objects X,Y, Z of T, N∈ EXT (Z, Y ) and L∈ EXT (Y,X), the notation
EXTPAN(N,L) means the collection of all blended extensions of N by L (with no identifica-
tion made). Recall also the notations Xv

m,n and Xh
m,n for extensions respectively coming from the
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arrows Xm,n−1 ↪→ Xm,n and Xm,n � Xm+1,n of a generalized extension (X•,•) (i.e. extensions
given by (14) and (19), respectively, see Notation 3.3.3).

Construction 3.6.1. There is a natural (to be seen to be bijective) map

(26) Θ−1
` ((Xm,n)n−m≤`) =


fiber of

D`(A)
Θ`−→ D`−1(A)

above (Xm,n)n−m≤`

 −−→∏
r

EXTPAN(Xv
r,r+`,X

h
r−1,r+`−1)

(where the index r on the right runs through the integers 1 ≤ r ≤ k − `) described as follows.
Consider an element (Xm,n)n−m≤`+1 ofD`(A) in the fiber above (Xm,n)n−m≤`. For eachXr−1,r+`

on its lowest diagonal, the morphisms

Xr−1,r+`−1 Xr,r+`−1

Xr−1,r+` Xr,r+`

lead to a blended extension

(27)

0 0

0 Ar Xr−1,r+`−1 Xr,r+`−1 0

0 Ar Xr−1,r+` Xr,r+` 0,

Ar+` Ar+`

0 0

in which every map is a composition (uniquely determined by the indices) of the structure
arrows. The extensions on the top and right are respectively Xh

r−1,r+`−1 and Xv
r,r+`. The map

(26) sends (Xm,n)n−m≤`+1 to the tuple with this blended extension in its r-entry.

Lemma 3.6.2. The map (26) is bijective.

Proof. We construct the inverse of (26). Note that for each r the two extensions Xv
r,r+` and

Xh
r−1,r+`−1 come from the data of the generalized extension (Xm,n)n−m≤` of level `−1. For each

r, consider a blended extension of Xv
r,r+` by Xh

r−1,r+`−1. It is given by a diagram of the form

(27), with the top and right extensions being Xh
r−1,r+`−1 and Xv

r,r+`, respectively. Now enlarge

(Xm,n)n−m≤` to a generalized extension of level ` by adding to its data, for each r, the object
Xr−1,r+` in entry (r−1, r+`) and the morphisms Xr−1,r+`−1 ↪→ Xr−1,r+` and Xr−1,r+` � Xr,r+`

of the corresponding blended extension. The augmented data (Xm,n)n−m≤`+1 is a generalized
extension of level `. Indeed, the only new squares formed by the structure arrows are the ones
in the top rights of our blended extensions. So axiom (i) of the definition of a generalized
extension holds. As for axiom (ii) (the exactness of the sequences (14)), the new sequences we
must consider are exactly the sequences in the middle columns of our blended extensions.
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By sending the tuple of blended extensions we started with to the generalized extension
(Xm,n)n−m≤`+1 we obtain a map

(28)
∏
r

EXTPAN(Xv
r,r+`,X

h
r−1,r+`−1) −−→ Θ−1

` ((Xm,n)n−m≤`).

The reader easily sees that this maps is the inverse to (26). �

It is convenient to have a notation for blended extensions of the form (27):

Notation 3.6.3. For a generalized extension (X•,•) of level ` ≥ 2, for any r we denote the
blended extension (27) with middle object Xr−1,r+` by Xr−1,r+` (without a superscript h or v).

Recall from §2.1 that given blended extensions X and X′ of an extension N by an exten-
sion L, a morphism (automatically an isomorphism) of blended extensions from X to X′ is a
morphism from the middle object X of X to the middle object X ′ of X′ that induces identity
maps on objects in L and N; that is, a morphism X → X ′ that together with the identity maps
on the objects in L and N commute with the arrows in X and X′ (in the obvious sense). The
collection of isomorphism classes of blended extensions of N by L is denoted by Extpan(N,L).

Lemma 3.6.4. (a) Two elements of the fiber of Θ` : D`(A) → D`−1(A) above (X•,•) are
∼′-equivalent if and only if their images under the map (26) coincide in∏

r

Extpan(Xv
r,r+`,X

h
r−1,r+`−1).

(b) The map (26) descends to a bijection(
Θ−1
` ((X•,•))

)/
∼′ '−−→

∏
r

Extpan(Xv
r,r+`,X

h
r−1,r+`−1).

In particular, (
Θ−1
` ((X•,•))

)/
∼′

is either empty or a torsor over ∏
r

Ext1(Ar+`, Ar).

Moreover, it is nonempty if and only if for each r, the image of the Yoneda product of Xv
r,r+`

and Xh
r−1,r+`−1 in Ext2(Ar+`, Ar) vanishes.

Proof. We first note that part (b) follows immediately from part (a), Lemma 3.6.2, and the
general theory of blended extensions (see §2.1, in particular, Lemma 2.1.1(a)). So we will focus
on part (a).

Suppose (Y•,•) and (Y ′•,•) are in the fiber above (X•,•), so that dropping the lowest diagonals,
(Y•,•) and (Y ′•,•) are just (X•,•). The blended extensions (27) for (Y•,•) and (Y ′•,•) (respectively,
denoted by Yr−1,r+` and Y′r−1,r+`) have the same top rows and the same right columns, coming

from (X•,•). Since every arrow in Yr−1,r+` (resp. Y′r−1,r+`) is the appropriate composition of the

structure arrows of (Y•,•) (resp. (Y ′•,•)), every morphism (f•,•) : (Y•,•) → (Y ′•,•) of generalized
extensions includes the data of a collection of maps between the corresponding objects of Yr−1,r+`

and Y′r−1,r+` that commute with the arrows in the two blended extensions.

Let (f•,•) : (Y•,•) → (Y ′•,•) be a morphism that is identity on A. Both (Y•,•) and (Y ′•,•)
truncate to (X•,•), so that (f•,•) must be identity on (X•,•) (see Lemma 3.3.2). Combining
with the earlier comments, it follows that for each r, the isomorphism fr−1,r+` from Yr−1,r+` to
Y ′r−1,r+` gives an isomorphism of blended extensions from Yr−1,r+` to Y′r−1,r+`.
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Conversely, suppose that for each r, the classes of blended extensions Yr−1,r+` and Y′r−1,r+`

coincide in Extpan(Xv
r,r+`,X

h
r−1,r+`−1). Let fr−1,r+` be the morphism Yr−1,r+` → Y ′r−1,r+` that

gives an isomorphism of blended extensions Yr−1,r+` → Y′r−1,r+`. Then fr−1,r+` induces identity
on Xr−1,r+`−1 and Xr,r+`. By Lemma 3.3.5 the collection of morphisms fr−1,r+` glues together
to give a morphism (f•,•) : (Y•,•)→ (Y ′•,•). This morphism is identity on the diagonal just above
the lowest, and hence is identity on all of (X•,•). �

3.7. Fibers of truncation maps II: Canonicity of the torsor structures. We continue
to assume 2 ≤ ` ≤ k−1. Let (X•,•) be a generalized extension of level `−1. Denote the class of

(X•,•) in S′`−1(A) by [(X•,•)]∼′ . In the previous subsection we studied Θ−1
` ((X•,•))/ ∼′ and saw

that it has a torsor structure. To finish the proof of Theorem 1.2.1(b,c) we need to show that

Θ−1
` ([(X•,•)]∼′) ∼= Θ−1

` ((X•,•))/ ∼′,
and that moreover the torsor structure obtained this way on the fiber of S′`(A)→ S′`−1(A) above
ε := [(X•,•)]∼′ is independent of the choice of representative (X•,•) for ε. By the end of this
subsection these will be established and the proof of Theorem 1.2.1(b,c) will be completed.

The following simple definition is convenient.

Definition 3.7.1. Let (X•,•) be a generalized extension of any level. Let (i, j) be an eligible
pair, and f : Xi,j → X ′ an isomorphism.
(a) The transport of (X•,•) along f , denoted by tr((X•,•), f), is the generalized extension ob-
tained from (X•,•) by replacing the object Xi,j at entry (i, j) by X ′ via f . That is, by replacing
Xi,j by X ′, and the arrows to (resp. from) Xi,j by their composition with f (resp. f−1).
(b) The collection of morphisms (f•,•) given by fm,n = IdXm,n for every eligible pair (m,n) 6=
(i, j) and fi,j = f is called the isomorphism given by the transport datum f .

One easily sees that the transport defined above is indeed a generalized extension13, and
that the collection of isomorphisms (f•,•) of (b) commutes with the structure arrows of (X•,•)
and its transport tr((X•,•), f). One also easily sees that the transport construction behaves well

with respect to compositions: given (X•,•) and isomorphisms Xi,j
f−→ Y

g−→ Z, we have

(29) tr(tr((X•,•), f), g) = tr((X•,•), gf)

and the composition of the isomorphisms given by the transport datum f first and then g

(X•,•)→ tr((X•,•), f)→ tr(tr((X•,•), f), g)

is just the isomorphism given by the transport datum gf .
More generally, given a generalized extension (X•,•) of any level, a set I of eligible pairs

of indices and for each (m,n) ∈ I an isomorphism fm,n : Xm,n → X ′m,n, we may talk about
the transport tr((X•,•), (fm,n)(m,n)∈I) of (X•,•) along (fm,n)(m,n)∈I . Making the transport all at
once is the same as making it step by step for one (m,n) ∈ I at a time (note that the transport
operations along morphisms from Xm,n for different (m,n) commute with one another). The
collection of morphisms (g•,•) where gm,n = IdXm,n for every eligible (m,n) /∈ I and gm,n = fm,n
if (m,n) ∈ I commutes with the structure arrows of (X•,•) and tr((X•,•), (fm,n)(m,n)∈I); in line
with Definition 3.7.1(b), we call (g•,•) the isomorphism given by the transport data (fm,n)(m,n)∈I .

