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Abstract. Let T be a neutral Tannakian category over a field of characteristic zero with
unit object 1, and equipped with a filtration W• similar to the weight filtration on mixed
motives. Let M be an object of T, and u(M) ⊂ W−1Hom(M,M) the Lie algebra of the
kernel of the natural surjection from the fundamental group of M to the fundamental group
of GrWM . A result of Deligne gives a characterization of u(M) in terms of the extensions
0 −→ WpM −→ M −→ M/WpM −→ 0: it states that u(M) is the smallest subobject of
W−1Hom(M,M) such that the sum of the aforementioned extensions, considered as exten-
sions of 1 by W−1Hom(M,M), is the pushforward of an extension of 1 by u(M). In this
article, we study each of the above-mentioned extensions individually in relation to u(M).
Among other things, we obtain a refinement of Deligne’s result, where we give a sufficient
condition for when an individual extension 0 −→ WpM −→ M −→ M/WpM −→ 0 is the
pushforward of an extension of 1 by u(M). In the second half of the paper, we give an ap-
plication to mixed motives whose unipotent radical of the motivic Galois group is as large as
possible (i.e. with u(M) = W−1Hom(M,M)). Using Grothedieck’s formalism of extensions
panachées we prove a classification result for such motives. Specializing to the category of
mixed Tate motives we obtain a classification result for 3-dimensional mixed Tate motives
over Q with three weights and large unipotent radicals.

1. Introduction

1.1. About this paper. Let T be a neutral Tannakian category over a field K of charac-
teristic zero, equipped with a weight filtration W• similar to the weight filtration on mixed
motives (functorial, increasing, finite on every object, exact, and respecting the tensor struc-
ture). For example, one might keep in mind the category of mixed Hodge structures. In fact,
this is a concrete example that illustrates well the main results.

Let M be an object of T, and u(M) the Lie algebra of the kernel of the natural map
from the fundamental group of M to that of GrWM . A result of Deligne describes u(M) in
terms of extensions that arise naturally from the weight filtration of M . For each integer p,
let Ep(M) be the extension

(1) 0 −→ WpM −→ M −→ M/WpM −→ 0,

considered as an element in Ext1(1,W−1End(M)) (where End(M) means Hom(M,M), the
latter being the internal Hom). Deligne characterizes u(M) in terms of the sum

E(M) :=
∑
p

Ep(M) ∈ Ext1(1,W−1End(M)).

The first half of this paper refines this by developing conditions under which the individual
extensions Ep(M) can be related to u(M).

The second half of the paper specializes to the setting of mixed motives and gives an
application of the first half to mixed motives whose unipotent radical of the motivic Galois
group is as large as possible (i.e. with u(M) = W−1End(M)). These motives are in particular
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interesting for the transcendence properties of their periods: in view of Grothendieck’s period
conjecture the field generated by their periods should have the highest possible transcendence
degree among all motives with the same associated graded.

A particularly striking implication of our result is that a suggestion of Euler about ζ(3)
is incompatible with Grothendieck’s period conjecture. In a 1785 paper [24], Euler speculated
that there may be rational numbers α and β and an expression of the form

ζ(3) = α(log 2)3 + βπ2(log 2).

See the article of Dunham [22] which gives a very readable account of this statement and
Euler’s remarkable work on evaluating the Riemann zeta function at integer arguments.

In section 6.8, we construct a mixed Tate motive with periods (essentially) ζ(3), log 2, π
and a fourth period. Moreover, we use our results to show that the dimension of the Galois
group in this case is 4. Thus, the period conjecture would predict that these four periods are
algebraically independent, and this is incompatible with Euler’s expectation stated above. A
more detailed description of this mixed Tate motive is given below.