Now let (X•,•) and (X ′•,•) be generalized extensions of level `−1 of A, and (f•,•) : (X•,•)→
(X ′•,•) an isomorphism of generalized extensions. Given (Y•,•) ∈ Θ−1

` ((X•,•)), it follows from

13We note that in the generality of Definition 3.7.1, the transport may not be a generalized extension of A.
However, in all applications of this construction in the paper, whenever i = j − 1 (so that Xi,j = Aj) we will also
take X ′ to be Aj , so that the transport will always be indeed a generalized extension of A as well.
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the commutativity of the diagrams of (15) that the transport of (Y•,•) along (f•,•) is in the fiber
of Θ` above (X ′•,•). The map

(30) Θ−1
` ((X•,•))→ Θ−1

` ((X ′•,•)) (Y•,•) 7→ tr((Y•,•), (f•,•))

is a bijection, with its inverse given by transport along (f−1
•,• ). For every (Y•,•), the isomor-

phism given by the transport data (f•,•) is an isomorphism of generalized extensions (Y•,•) →
tr((Y•,•), (f•,•)). Thus (30) descends to a bijection between the ∼-equivalence classes.

If (Y
(1)
•,• ) and (Y

(2)
•,• ) in Θ−1

` ((X•,•)) are ∼′-equivalent with (g•,•) : (Y
(1)
•,• ) → (Y

(2)
•,• ) an

isomorphism that is identity on A, then the composition

tr((Y
(1)
•,• ), (f•,•)) (Y

(1)
•,• ) (Y

(2)
•,• ) tr((Y

(2)
•,• ), (f•,•))

iso. given by

tr. data (f−1
•,•)

(g•,•) iso. given by

tr. data (f•,•)

is identity on A as well (even if (f•,•) is not identity on A). Hence (30) also descends to a
bijection between the ∼′-equivalence classes, with its inverse induced by transport along (f−1

•,• ).
If the morphism (f•,•) : (X•,•)→ (X ′•,•) is identity on A, then every (Y•,•) above (X•,•) is

∼′-equivalent to its transport along (f•,•), with the isomorphism given by the transport data
giving the ∼′-equivalence.

In particular, we note from the above that if (X•,•) and (X ′•,•) in D`−1(A) are ∼-equivalent

(resp. ∼′-equivalent), then for every (Y•,•) ∈ Θ−1((X•,•)) there exists (Y ′•,•) ∈ Θ−1((X ′•,•)) that
is ∼-equivalent (resp. ∼′-equivalent) to (Y•,•).

We obtain the following lemma regarding the fibers of truncation maps S′`(A) → S′`−1(A)
and S`(A)→ S`−1(A) (recall that we refer to both of these also by Θ`).

Lemma 3.7.2. Let (X•,•) ∈ D`−1(A). Denote the classes of (X•,•) in S`(A) and S′`(A) respec-
tively by [(X•,•)]∼ and [(X•,•)]∼′.
(a) The natural injection (

Θ−1
` ((X•,•))

)/
∼ → Θ−1

` ([(X•,•)]∼)

is bijective. If (X ′•,•) ∈ D`−1(A) and (f•,•) : (X•,•) → (X ′•,•) is an isomorphism, then we have
a commutative diagram(

Θ−1
` ((X•,•))

)/
∼

(
Θ−1
` ((X ′•,•))

)/
∼

Θ−1
` ([(X•,•)]∼)

tr. along (f•,•)

'
'

'

where the horizontal arrow is given by transport along (f•,•) (descending from (30)) and the
other two arrows are the natural maps.
(b) The natural injection

(31)
(

Θ−1
` ((X•,•))

)/
∼′ → Θ−1

` ([(X•,•)]∼′)

is bijective. If (X ′•,•) ∈ D`−1(A) and (f•,•) : (X•,•)→ (X ′•,•) is an isomorphism that is identity
on A, then we have a commutative diagram

(32)

(
Θ−1
` ((X•,•))

)/
∼′

(
Θ−1
` ((X ′•,•))

)/
∼′

Θ−1
` ([(X•,•)]∼′)

tr. along (f•,•)

'

' '
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where the horizontal arrow is given by transport along (f•,•) (descending from (30)) and the
other two arrows are the natural maps. If (f•,•) : (X•,•)→ (X ′•,•) is an isomorphism that is not
necessarily identity on A, we still have a bijection

(33)
(

Θ−1
` ((X•,•))

)/
∼′ tr. along (f•,•)−−−−−−−−−→

(
Θ−1
` ((X ′•,•))

)/
∼′

which forms a commutative diagram if we pass along on both sides to Θ−1
` ([(X•,•)]∼).

Combining part (b) with Lemma 3.6.4(b) we obtain torsor structures on the nonempty
fibers of S′`(A)→ S′`−1(A). At the moment however, the torsor structure on the fiber of S′`(A)→
S′`−1(A) above the class of (X•,•) appears to depend on the choice of representative (X•,•). Our
next task is to rule out this dependence.

The group Aut(A) acts on

(34)
∏
r

Ext1(Ar+`, Ar)

similarly to the action we already considered when ` = 1, i.e. by pushforwards and pullbacks.
An element σ = (σr) (with σr ∈ Aut(Ar)) sends a tuple of extension classes E = (Er) to the
tuple that has (σr)∗(σ

−1
r+`)

∗Er in its r-entry. Denoting the image of E under the action by σ by
σ ·E, thus the r-entry of σ ·E is obtained, after taking a representative for Er in EXT (Ar+`, Ar),
by composing the arrow coming out of Ar by σ−1

r and the arrow going to Ar+` by σr+`.

Lemma 3.7.3. Let (X•,•) and (X ′•,•) be in D`−1(A) and (f•,•) : (X•,•) → (X ′•,•) an isomor-
phism. Suppose that the fiber of Θ` : D`(A) → D`−1(A) above (X•,•) (and hence (X ′•,•)) is
nonempty. Consider (

Θ−1
` ((X•,•))

)/
∼′ and

(
Θ−1
` ((X ′•,•))

)/
∼′

as torsors for (34) via the canonical bijection of Lemma 3.6.4(b) (for (X•,•) and (X ′•,•), respec-
tively). Then the bijection (33) satisfies the following identity: denoting the action of the group
(34) on the torsors above by ∗, the map (33) (as well as (30)) by tr(−, (f•,•)), and the restriction

of (f•,•) to A by fA, then for every (Y•,•) ∈ Θ−1
` ((X•,•)) and for every tuple of extension classes

E= (Er) in (34) we have

(35) tr(E∗ [(Y•,•)]∼′ , (f•,•)) = (fA · E) ∗ tr([(Y•,•)]∼′ , (f•,•)),

where (with abuse of notation) [(Y•,•)]∼′ here means the image of (Y•,•) in (Θ−1
` ((X•,•)))/ ∼′.

In particular, if the restriction of (f•,•) to A is a scalar multiple of the identity map, then
the bijection (33) is an isomorphism of torsors.

Proof. Consider the commutative diagram

(36)

Θ−1
` ((X•,•))

∏
r
EXTPAN(Xv

r,r+`,X
h
r−1,r+`−1)

(
Θ−1
` ((X•,•))

)/
∼′

∏
r
Extpan(Xv

r,r+`,X
h
r−1,r+`−1).

(26)

'

Lem. 3.6.4(b)

'

The torsor structures over the group (34) on the lower level descend from a map∏
r

EXT (Ar+`, Ar)×
∏
r

EXTPAN(Xv
r,r+`,X

h
r−1,r+`−1)→

∏
r

EXTPAN(Xv
r,r+`,X

h
r−1,r+`−1).

We use the symbol ∗ for the operation given by the latter map on the top right object of (36),
as well as the operation on Θ−1

` ((X•,•)) induced by it, and the operations on the lower level of
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the diagram descended from it. We also use the same notation for the analogous operations for
(X ′•,•).

Let (Y•,•) be in Θ−1
` ((X•,•)) and E = (Er) a tuple in (34). Lift each Er to an element of

EXT (Ar+`, Ar), which with abuse of notation we also denote by Er.
Set

(Z•,•) := E∗ (Y•,•) ∈ Θ−1
` ((X•,•))

and (Z ′•,•) = tr((Z•,•), (f•,•)). Suppose that the blended extension of Xv
r,r+` by Xh

r−1,r+`−1

associated to (Z•,•) by Construction 3.6.1 is given by the diagram on the left below. Then the

blended extension of X′vr,r+` by X′hr−1,r+`−1 associated to (Z ′•,•) is given by the diagram on the
right below. We have dropped the indices from the fm,n to save space (they are determined by
the indices of the objects).
(37)

0 0

0 Ar Xr−1,r+`−1 Xr,r+`−1 0

0 Ar Zr−1,r+` Xr,r+` 0

Ar+` Ar+`

0 0

j

ι

π

ι
j π

ω ω

0 0

0 Ar X ′r−1,r+`−1 X ′r,r+`−1 0

0 Ar Zr−1,r+` X ′r,r+` 0

Ar+` Ar+`

0 0

fjf−1

ιf−1

fπf−1

fιf−1

jf−1 fπ

fω fωf−1

Bringing the indices back to avoid confusion, comparing the second rows of the two diagrams
we have

(38) (fr−1,r)∗Z
h
r−1,r+` = f∗r,r+`Z

′h
r−1,r+`,

where Zh
r−1,r+` and Z′hr−1,r+` refer to the second horizontal extensions in the two diagrams

respectively (see Notation 3.3.3). The equality here as well as all the other equalities in the rest
of this argument take place in the corresponding Ext1 groups.

By definition of the torsor structure on the set of isomorphism classes of blended extensions
(see §2.1), we have

Zh
r−1,r+` = Yh

r−1,r+` + ω∗Er

in Ext1(Xr,r+`, Ar). Combining the last two equations we obtain

f∗r,r+`Z
′h
r−1,r+` = (fr−1,r)∗Y

h
r−1,r+` + (fr−1,r)∗ ω

∗Er = f∗r,r+`Y
′h
r−1,r+` + (fr−1,r)∗ ω

∗Er,

where (Y ′•,•) = tr((Y•,•), (f•,•)). (We have used the analogue of (38) for (Y•,•).) Thus

(39) Z′
h
r−1,r+` = Y′

h
r−1,r+` + (ωf−1

r,r+`)
∗(fr−1,r)∗Er

as pushforward commutes with pullback.
Let

(Z ′′•,•) := (fA · E) ∗ tr((Y•,•), (f•,•)) = (fA · E) ∗ (Y ′•,•),

so that the right hand side of (35) is the class of (Z ′′•,•) in(
Θ−1
` ((X ′•,•))

)/
∼′ .
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On recalling the definition of fA ·Eand the fact that the map X ′r,r+` � Ar+` is fr+`−1,r+`ωf
−1
r,r+`,

we have

Z′′
h
r−1,r+` = Y′

h
r−1,r+` + (fr+`−1,r+` ωf

−1
r,r+`)

∗(fr−1,r)∗(f
−1
r+`−1,r+`)

∗ Er
(39)
= Z′

h
r−1,r+`.

Thus by Lemma 2.1.2, (Z ′•,•) and (Z ′′•,•) coincide in∏
r

Extpan(X′
v
r,r+`,X

′h
r−1,r+`−1)

and hence are in the same ∼′-equivalence class. This completes the proof of the identity.
The statement about the special case when (f•,•) is a scalar automorphism of A is immediate

from the identity. �

Putting the results of this subsection and the previous one together, we obtain parts (b)
and (c) of Theorem 1.2.1:

Proof of Theorem 1.2.1(b,c). Consider an element ε of S′`−1(A), i.e. a ∼′-equivalence class of
generalized extensions of level ` − 1. Let (X•,•) be a representative of the class. Use the
bijection (31) and the bijection of Lemma 3.6.4(b) to give the fiber of S′`(A) → S′`−1(A) above
ε the structure of a torsor for ∏

r

Ext1(Ar+`, Ar)

when this fiber is nonempty. This torsor structure is independent of the choice of (X•,•).
Indeed, suppose one chooses another representative (X ′•,•) for ε. Let (f•,•) : (X•,•) → (X ′•,•)
be an isomorphism that is identity on A. By Lemma 3.7.3, transport along (f•,•) gives an
isomorphism of torsors (33). In view of the commutative diagram (32) of Lemma 3.7.2(b), the
induced torsor structures on Θ−1

` (ε) thus coincide.
The assertion in Theorem 1.2.1(c) giving a sufficient condition for surjectivity of the trun-

cation map S′`(A) → S′`−1(A) is immediate from the constructions and Lemma 2.1.1(a). (In
fact, a more precise statement about the image of S′`(A) → S′`−1(A) can be obtained from the
last sentence of Lemma 3.6.4(b).) �

3.8. Fibers of truncation maps III: Γ-actions. So far, we have studied the fibers of the
truncation maps S′` → S′`−1. The proof of the remaining assertions of Theorem 1.2.1 involves
an additional ingredient, namely the group actions that allow us to pass on from the fibers on
the second row of (25) to the fibers on its third row. This is the subject of this subsection. In
particular, we will deduce part (e) of Theorem 1.2.1.

Fix 2 ≤ ` ≤ k − 1 and (X•,•) ∈ D`−1(A). The group Aut((X•,•)) of the automorphisms of
(X•,•) (as a generalized extension) acts on the fiber of Θ` : D`(A) → D`−1(A) above (X•,•) by

transport. That is, an element σ = (σ•,•) ∈ Aut((X•,•)) acts by sending (Y•,•) ∈ Θ−1
` ((X•,•)) to

the transport of (Y•,•) along σ. The fact that this transport is also in Θ−1
` ((X•,•)) is because σ

is an automorphism of generalized extensions. Denote the image of (Y•,•) under this action by
σ·(Y•,•). Then σ·(Y•,•) = tr((Y•,•), σ) is obtained from (Y•,•) by twisting only the arrows between
the two lowest diagonals of (Y•,•). More explicitly, each horizontal arrow Yr−1,r+` � Xr,r+` (resp.
vertical arrow Xr−1,r+`−1 ↪→ Yr−1,r+`) between the lowest two diagonals gets composed with

σr,r+` (resp. σ−1
r−1,r+`−1). The rest of the diagram remains unchanged. Note that since the

action of Aut((X•,•)) on Θ−1
` ((X•,•)) is given by transports, we have (Y•,•) ∼ σ · (Y•,•) for all

(Y•,•) and σ.
In view of Lemma 3.7.2(b) (applied with (X ′•,•) = (X•,•) and (f•,•) = σ), the action of

Aut((X•,•)) on the fiber Θ−1
` ((X•,•)) descends to an action on

(
Θ−1
` ((X•,•))

)/
∼′. This action

captures the passing from ∼′ to ∼ on Θ−1
` ((X•,•)):
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Lemma 3.8.1. As above, let 2 ≤ ` ≤ k − 1 and (X•,•) ∈ D`−1(A). Let (Y•,•) and (Y ′•,•) be

in Θ−1
` ((X•,•)). Then (Y•,•) and (Y ′•,•) are ∼-equivalent if and only if the classes of (Y•,•) and

(Y ′•,•) mod ∼′ are in the same orbit of the action of Aut((X•,•)) on

(40)
(

Θ−1
` ((X•,•))

)/
∼′ .

Proof. Suppose that (Y•,•) and (Y ′•,•) are isomorphic. Let (f•,•) : (Y•,•) → (Y ′•,•) be an iso-
morphism. Then (f•,•) restricts to an automorphism σ of (X•,•). Consider the composition of
isomorphisms

σ · (Y•,•) (Y•,•) (Y ′•,•),
(f•,•)

where the first arrow is the isomorphism given by the transport data σ−1 (so is identity on the
objects of the lowest diagonal and σ−1 on (X•,•), see §3.7). This composition isomorphism is
identity on A, so that σ · (Y•,•) ∼′ (Y ′•,•).

Conversely, suppose that the classes of (Y•,•) and (Y ′•,•) in (40) are in the same orbit of
the action of Aut((X•,•)). Thus there is σ ∈ Aut((X•,•)) such that σ · (Y•,•) ∼′ (Y ′•,•). Then
(Y•,•) ∼ σ · (Y•,•) ∼ (Y ′•,•). �

The group actions above on the fibers of D`(A) → D`−1(A) descend canonically to group
actions on the fibers of S′`(A) → S′`−1(A). Indeed, let ε′ ∈ S′`−1(A). For every (X•,•) and
(X ′•,•) in D`−1(A) that belong to ε′, by Lemma 3.3.2 there exists a unique isomorphism (f•,•) :
(X•,•)→ (X ′•,•) that is identity on A. This isomorphism induces an isomorphism Aut((X•,•))→
Aut((X ′•,•)) by conjugation. These distinguished isomorphisms Aut((X•,•)) → Aut((X ′•,•)) for
various pairs ((X•,•), (X

′
•,•)) of representatives of ε′ are compatible with respect to compositions

with one another, so that they form a projective system of groups. Set

Γ(ε′) := lim
(X•,•)∈ε′

Aut((X•,•)).

An element of Γ(ε′) is the data of an automorphism of (X•,•) for each representative (X•,•) ∈ ε′,
such that the automorphisms for different representatives corresponds to one another under the
distinguished isomorphisms between the automorphism groups. For each (X•,•), the projection
map Γ(ε′)→ Aut((X•,•)) is an isomorphism.

Given any (X•,•) and (X ′•,•) representing ε′, we have a commutative diagram(
Θ−1
` ((X•,•))

)/
∼′

(
Θ−1
` ((X ′•,•))

)/
∼′

Θ−1
` (ε′),

'

' '

where the slanted arrows are the natural maps and the top arrow is the bijection given by trans-
port along the distinguished isomorphism (X•,•) → (X ′•,•) (see Lemma 3.7.2(b)). Identifying
Aut((X•,•)) and Aut((X ′•,•)) via the distinguished isomorphism between them, the top map of
this diagram is compatible with their actions (this is easily verified by (29)). We thus obtain
a well-defined action of Γ(ε′) on Θ−1

` (ε′), which can be computed by taking any representa-
tive (X•,•) of ε′: via the canonical isomorphism Γ(ε′) → Γ((X•,•)) and the left bijection of the

diagram above, the action of Γ(ε′) on Θ−1
` (ε′) is the action of Aut((X•,•)) on (Θ−1

` ((X•,•)))/ ∼′.
We have all the necessary components to establish part (e) of Theorem 1.2.1. Let us restate

the result.