1.2. u(M) and the extensions Ep(M). To be more precise, u(M) is the subobject of
W−1End(M) with the property that if ω is any fiber functor over K, then

ω u(M) ⊂ ωW−1End(M) = W−1End(ωM)

is the Lie algebra of

U(M,ω) := ker
(
G(M,ω)

restriction−−−−−−→ G(GrWM,ω)
)
,

where G(−, ω) denotes the fundamental group of the indicated object with respect to ω. If
GrWM is semisimple (which will be the case if T is a category of motives), then U(M,ω) is
the unipotent radical of G(M,ω).

As stated above, Deligne (see [33, Appendix]) describes u(M) in terms of extensions
that arise naturally from the weight filtration on M : For each integer p, let Ep(M) be the
p-th extension class of M given by (1), considered as an extension of the unit object 1 by
Hom(M/WpM,WpM). Pushing this extension forward along the natural injection

Hom(M/WpM,WpM) −→ W−1End(M)

we get an extension of 1 by W−1End(M), which we also denote by Ep(M). The total extension
class of M is then the extension

E(M) :=
∑
p

Ep(M) ∈ Ext1(1,W−1End(M)).

Deligne’s result asserts that u(M) is the smallest subobject of W−1End(M) such that E(M)
is in the image of the pushforward

(2) Ext1(1, u(M)) −→ Ext1(1,W−1End(M))

under the inclusion u(M) ⊂W−1End(M). Deligne proves this in part by exploiting the weight
filtration to construct an explicit extension of 1 by u(M) which pushes forward to E(M).

The first half of this paper is dedicated to the study of the relation between u(M) and
the individual extensions Ep(M), with a view to refining Deligne’s result. In general, the
individual extensions Ep(M) may not be in the image of the pushforward map (2); an example
involving 1-motives can be given using the work [30] of Jacquinot and Ribet on deficient points
on semiabelian varieties (see Section 6.10 and the remarks at its end). The main result of
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the first half of the paper gives a sufficient condition for when the extension Ep(M) is in the
image of (2) (see Theorem 5.3.1 and its corollaries).

1.3. A more detailed overview. We continue this introduction by giving a more detailed
overview of the contents of the paper, starting with the first half. Fix an integer p and an
object M of T. It is natural to expect Ep(M) to be related to the subobject

up(M) := u(M) ∩Hom(M/WpM,WpM)

of u(M), where we have considered Hom(M/WpM,WpM) as a subobject of W−1End(M) via
the natural injection. This is indeed the case: Write Ep(M) explicitly as

(3) 0 −→ Hom(M/WpM,WpM) −→ Hom(M/WpM,M)† −→ 1 −→ 0

(see Section 4.5 for the explicit description of the middle object). Then by Theorem 3.3.1 of
[23] (which is proved by a small modification of Hardouin’s proof of Theorem 2 of [28]), we
have
(∗) : up(M) is the smallest subobject of Hom(M/WpM,WpM) such that

Hom(M/WpM,M)† /up(M)

belongs to the subcategory 〈WpM,M/WpM〉⊗.
Here, as usual, the notation 〈 〉⊗ means the smallest full Tannakian subcategory containing the
indicated objects and closed under subobjects. The first contribution of the present article is
to reformulate this statement in a more natural way, in the language of extensions originating
from subcategories (discussed in Section 3). Given a full Tannakian subcategory S of T which
is closed under subobjects, we say an extension E of 1 by an object A of T originates from
S if there is an object A′ of S, an extension E′ of 1 by A′ in S, and a morphism A′ −→ A
under which E′ pushes forward to E. While this is a very natural and simple generalization
of the notion of splitting of sequences (as an extension splits if and only if it originates from
a semisimple S), it opens the door to refinements of Statement (∗) and Deligne’s theorem.
The reformulated version of Statement (∗) is given in Theorem 4.9.1. It asserts that up(M)
is the smallest subobject of Hom(M/WpM,WpM) such that the pushforward Ep(M)/up(M)
of Ep(M) under the quotient map originates from the subcategory

(4) 〈WpM,M/WpM〉⊗.