Proposition 3.8.2. For every ε ∈ S`−1(A) and ε′ ∈ S′`−1(A) above ε, the natural map

Θ−1
` (ε′)→ Θ−1

` (ε)
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(restricted from S′`(A)→ S`(A)) is surjective, and it descends to a bijection

Θ−1
` (ε′)/Γ(ε′) ∼= Θ−1

` (ε).

Proof. Choose a generalized extension (X•,•) in ε′ (and hence ε). We have a commutative
diagram (

Θ−1
` ((X•,•))

)/
∼′ Θ−1

` (ε′)

(
Θ−1
` ((X•,•))

)/
∼ Θ−1

` (ε)

'

'

where all maps are the natural ones and the horizontal maps are bijective by Lemma 3.7.2. Thus
the right vertical arrow is also surjective.

By Lemma 3.8.1, two elements of (Θ−1
` ((X•,•)))/ ∼′ coincide in (Θ−1

` ((X•,•)))/ ∼ if and

only if they are in the same orbit of the action of Aut((X•,•)) on (Θ−1
` ((X•,•)))/ ∼′. In view of

the commutative diagram above and the definition of the action of Γ(ε′) on Θ−1
` (ε′), it follows

that two elements of Θ−1
` (ε′) coincide in Θ−1

` (ε) if and only if they are in the same Γ(ε′)-orbit. �

We end this discussion with a result about the stabilizers of the Γ-actions, which will be
useful for our study of the totally nonsplit case in the next subsection.

Lemma 3.8.3. Let (X•,•) ∈ D`−1(A) and (Y•,•) ∈ Θ−1((X•,•)). Then the stabilizer of the ∼′-
equivalence class of (Y•,•) for the action of Aut((X•,•)) on (40) is the image of the restriction
map

Aut((Y•,•)) ↪→ Aut((X•,•)).

Proof. Let σ ∈ Aut((X•,•)). Then σ fixes the ∼′-equivalence class of (Y•,•) if and only if there
exists an isomorphism f : σ · (Y•,•)→ (Y•,•) that is identity on A, or equivalently, on (X•,•) (by

Lemma 3.3.2). If f is such an isomorphism, then let σ̃ be the composition (Y•,•)→ σ · (Y•,•)
f−→

(Y•,•), where the first arrow is the isomorphism given by the transport data σ (thus identity
on the lowest diagonal and σ on (X•,•), see §3.7). Then σ̃ is an automorphism of (Y•,•) that
restricts to σ on (X•,•).

On the other hand, if σ extends to an automorphism σ̃ of (Y•,•), let f be the composition

σ · (Y•,•) → (Y•,•)
σ̃−→ (Y•,•), where the first arrow is the isomorphism given by the transport

data σ−1. Then f is identity on (X•,•). �

Remark 3.8.4. Let (X•,•) ∈ D`−1(A) and (Y•,•) ∈ Θ−1((X•,•)). By the previous lemma, the
class of (Y•,•) in Θ−1((X•,•))/ ∼′ is a fixed point of the action of Aut((X•,•)) if and only if every
automorphism of (X•,•) extends to an automorphism of (Y•,•). Using the formula of Lemma
3.7.3 one can see that the former statement is also equivalent to the linearity of the action of
Aut((X•,•)) on

∏
r Ext

1(Ar+`, Ar) obtained as follows: Use the class of (Y•,•) as the base point
to get an isomorphism

Θ−1((X•,•))/ ∼′ '
∏
r

Ext1(Ar+`, Ar)

(recall that the left hand side is a torsor over the right hand side). Now transport the action of
Aut((X•,•)) from the left side to the right.

Already when k = 3 it is easy to see that the map Aut((Y•,•)) ↪→ Aut((X•,•)) does not
always have to be surjective. Given (X•,•) with nonempty Θ−1((X•,•)), it would be interesting
to see if there always exists a (Y•,•) ∈ Θ−1((X•,•)) such that Aut((Y•,•)) ∼= Aut((X•,•)). Note
that in the basic case of k = 3 (i.e. the case of blended extensions), given (X•,•) and arbitrary
(Y•,•) ∈ Θ−1((X•,•)), the question of whether a given element of Aut((X•,•)) extends to an
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automorphism of (Y•,•) has appeared previously in the work [4] of Barbieri-Viale and Kahn.14

Proposition D.1.5 of Appendix D therein gives a necessary and sufficient condition for this. (In
the language of Barbieri-Viale and Kahn, the question is about whether a partial gluing extends
to a gluing.)

3.9. The totally nonsplit case. The goal of this subsection is to discuss the last part of
Theorem 1.2.1. We will define the relevant notions and give the proof of the result. Note that
this special case of Theorem 1.2.1 will play a crucial role in §4.

The following definition generalizes the notion of total nonsplitting to generalized exten-
sions. To recall the definition of total nonsplitting for an extension, see Definition 2.2.1.

Definition 3.9.1. We say a generalized extension (X•,•) of positive level `− 1 is weakly totally

nonsplit if for every 0 ≤ r ≤ k − `, at least one of the extensions Xv
r,r+` or Xh

r,r+` is totally

nonsplit. (These extensions respectively arise from the injective arrow going to Xr,r+` and the
surjective arrow coming from it; see Notation 3.3.3. Note that Xr,r+` is on the lowest diagonal
of (X•,•).)

We refer to this notion as the weak total nonsplitting because there will be a stronger variant
of it that we will introduce later (see §4.4). In level 1, where a generalized extension is the data
of an extension Er of Ar+1 by Ar for each r, the generalized extension (Er) is weakly totally
nonsplit if and only if all the Er are totally nonsplit.

What makes the notion of weak total nonsplitting interesting for us is the following property
(recall that our category is a filtered tannakian category over a field K of characteristic zero):

Lemma 3.9.2. Let (X•,•) be a weakly totally nonsplit generalized extension of positive level.
Then every automorphism of (X•,•) is a scalar map, i.e. Aut((X•,•)) ∼= K×.

Proof. Let `− 1 be the level. By restricting to the action on the objects on the lowest diagonal
we have an injection

(41) Aut((X•,•)) ↪→
∏
r

Aut(Xr,r+`).

By Lemma 3.3.5, the image of this map is the set of those elements (σr,r+`) (with σr,r+` an auto-
morphism ofXr,r+`) the entries of which are compatible on the diagonal just above the lowest, i.e.
the set of elements (σr,r+`) such that for each r, the two automorphisms of Xr,r+`−1 induced by
σr−1,r+`−1 and σr,r+` respectively via the arrows Xr−1,r+`−1 � Xr,r+`−1 and Xr,r+`−1 ↪→ Xr,r+`

coincide (when they are both available). For every r, either the extension Xv
r,r+` or Xh

r,r+` is
totally nonsplit, so that by Lemma 2.2.2 every automorphism of Xr,r+` is a scalar map. Thus
each factor Aut(Xr,r+`) of the codomain of (41) is K×. Compatibility on the diagonal just
above the lowest implies that the image of (41) is the diagonal copy of K×. �

The notion of weakly totally nonsplit generalized extensions clearly descends to isomorphism
classes of generalized extensions. We are ready to deduce the final part of Theorem 1.2.1.

Proof of Theorem 1.2.1(f). Let ε ∈ S`−1(A) be weakly totally nonsplit. Let ε′ be an element of
S′`−1(A) above ε. We need to argue that the action of Γ(ε′) on Θ−1

` (ε′) is trivial. The rest of the
statement then follows from the earlier parts of the theorem.

Let (X•,•) ∈ D`−1(A) be a representative of ε′. By the previous lemma, the automorphism

group of (X•,•) consists only of the nonzero scalar maps. Thus for every (Y•,•) in Θ−1
` ((X•,•)),

the restriction map Aut((Y•,•))→ Aut((X•,•)) is surjective, so that by Lemma 3.8.3 the action

14I thank Bertrand for bringing this to my attention.
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of Aut((X•,•)) on Θ−1((X•,•))
/
∼′ fixes the class of (Y•,•). Thus the action of Aut((X•,•)) on

Θ−1
` ((X•,•))/ ∼′ and hence the action of Γ(ε′) on Θ−1

` (ε′) is trivial. �

Remark 3.9.3. Let ε ∈ S`−1(A) be a weakly totally nonsplit element. Then the torsor structures
on the fiber Θ−1

` (ε) corresponding to different choices of lifts of ε to S′`−1(A) are related to
each other in a canonical way, as follows. Let ε′1 and ε′2 be two elements of S′`−1(A) above ε.

Use the notation ∗1 (resp. ∗2) for the translation operation for the torsor structure on Θ−1
` (ε)

corresponding to the choice of ε′1 (resp. ε′2) as the lift of ε. Then there exists an automorphism

φ of
∏
r Ext

1(Ar+`, Ar) such that for every ε̃ ∈ Θ−1
` (ε) and E∈

∏
r Ext

1(Ar+`, Ar), we have

(42) E∗1 ε̃ = φ(E) ∗2 ε̃.

Indeed, choosing representatives (X
(1)
•,• ) and (X

(2)
•,• ) in D`−1 for ε′1 and ε′2, and an isomorphism

(f•,•) : (X
(1)
•,• ) → (X

(2)
•,• ), denote the restriction of (f•,•) to A by fA. The desired map φ is the

automorphism of
∏
r Ext

1(Ar+`, Ar) induced by fA by pullbacks and pushforwards (i.e. given
by φ(E) = fA ·E in our earlier notation). Note that since ε is weakly totally nonsplit, by Lemma
3.9.2 the isomorphism (f•,•) is unique up to scaling, so that φ will not depend on the choice of
(f•,•). One can use Theorem 1.2.1(f) and the formula of Lemma 3.7.3 to obtain (42).

4. Motives with maximal unipotent radicals

4.1. Setting and background. In this section we assume that T is a filtered tannakian cate-
gory over a field K of characteristic zero such that the pure objects of T (and hence their direct
sums) are semisimple. The prototype examples of this are the category of graded-polarizable
mixed Hodge structures over Q, and any reasonable tannakian category of mixed motives over a
subfield of C (e.g. those of Ayoub [3] and Nori [31], Voevodsky’s category of mixed Tate motives
over a number field, and categories of mixed motives defined via systems of realizations in [18]
and [32]). Inspired by the latter set of examples, we often refer to an object of T as a motive.

Let X be an object of T. Let u(X) be the object of T associated with the Lie algebra of
the unipotent radical of the tannakian group of X. We will take the background material on the
definition of u(X) for granted, referring the reader to §4.2 and §2 of [22] for a detailed review
of this background. We just recall here that u(X) is the canonical subobject of W−1End(X)
(where End(X) is the internal Hom Hom(X,X)) with the following property: for every fiber
functor ω from T to the category of vector space over K, if we consider the tannakian group of
X with respect to ω as a subgroup of GL(ωX), then

ωu(X) ⊂ ωW−1End(X) = W−1End(ωX)

is the Lie algebra of the kernel of the natural surjection from the tannakian group of X with
respect to ω to the tannakian group of GrWX with respect to ω. The fact that this kernel is
the unipotent radical of the tannakian group of X is because GrWX is semisimple.

Definition 4.1.1. We say u(X) is maximal or X has a maximal unipotent radical if

u(X) = W−1End(X).

As we mentioned in §1.1, the interest in motives with maximal unipotent radicals comes in
part from Grothendieck’s period conjecture. If T is the category of mixed motives over a number
field, this conjecture predicts that the transcendence degree of the field generated over Q by the
periods of a motive X should be equal to the dimension of the motivic Galois group of X (i.e.,
the dimension of the tannakian group of X with respect to the Betti or equivalently, any fiber
functor over Q). Since the dimension of the motivic Galois group of X is equal to the dimension
of its unipotent radical plus the dimension of the motivic Galois group of GrWX, in view of
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Grothendieck’s period conjecture, among all X with a given GrWX the field generated by the
periods of an X with a maximal unipotent radical should have the largest possible transcendence
degree. We refer the reader to André’s book [2] or his letter to Bertolin published at the end of
[8] for more background on Grothendieck’s period conjecture.

The aim of this section is to use the methods of §3 to study motives whose unipotent radicals
are maximal and whose associated graded objects are also isomorphic to a given graded object
A, particularly in the case where A is graded-independent (see Definition 4.3.1). The final result
(Theorem 4.4.4) significantly generalizes our work in [22, §6], where with Murty we established
the special case of this result when A = A1 ⊕ A2 ⊕ 1 with A1, A2 pure of negative increasing
weights and Ext1(1, A1) = 0.

In §4.2 below we briefly discuss the general relationship between two related notions, namely
the notion of maximality of the unipotent radical of an object and the notion of total nonsplitting
of the extensions that naturally arise from the object. There is little new information in this
discussion, and its inclusion is mostly to put the later results in a better context. In §4.3 we
define the notion of graded-independence, which is an independence axiom in the spirit of such
axioms in [22], and give our maximality criterion for graded-independent motives (Theorem
4.3.2). We then combine this in §4.4 with the weakly totally nonsplit case of Theorem 1.2.1
to give a classification result for motives with maximal unipotent radicals and a given graded-
independent associated graded. Finally, in §4.5 we consider the example of 4-dimensional mixed
Tate motives over Q to illustrate the results.

4.2. Maximality and total nonsplitting. The following lemma summarizes some aspects of
the relationship between maximality of unipotent radicals and total nonsplitting of extensions
coming from the weight filtration. Recall that throughout, T is a filtered tannakian category
over a field of characteristic zero in which pure objects are semisimple. The objects of T are
referred to as motives.

Lemma 4.2.1. Let X be a motive with more than one weight.
(a) If u(X) is maximal, then for every integers ` < m < n the extension

(43) 0 WmX/W`X WnX/W`X WnX/WmX 0

is totally nonsplit.
(b) If GrWX = GrWmX ⊕GrWn X with m < n, then u(X) is maximal if and only if the extension

(44) 0 GrWmX X GrWn X 0

is totally nonsplit. (Thus when X has only two weights, the necessary condition of part (a) for
maximality of u(X) is also sufficient.)
(c) Taking T to be the category of graded-polarizable rational mixed Hodge structures, there
exists an object X of T with 3 weights for which all of the extensions of part (a) are totally
nonsplit, but u(X) is not maximal. (Thus in general, the condition of part (a) for maximality
is not sufficient.)

We first discuss parts (b) and (c). The former is by a result of Hardouin ([30, Theorem 2],
see also Theorem 2.1 of the unpublished article [29]), which was proved earlier by Bertrand for
the special case of D-modules [10, Theorem 1.1]. In the setting of part (b) with two weights
m < n (and semisimple GrWX), Hardouin’s result asserts that u(X) is the smallest subobject
of

W−1End(X) = Hom(GrWn X,Gr
W
mX)
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with the following property: the extension (44), considered as an element of

Ext1(1, Hom(GrWn X,Gr
W
mX))

via the isomorphism (12), splits after pushing forward along the quotient map

Hom(GrWn X,Gr
W
mX)→ Hom(GrWn X,Gr

W
mX)/u(X).

On recalling the definition of total nonsplitting (see Definition 2.2.1), the statement in (b) is
now immediate.15

As for part (c), we refer the reader to §5.2 of [23] for an example with X being a 1-motive.
Turning our attention to part (a), let us first recall a result from [22].

Theorem 4.2.2 (Theorem 4.9.1 of [22]). Let X be an object of T. Let Em(X) be the class of
the extension

(45) 0 WmX X X/WmX 0

considered as an element of

Ext1(1, Hom(X/WmX,WmX))

via the canonical isomorphism (12). Let

um(X) := u(X) ∩Hom(X/WmX,WmX),

where Hom(X/WmX,WmX) is considered as a subobject of W−1End(X) in the natural way.
Then for every subobject L of Hom(X/WmX,WmX) one has

um(X) ⊂ L

if and only if the pushforward Em(X)/L of Em(X) along the quotient map

Hom(X/WmX,WmX)→ Hom(X/WmX,WmX)/L

is in the image of the obvious map

Ext1〈(X/WmX)⊕WmX〉
(
1, Hom(X/WmX,WmX)/L

)
↪→ Ext1

(
1, Hom(X/WmX,WmX)/L

)
.

Here and later in the paper, the notation 〈Y 〉 means the tannakian subcategory generated
by an object Y of T (i.e., the smallest full tannakian subcategory of T containing Y and closed
under subquotients). The notation Ext1〈Y 〉 means the Ext1 group for the category 〈Y 〉.

Referring to the setting of the theorem, note in particular that the result implies that if a
subobject L of Hom(X/WmX,WmX) has the property that the pushforward Em(X)/L splits,
then L contains um(X). Thus one obtains the following corollary:

Corollary 4.2.3. With the notation and setting as in Theorem 4.2.2, if

um(X) = Hom(X/WmX,WmX),

then Em(X) (or equivalently, the extension (45)) is totally nonsplit.

We are ready to deduce part (a) of Lemma 4.2.1.

15Both Hardouin and Bertrand consider extensions of 1 by a semisimple object L. The version of the result
that allows for extensions of a semisimple object N by a semisimple object L (which is what is being used here)
can be found in [21, Corollary 3.4.1].
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Proof of Lemma 4.2.1(a). Let u(X) = W−1End(X). The inclusion 〈WnX/W`X〉 ⊂ 〈X〉 induces
a surjection from the tannakian group of X to the tannakian group of WnX/W`X, which in
turn induces a surjection u(X)→ u(WnX/W`X). This surjection fits in a commutative diagram

u(X) u(WnX/W`X)

W−1End(X) W−1End(WnX/W`X),

where the vertical arrows are the canonical inclusions and the bottom horizontal arrow is the
map that after applying a fiber functor ω, it sends an element of W−1End(ωX) to its induced
endomorphism of WnωX/W`ωX. It follows that u(WnX/W`X) is also maximal. The assertion
now follows from the previous corollary (applied to WnX/W`X instead of X). �

Remark 4.2.4. The hypothesis of semisimplicity of pure objects of T is not needed for Theorem
4.2.2 (and is not assumed in Theorem 4.9.1 of [22]). Subsequently, Corollary 4.2.3 and Lemma
4.2.1(a) are true in arbitrary filtered tannakian categories over fields of characteristic zero.
However, Lemma 4.2.1(b) needs the hypothesis of semisimplicity of pure objects.

4.3. Maximality of unipotent radicals for graded-independent motives. In this sub-
section we study maximality of unipotent radicals of graded-independent motives, a class of
motives defined below which are the focus of the rest of the paper. We will prove a necessary
and sufficient condition for maximality of unipotent radicals of such motives.

We start with the definition of the notion of graded-independence.

Definition 4.3.1. Let X be a nonzero motive. Denote the weights of X by p1 < · · · < pk.
Consider the k objects

(46) Cr := Hom(GrWpr+1
X,GrWprX) (1 ≤ r ≤ k − 1)

and

(47) C0 :=
⊕
j−i>1

Hom(GrWpjX,Gr
W
pi X).

We say that the motive X is graded-independent if for every distinct r, r′ (0 ≤ r, r′ ≤ k − 1),
the two objects Cr and Cr′ do not have any nonzero isomorphic subquotients (or equivalently,
subobjects since GrWX is semisimple).