Note that one advantage of formulating the statement in this language is that here we may
think of Ep(M) as an extension of 1 by Hom(M/WpM,WpM) or by W−1End(M); see Section
4.

Our next goal is to find refinements of Theorem 4.9.1 in which the category (4) is replaced
by smaller categories. Ideally, this category can be replaced by a semisimple category, in which
case the pushforward Ep(M)/up(M) of Ep(M) along the quotient map will split. (By weight
considerations and the long exact sequence for Ext groups this is equivalent to Ep(M) being
in the image of (2).) But from the examples of 1-motives mentioned earlier we know that in
general, this will not be the case.

Let q ≤ p. The second contribution of this paper is to show that if M satisfies certain
“independence axioms”, then in the statement of Theorem 4.9.1 the category (4) can be
replaced by the smaller category 〈WqM,GrWM〉⊗ (smaller because q ≤ p); this is Theorem
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5.3.1 in Section 5. The independence axioms are given in Section 5.2, and in fact, only depend
on GrWM . Roughly speaking, they require the subobject

(5)
⊕
i,j

j>q,i

Hom(GrWj M,GrWi M)

of W−1End(GrWM) to suitably decompose as a direct sum of two “independent” summands.
In the weak sense, here the word “independent” means not having any nonzero isomorphic
subobjects, and in the strong sense, it means having disjoint sets of weights (see the axioms
(IA1){p,q} and (IA2){p,q} in Section 5.2).

An interesting consequence of Theorem 5.3.1 is the following refinement of Deligne’s
theorem (see Corollary 5.3.2): if GrWM is semisimple (e.g. if T is a category of motives) and
the weak independence axioms hold for all q ≤ p, then Ep(M)/up(M) splits. In particular,

if GrWM is semisimple and W−1End(M) has
(
n
2

)
distinct weights where n is the number of

weights of M (e.g. if M has weights 0,−1,−3,−7), then Ep(M)/up(M) splits for every p (see
Corollary 5.3.3).

The proof of Theorem 5.3.1 is similar to the proof of Statement (∗) (or rather, of Theorem
4.9.1), albeit with two added ingredients. Let u≥q(M) be the Lie algebra of the kernel of the

restriction map from the fundamental group of M to that of WqM ⊕GrWM . The first new
component is thanks to the independence axioms: they guarantee that GrWu≥q(M) (which
is a subobject of (5)) decomposes according to the decomposition of (5) into our independent
objects (see Lemma 5.5.1). This is the only place in the proof of Theorem 5.3.1 that the
independence axioms play a part. Taking ω to be any fiber functor, this gives a decomposition
of ωGrWu≥q(M). The second added ingredient is that we use the fundamental theorem of

Tannakian categories with ω◦GrW as the fiber functor (rather than using ω itself). Notice the
difference in the nature of this type of argument and Deligne’s argument in [33, Appendix],
which explicitly constructs an extension of 1 by u(M) that pushes forward to the total class
of M . We should point out that the idea of working with the associated graded fiber functor
already appears in [20], and since then has featured frequently in the literature, especially in
the setting of categories of mixed Tate motives (e.g. [16]).

It would be interesting to give a more conceptual explanation (or geometric interpretation,
in the case of motives) for the fact that the independence axioms force the individual extension
classes Ep(M)/u(M) (or Ep(M)/up(M)) to split.

We now discuss the contents of the second half of the paper (Section 6). Let T be a
Tannakian category of mixed motives over a field K of characteristic zero, e.g. the Tannakian
categories of Nori or Ayoub of mixed motives over K, or Voevodsky’s Tannakian category of
mixed Tate motives over a number field, or categories of mixed motives defined in terms of
realizations. We say u(M) is large (or that M has a large u) if u(M) is equal to W−1End(M).
As we pointed out earlier, such motives are interesting from the point of view of the tran-
scendence properties of their periods. Our original motivation for this part of the paper was
to study (or ideally, classify up to isomorphism) all objects M with large u and associated
graded isomorphic to