The property is an “independence axiom” in the spirit of such axioms in [22]. In general,
the reason such properties are of interest is twofold. Firstly, they force GrWu(X) to decompose
in a way that makes it easier to study. Secondly, they are not far too restrictive, in the sense
that they are satisfied in some very interesting situations. For instance, the property above (as
well as all the independence axioms in [22]) is satisfied as long as the weights of X are sufficiently
spread out so that the numbers pi − pj are all distinct as the integers i, j vary in 1 ≤ i < j ≤ k.

We now state our maximality criterion:

Theorem 4.3.2. Let X be a graded-independent motive. Let p1 < · · · < pk be the weights of
X. Set p0 := p1 − 1 (so that Wp0(X) = 0). Then the following two statements are equivalent:

(i) u(X) is maximal.
(ii) For every integer 1 ≤ r ≤ k − 1, the extension

(48) 0 GrWprX
Wpr+1X

Wpr−1X
GrWpr+1

X 0

is totally nonsplit.
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Proof. The fact that (i) implies (ii) is clear and in fact, does not require the graded-independence
condition; see Lemma 4.2.1(a). We will prove that (ii) implies (i).

It is enough to show that

GrWu(X) = GrWW−1End(X).

The graded-independence condition (on recalling that 〈GrWX〉 is semisimple) guarantees that
the subobject GrWu(X) of

GrWW−1End(X) =
⊕
i<j

Hom(GrWj X,Gr
W
i X)

decomposes according to the decomposition of GrWW−1End(X) as the direct sum of the k
objects (46) and (47) of Definition 4.3.1. For each 1 ≤ r ≤ k − 1, consider the composition

u(X) � u(Wpr+1X/Wpr−1X) ↪→ Hom(GrWpr+1
X,GrWprX),

where the first map is induced by the inclusion of 〈Wpr+1X/Wpr−1X〉 in 〈X〉 and the second map
is the natural inclusion. Since (48) is totally nonsplit, by Lemma 4.2.1(b) this second arrow is an
equality, so that the composition is surjective. Applying GrW we get a surjection of GrWu(X)
onto Hom(GrWpr+1

X,GrWprX). In view of the decomposition of GrWu(X) as the direct sum of
its intersections with the k objects of Definition 4.3.1 and the fact that these k objects do not
have any nonzero isomorphic subquotients, it follows that GrWu(X) contains

Hom(GrWpr+1
X,GrWprX)

for all 1 ≤ r ≤ k − 1. Since GrWW−1End(X) is generated as a Lie algebra by these k − 1
objects, the result follows. �

Remark 4.3.3. The graded-independence hypothesis is crucial for condition (ii) of the previous
result to guarantee that u(X) is maximal. See Lemma 4.2.1(c).

4.4. Motives with maximal unipotent radicals and a prescribed graded-independent
associated graded. In this subsection we combine our maximality criterion from §4.3 with our
work in §3.

Fix k ≥ 2. Let A1, . . . , Ak be nonzero pure motives, with Ai of weight pi and p1 < · · · < pk.
Set

A :=
⊕

1≤i≤k
Ai.

We will use the notation and language of §3. Thus S(A) denotes the set of isomorphism classes
of motives whose associated graded is isomorphic to A, and for each 1 ≤ ` ≤ k − 1 by S`(A)
we denote the set of ∼-equivalence classes (i.e. isomorphism classes) of generalized extensions
of level ` of A. The truncation map from level ` to level `− 1 is denoted by Θ`.

Notation 4.4.1. Let S∗(A) be the subset of S(A) consisting of the isomorphism classes of
motives X with maximal u(X) and GrWX isomorphic to A.

Our goal is to give a characterization of the set S∗(A) when A is graded-independent.

Earlier we defined the notion of a weakly totally nonsplit generalized extension (Definition
3.9.1). We now define a stronger variant of the notion.

Definition 4.4.2. We say a generalized extension (X•,•) of any level is totally nonsplit if the

extensions Xv
m,n and Xh

m,n (see Notation 3.3.3) are totally nonsplit for every pair (m,n) in the
eligible range. (Here, (m,n) need not correspond to an entry on the lowest diagonal.)
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In level 1, the two notions of total nonsplitting and weak total nonsplitting coincide. In any
level, a totally nonsplit generalized extension is weakly totally nonsplit. It is not difficult to see
that the converse is not true in general. The notion of a totally nonsplit generalized extension
descends to the isomorphism classes of such extensions.

It is clear from the definition that if a generalized extension is totally nonsplit, then so are
its truncations. In the graded-independent case, the converse is also true:

Lemma 4.4.3. Let A ( = the direct sum of the Ai, as above) be graded-independent and (X•,•)
a generalized extension of A of level ` ≥ 2. If the truncation Θ`((X•,•)) is totally nonsplit, then
so is (X•,•).

Proof. We show that if (Xi,j)j−i≤2 (i.e the truncation of (X•,•) to level 1) is totally nonsplit,
then so is (X•,•); this will establish the result since total nonsplitting of Θ`((X•,•)) implies total
nonsplitting of the truncation to level 1.

Suppose that (Xi,j)j−i≤2 is totally nonsplit. By definition, this means that each of the
extensions

(49) 0 Ai Xi−1,i+1 Ai+1 0

is totally nonsplit. Consider an object Xr−1,r+` on the lowest diagonal of (X•,•). By Lemma

3.3.1 we have a canonical isomorphism from GrWXr−1,r+` to the direct sum of Ar, Ar+1, . . .,
Ar+`. Denoting this canonical isomorphism by φ, from Lemma 3.5.3(b) we know that the two
generalized extensions (i) the part of (X•,•) to the above and right of Xr−1,r+` (i.e. consisting
of the Xi,j with i ≥ r− 1 and j ≤ r+ `) and (ii) ext(Xr−1,r+`, φ) (i.e. the generalized extension
associated with (Xr−1,r+`, φ), see §3.2) are ∼′-equivalent. It follows that after identifying

GrWXr−1,r+`
∼=

⊕
r≤i≤r+`

Ai

via φ, for each i with r ≤ i < r + ` the class of the extension

0 GrWpi Xr−1,r+` Wpi+1Xr−1,r+`/Wpi−1Xr−1,r+` GrWpi+1
Xr−1,r+` 0

coming from the weight filtration on Xr−1,r+` is equal to the class of the extension (49). In
particular, the former extension is totally nonsplit for all r ≤ i < r + `. Since A is graded-
independent, so is Xr−1,r+`, so that by Theorem 4.3.2, Xr−1,r+` has a maximal unipotent radical.
It now follows from Lemma 4.2.1(a) that all of the extensions coming from the weight filtration
on Xr−1,r+` are totally nonsplit, so that ext(Xr−1,r+`, φ) is totally nonsplit. Being isomorphic
to ext(Xr−1,r+`, φ), the part of (X•,•) to the above and right of Xr−1,r+` is thus also totally
nonsplit. This is true for all r, hence (X•,•) is totally nonsplit. �

We are ready to give our classification result for graded-independent motives with maximal
unipotent radicals.

Theorem 4.4.4. For each 1 ≤ ` ≤ k − 1, denote the set of all totally nonsplit elements of
S`(A) by S∗` (A). Recall that S∗(A) is the subset of S(A) consisting of the isomorphism classes
of objects with maximal u.
(a) We have a succession of maps

S∗k−1(A)
Θk−1−−−→ S∗k−2(A)

Θk−2−−−→ S∗k−3(A)
Θk−3−−−→ · · · Θ3−−−→ S∗2(A)

Θ2−−−→ S∗1(A)

given by truncation. There is a natural bijection

(50) S∗1(A) ∼=
{

(Er) ∈
∏
r

Ext1(Ar+1, Ar) : each Er is totally nonsplit

}/
Aut(A),
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with the action of Aut(A) given by pushforwards and pullbacks.
(b) Suppose that A is graded-independent. Then the following statements are true:

(i) There is a canonical bijection

S∗(A) ∼= S∗k−1(A).

(ii) For every ` ≥ 2, every nonempty fiber of Θ` : S∗` (A)→ S∗`−1(A) is a torsor over∏
r

Ext1(Ar+`, Ar).

(iii) For every ` ≥ 2, if the Ext2 groups

Ext2(Ar+`, Ar)

vanish for all 1 ≤ r ≤ k − `, then Θ` : S∗` (A)→ S∗`−1(A) is surjective.

Proof. (a) The truncation of a totally nonsplit generalized extension is totally nonsplit, so the
truncation maps between the S`(A) restrict to maps between the S∗` (A). The bijection (50) is
the restriction of the bijection of Lemma 3.5.1(b).
(b) The canonical bijection between S∗(A) and S∗k−1(A) is the restriction of the bijection

(51) S(A)→ Sk−1(A)

of Lemma 3.5.3(e), which is given by sending the isomorphism class ofX to the isomorphism class
of the generalized extension ext(X,φ) associated with a pair (X,φ), where φ is any isomorphism
GrWX → A. The fact that (51) restricts to a map S∗(A) → S∗k−1(A) is by Lemma 4.2.1(a).
The fact that this restricted map is surjective is by Theorem 4.3.2.

By Lemma 4.4.3, the fiber of S∗` (A)→ S∗`−1(A) above any element ε ∈ S∗`−1(A) is the same
as the fiber of S`(A) → S`−1(A) above ε. The assertions in (ii) and (iii) now follow from parts
(f) and (c) of Theorem 1.2.1. �

We note that the special case of Theorem 4.4.4 when k = 3, A3 = 1, and Ext1(1, A1) = 0
was proved in [22, §6] (see §6.7 therein).

4.5. Example: Mixed Tate motives with four weights and maximal unipotent rad-
icals. As mentioned above, the case of Theorem 4.4.4 with 3 weights was handled in [22]
under some extra hypotheses. As an example, there we gave a homological classification of
3-dimensional graded-independent mixed Tate motives over Q with three weights and maximal
unipotent radicals ([22, §6.8]). In this final subsection, as an example that illustrates Theorem
4.4.4 in a case with more than 3 weights we take T to be the category of mixed Tate motives
over Q (say, of Voevodsky) and give a classification of isomorphism classes of all 4-dimensional
graded-independent mixed Tate motives over Q with four weights and maximal unipotent rad-
icals. As we shall see, this will lead to some interesting questions about periods, building on
those that arose in [22].

We may assume that the highest weight of our motives is 0. Thus we are interested in the
isomorphism classes of motives X over Q whose associated graded is isomorphic to

(52) A := Q(a+ b+ c)⊕Q(a+ b)⊕Q(a)⊕ 1,
where a, b and c are positive integers. Such a motive is graded-independent if and only if a, b, c
are distinct, a+b 6= c and b+c 6= a. In view of Lemma 3.5.1 and the fact that the automorphism
group of each Q(n) is canonically isomorphic to Q× we easily see that

S1(A) ∼= Ext1(Q(a+ b),Q(a+ b+ c))/Q× × Ext1(Q(a),Q(a+ b))/Q× × Ext1(1,Q(a))/Q×

∼= Ext1(1,Q(c))/Q× × Ext1(1,Q(b))/Q× × Ext1(1,Q(a))/Q×,
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where in all of these the action of Q× is via its action as the automorphism group of the object in
the first entry of the corresponding Ext group via pushforward, which coincides with the action
of Q× as the group of units of the scalar field of the vector space structure on the Ext group.
Taking the orbits of nonsplit ( = totally nonsplit, in this particular situation) extensions in each
factor above we obtain the subset S∗1(A) of S1(A) consisting of the totally nonsplit elements.

Before proceeding any further, let us recall the characterization of the Ext groups for the
category of mixed Tate motives over Q (see [19], for instance). The Ext2 groups all vanish. We
have

dimQExt
1(1,Q(n)) =

{
1 if n is odd and > 1

0 if n is even or ≤ 0

and

(53) Ext1(1,Q(1)) ∼= Q× ⊗Q.
All of these descriptions remain the same in the category of mixed Tate motives over Z, with
the exception of the description of Ext1(1,Q(1)), which is zero for the category of mixed Tate
motives over Z.

For any odd integer n > 1, the middle objects of all nonsplit extensions of 1 by Q(n) are
isomorphic, as all nonzero extension classes are in the same Q×-orbit. We refer to this middle
object (which is unique up to isomorphism) as the motive of ζ(n) and denote it by Zn. Thanks
to Deligne [18] (also see [19]), we know that after choosing suitable bases for Betti and de Rham
realizations, the period matrix of Zn is(

(2πi)−n (2πi)−nζ(n)
0 1

)
.

The extensions of 1 by Q(1) are given by Kummer motives. Under the isomorphism (53), for
any rational r > 1 the extension class corresponding to r ⊗ 1 arises from the weight filtration

on the relative homology H1(Gm, {1, r}) (or equivalently, the 1-motive [Z 17→r−−−→ Gm], see [16]).
We denote this motive by Lr and refer to it as the motive of log(r); it has a period matrix of
the form (

(2πi)−1 (2πi)−1 log(r)
0 1

)
.

A complete set of (non-equivalent) representatives for the nonzero orbits of Ext1(1,Q(1))/Q×
consists of the extension classes corresponding to the elements r ⊗ 1, as r runs through the
set of rationals > 1 that are not of the form sn for any s ∈ Q and integer n > 1. The Lr,
as r runs through said set, give a complete set of representatives for isomorphism classes of
non-semisimple motives with associated graded isomorphic to Q(1)⊕ 1.

To simplify the notation, we shall allow a few instances of abuse of notation and terminology.
Given an object X whose associated graded is isomorphic to Q(n) ⊕ 1, there is a well-defined
element of Ext1(1,Q(n))/Q× associated with it. We will use the same notation for the object
and this associated element. We will also use the same notation for a non-pure motive and its
Tate twists (i.e. for X and X(n), as long as X is not pure). The Tate twist in question will
always be clear from our context. Finally, we might speak about (say) Zn as an extension, in
which case we will mean an extension of 1 by Q(n) with Zn as the middle object, or a Tate
twist of this extension.

We now return to the problem of classifying the isomorphism classes of motives with max-
imal unipotent radicals and associated graded isomorphic to (52), where a, b, c are distinct
positive integers, a + b 6= c and b + c 6= a. If we want, we may also restrict ourselves to one of
the cases c > a or a > c, as one case can be transformed to the other via dualization followed
by an appropriate Tate twist.
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By Theorem 4.4.4 we have truncation maps

(54) S∗(A) ∼= S∗3(A) � S∗2(A) � S∗1(A),

which are surjective because the Ext2 groups vanish. Denoting the set of nonsplit extensions of
1 by Q(n) by Ext1(1,Q(n))∗, we have

(55) S∗1(A) ∼= Ext1(1,Q(c))∗/Q× × Ext1(1,Q(b))∗/Q× × Ext1(1,Q(a))∗/Q×.

Since Ext1(1,Q(n)) vanishes when n is even and is nonzero otherwise for n > 0, the set S∗1(A)
and hence S∗(A) is nonempty if and only if a, b, c are all odd (in which case, the conditions
a+ b 6= c and b+ c 6= a will be automatic).

Fix odd (distinct positive) a, b, c.
Case I: Suppose 1 /∈ {a, b, c}. Then S∗1(A) is a singleton. The set S∗2(A) is a torsor over

Ext1(1,Q(a+ b))× Ext1(Q(a),Q(a+ b+ c)),

which is zero by the description of Ext1 groups and our parity conditions. In other words, S∗2(A)
is also a singleton. It consists of the class of a generalized extension of the form

(56)

Q(a+ b+ c)
Zc Q(a+ b)
Zc,b Zb Q(a)

Zb,a Za 1,

where we have dropped the arrows from the writing and as mentioned earlier, are not keeping
track of Tate twists in the notation for the non-pure motives. The motives called Zb,a and Zc,b
are respectively, the motives (unique up to isomorphism) that fit in a blended extension of Za
by Zb and a blended extension of Zb by Zc. The motive Zb,a has a period matrix of the form(2πi)−a−b (2πi)−a−bζ(b) (2πi)−a−bzb,a

(2πi)−a (2πi)−aζ(a)
1

 ,

where zb,a (not uniquely defined, as it can change according to the choice of bases) is another
period. By Theorem 4.3.2 (or its special case [22, Corollary 6.7.1]), the objects on the lowest
diagonal of the generalized extension (56) have maximal unipotent radicals, and hence the
motivic Galois group of each has dimension 4. Thus Grothendieck’s period conjecture predicts
that zb,a , ζ(b), ζ(a), and π form an algebraically independent set. Similarly, the four numbers
zc,b , ζ(c), ζ(b), and π should be algebraically independent.

We now consider completions of the generalized extension class above to one of level 3. The
fiber of S∗(A)→ S∗2(A) above the class of (56), which is simply all of S∗(A) because S∗2(A) is a
singleton, is a torsor over

Ext1(1,Q(a+ b+ c)) ' Q .

In particular, we have a non-canonical bijection S∗(A) ' Q.
A discussion of the periods is in order. After choosing suitable bases for Betti and de Rham

realizations of a motive in the isomorphism class ε ∈ S∗(A), the period matrix of ε is of the form
(2πi)−a−b−c (2πi)−a−b−cζ(c) (2πi)−a−b−czc,b (2πi)−a−b−czc,b,a(ε)

(2πi)−a−b (2πi)−a−bζ(b) (2πi)−a−bzb,a
(2πi)−a (2πi)−aζ(a)

1

 .

(Again, zc,b,a(ε) is only well-defined to the extent allowed by its dependence on the choice of
bases.)
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The motivic Galois group of ε has a maximal unipotent radical, so that it has dimension
7. Thus Grothendieck’s period conjecture predicts that zc,b,a(ε), zc,b, zb,a, the zeta values in the
matrix, and π are algebraically independent. Since all of the discussion above can be thought
of as having taken place in the category of mixed Tate motives over Z (as we did not use the
motives of logarithms in the process), by a theorem of Brown [12] all of the above unknown
periods are in the algebra generated by multiple zeta values and 1/(2πi).

By Theorem A.1 of the appendix, for any ε ∈ S∗(A) we have

Ext1〈ε〉(1,Q(a+ b+ c)) = 0.

Here, 〈ε〉 means the subcategory generated by any object in ε, or equivalently, by all objects in
ε. It follows that ζ(a+b+c) should also be algebraically independent from the 7 aforementioned
periods zc,b,a(ε), zc,b, etc. Indeed, this is because Za+b+c is not in 〈ε〉, so that the surjection from
the motivic Galois group of ε⊕Za+b+c (where with abuse of notation, ε refers to a motive in the
isomorphism class) to the motivic Galois group of ε is not an isomorphism. The two groups have
the same maximal reductive quotients and hence the unipotent radical of the former must be
strictly larger than the latter’s, so that the dimension of the motivic Galois group of ε⊕Za+b+c

is strictly larger than that of ε.
Case II: Suppose 1 ∈ {a, b, c}. This is the more interesting case, as it involves the motives

Lr of logarithms and hence the periods that arise may not be multiple zeta values or even their
cyclotomic analogues.

We will consider the case b = 1. The other two cases, which are related to one another by
duality and Tate twists, can be considered similarly.

Again we start forming our generalized extensions from the smallest level, working back-
wards through the maps of (54). The set S∗1(A) is no longer a singleton; instead, it is in
a one-to-one correspondence with the set of isomorphism classes of Kummer motives. More
precisely, from (55) we have

S∗1(A) ∼= {Zc} × {Lr}r × {Za},
where the Lr, as described earlier, form a set of representatives for the isomorphism classes of
Kummer motives. Once we fix r, the lifting to S∗2(A) involves no choices (as in Case I). There
is a unique element of S∗2(A) with Zc, Lr, and Za on its level 1 diagonal:

(57)

Q(a+ 1 + c)
Zc Q(a+ 1)
M ′c,r Lr Q(a)

Ma,r Za 1.

Here, Ma,r (resp. M ′c,r) is the object (unique up to isomorphism) that fits as the middle object
of a blended extension of Za by Lr (resp. Lr by Zc). The object Ma,r is the unique mixed
Tate motive over Q with associated graded isomorphic to Q(a + 1) ⊕ Q(a) ⊕ 1 and a maximal
unipotent radical such that its corresponding extension of Q(a) by Q(a + 1) is a Tate twist of
the motive of log(r). There is a similar description for M ′c,r (now with associated graded a twist
of Q(c+1)⊕Q(1)⊕1). By their uniqueness properties, M ′c,r is isomorphic to a Tate twist of the
dual to Mc,r. We refer the reader to [22, §6.8] for a more detailed discussion of these motives.
(The notation here for Ma,r and M ′c,r is consistent with that in loc. cit., except for a slight
difference in the indices.)

The period matrix of Ma,r with respect to suitable choices of bases is of the form(2πi)−a−1 (2πi)−a−1 log(r) (2πi)−a−1pa,r
(2πi)−a (2πi)−aζ(a)

1

 .
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The entry pa,r is a period which assuming Grothendieck’s conjecture, together with ζ(a), log(r),
and π form an algebraically independent set. Here, due to the presence of the motive of log(r) in
the construction, the motive Ma,r is not a mixed Tate motive over Z, but rather one over Z[1/r]
(i.e. with good reduction outside r). In the cases r = 2, 3, 6, Deligne has proved in [20] that
the category of mixed Tate motives over OQ(µr)[1/r] (i.e. the full subcategory of the category of
mixed Tate motives over Q(µr) consisting of objects that are unramified outside r) is generated
by the motivic fundamental group of Gm − µr. This implies that the unknown period pa,r in
these cases is in the Q(µr)-algebra generated by 1/(2πi) and cyclotomic multiple zeta values
(see [20] and [19]). However, as Deligne explains in the Introduction of [20], these cases of r
are in fact exceptional: if r is a positive integer that has a prime divisor ≥ 5, Goncharov [26]
has shown that the motivic fundamental group of Gm − µr does not generate the category of
mixed Tate motives over OQ(µr)[1/r]. The upshot of these remarks is that when r /∈ {2, 3, 6},
the nature of pa,r and other unknown periods that appear below seems more mysterious.

The fiber of S∗(A)→ S∗2(A) above the class of (57) is a torsor over

Ext1(1,Q(a+ 1 + c)) ' Q .

Thus, having fixed r, we obtain a collection of non-isomorphic objects parametrized (non-
canonically) by the Ext group above. Each ε ∈ S∗(A) above (57) (after making the relevant
choices) has a period matrix of the form

(2πi)−a−1−c (2πi)−a−1−cζ(c) (2πi)−a−1−cp′c,r pa,r,c(ε)
(2πi)−a−1 (2πi)−a−1 log(r) (2πi)−a−1pa,r

(2πi)−a (2πi)−aζ(a)
1

 .

Assuming Grothendieck’s period conjecture, the numbers pa,r,c(ε), pa,r, p
′
c,r (closely related to

pc,r), ζ(c), ζ(a), log(r), and π are algebraically independent.
As pointed out earlier, the nature of the unknown periods is rather mysterious. It would

be interesting to somehow compute them. We should point out that a geometric construction
of these motives (and more generally, of non-semisimple mixed Tate motives with a prescribed
associated graded with few weights) seems out of reach at the moment. See [13] for more details.

Theorem A.1 again implies that for any ε ∈ S∗(A) above (57), there are no nontrivial
extensions of 1 by Q(a+1+c) in the category generated by ε. Thus as in Case I, Grothendieck’s
period conjecture predicts that ζ(a+1+c) and the 7 numbers pa,r,c(ε), pa,r, etc. are algebraically
independent. It will be interesting to understand the role that ζ(a+1+c) plays in the formation
of pa,r,c(ε) as ε varies in the fiber of S∗(A) → S∗2(A) above (57). Does it reflect the role that
Za+1+c plays for this fiber via the torsor structure?

Appendix A. A vanishing result for Ext groups in categories generated by
motives with maximal unipotent radicals

In this appendix we prove another result about motives with maximal unipotent radicals.
This result was used in the discussion of periods in §4.5. We shall work in the general setting of
§4 prior to §4.5: T is a filtered tannakian category over a field K of characteristic zero in which
pure objects are semisimple. As before, we refer to objects of T as motives.

Suppose that a motive X has k weights p1 < · · · < pk. Suppose that u(X) is maximal.
Then in particular, the extensions (48) are nonsplit, so that the tannakian subcategory 〈X〉 of
T generated by X has a nontrivial extension of GrWpr+1

(X) by GrWpr (X) for each 1 ≤ r ≤ k − 1.

The following result concerns the Ext1 groups in 〈X〉 between the non-consecutive graded pieces
of X.
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Theorem A.1. Let X be a graded-independent motive with a maximal unipotent radical. Let
p1 < · · · < pk be the weights of X. Then for every i, j with i ≤ j − 2 we have

Ext1〈X〉(Gr
W
pjX,Gr

W
pi X) = 0.

The proof uses the following characterization of Ext1 groups in categories of representations
of linear algebraic groups:

Proposition A.2. Let G be a linear algebraic group over K (a field of characteristic zero).
Denote the category of finite-dimensional representations of G over K by Rep(G). Denote the
Ext1 groups for Rep(G) by Ext1G.

Suppose that G = UoR where U is unipotent and R is reductive. Let u be the Lie algebra of
U , considered as an object of Rep(G) through the adjoint action, and let uab be the abelianization
of u, also considered as an object of Rep(G) via the induced action (note that uab is semisimple,
as the action of G on uab factors through an action of R). Then for every semisimple object N
of Rep(G) with Hom(1, N) = 0, there is a canonical isomorphism

Ext1G(1, N) ∼= Hom(uab, N).

(In both instances, Hom := HomRep(G) = HomRep(R).)

The special case of this statement where R is the multiplicative group Gm has been used
frequently in the literature in the context of mixed Tate motives (e.g. see [19, §A.13]). The more
general case stated here is also well known to experts, although unfortunately I am not aware of
a reference where it is explicitly written (at least, in this form). Nonetheless, in the interest of
saving space, here we skip the proof. The result can be obtained from group cohomology using
the analogue for linear algebraic groups of the Hochschild-Serre spectral sequence (see equation
(39) of [28, §16])16. An explicit version of the argument that does not require familiarity with
group cohomology can be found in the appendix of the slightly more expanded version of this
article available on arXiv (arXiv:2307.15487v2).

Taking Proposition A.2 for granted, we now prove Theorem A.1. Take G to be the tannakian
group of X with respect to a fiber functor ω with values in the category of vector spaces over
K. Take R to be the tannakian group of GrWX (which is a semisimple object, by assumption)
with respect to ω, and U the unipotent radical of G. Then U is the kernel of the natural map
G � R, and the Lie algebra u of U is the image of u(X) under ω. Moreover, the G-action on

u corresponding to u(X) under the equivalence of categories 〈X〉 ω−→ Rep(G) is given by the
adjoint action. Choosing a Levi factor of G we may identify G = U oR.

Let uab(X) be the abelianization of u(X); it is a semisimple quotient of u(X), and the
quotient map u(X) → uab(X) becomes the quotient map u → uab after applying ω. In view of

Proposition A.2 and the equivalence of categories 〈X〉 ω−→ Rep(G), for every semisimple object
N of 〈X〉 with Hom(1, N) = 0 there is a canonical isomorphism

(58) Ext1〈X〉(1, N) ∼= Hom(uab(X), N).

(Hom on the right hand side is both for 〈X〉 and T.)
We are ready to deduce the result. By our assumptions, u(X) = W−1End(X). Thus

GrW [u(X), u(X)] = GrWW−2End(X) =
⊕
i≤j−2

Hom(GrWpjX,Gr
W
pi X).

Applying the functor GrW to the sequence

0 [u(X), u(X)] u(X) uab(X) 0,

16I thank Richard Hain for bringing this to my attention.
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on recalling that uab(X) is semisimple we obtain

uab(X) ∼= GrWuab(X) ∼=
⊕
j

Hom(GrWpjX,Gr
W
pj−1

X).

Hence, thanks to the graded-independence hypothesis, for every i, j with i ≤ j − 2 there are no
nonzero morphisms from uab(X) to Hom(GrWpjX,Gr

W
pi X). For every such i, j we thus have

Ext1〈X〉(Gr
W
pjX,Gr

W
pi X) ∼= Ext1〈X〉(1, Hom(GrWpjX,Gr

W
pi X)) = 0

by (58).
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