Q(n)⊕A⊕ 1,
where A is a given pure object of weight p with −2n < p < 0. We then realized that much
of the discussion can be given in more generality, leading to the contents of this part of the
paper as currently presented (and reviewed below).
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Suppose tentatively that M is an extension of 1 by an object L of highest weight p with
p < 0. It is easy to see that if u(M) is large, then so are u(L) and u(M/Wp−1(L)). The first
main result of Section 6 (Theorem 6.3.1) gives a sufficient condition for the converse statement:
it asserts that if M satisfies a suitable independence axiom, and if u(L) and u(M/Wp−1(L))
are large, then so is u(M). This is an application of Corollary 5.3.2. As in the case of the
latter corollary, examples involving 1-motives show that the conclusion of Theorem 6.3.1 is in
general false without the hypothesis about the independence axiom (see Section 6.10).

Theorem 6.3.1 suggests a way to obtain more complicated objects with large u by “patch-
ing together” smaller such objects. More precisely, given an object L of highest weight p with
p < 0 which has a large u, and an object N which is an extension of 1 by GrWp L and also has
a large u, we can look for objects M such that WpM ' L and M/Wp−1M ' N ; assuming the
relevant independence axiom (which only depends on GrWM ' GrWL⊕1) holds, any such M
has a large u. The answer to the question of existence of such M is given by Grothendieck’s
formalism of extensions panachées [26]: The obstruction is an element of Ext2(1,Wp−1L).
Moreover, the object M is unique up to isomorphism if Ext1(1,Wp−1L) = 0 (see Lemma
6.4.1).

We consider the following classification problem in Sections 6.4 - 6.7: given B of weights
< p and with a large u, and a nonzero pure object A of negative weight p, classify up to
isomorphism all M with large u satisfying Wp−1M ' B, GrWp M ' A and M/WpM ' 1

(with the isomorphisms not part of the data). We manage to give a complete solution to this
problem when B⊕A⊕1 satisfies an independence axiom and Ext1(1, B) = 0; the solution is
summarized in Section 6.7, just before Corollary 6.7.1. To get there, in Sections 6.4 - 6.6 we
study the extensions panachées problem1 in the setting of an abelian category with weights.
The main result is summarized in Proposition 6.6.1 (see also Lemma 6.5.1). As a special case
of these results, in Corollary 6.7.1 we give an answer to our original motivating classification
problem about objects with associated graded isomorphic to Q(n)⊕A⊕ 1.

In Section 6.8 we specialize to the category MT(Q) of (say, Voevodsky) mixed Tate
motives over Q. The nice feature here is that the Ext groups are known. We use Corollary
6.7.1 to give a complete classification, up to isomorphism, of all 3-dimensional mixed Tate
motives over Q with large u and associated graded isomorphic to Q(n) ⊕ Q(k) ⊕ 1 with
n > k > 0 and n 6= 2k; the very last condition is the independence axiom in this situation.

Let us consider an example from Section 6.8 here. Let r be an integer > 1 and N the

Kummer 1-motive [Z 17→r−→ Gm], considered as an object of MT(Q). Let n be an even integer
≥ 4, and L an object which is a nontrivial extension of 1 by Q(n−1) (so with (2πi)1−nζ(n−1)
as a period). Since Ext2 groups vanish in MT(Q) and Ext1(1,Q(n)) = 0, the two objects L(1)
and N can be patched together to form an object2 M of MT(Q), unique up to isomorphism,
such that W−2M ' L(1) and M/Q(n) ' N . Moreover, M satisfies the required independence
axiom (as n 6= 2), so that it follows from Theorem 6.3.1 that u(M) is large. According to
Grothendieck’s period conjecture, the field generated over Q by the periods of M should have
transcendence degree equal to

dim(G(M,ωB)) = dim(ωB u(M)) + dim(G(GrWM,ωB)) = 3 + 1 = 4

(where ωB = Betti realization). The nonzero entries of the period matrix of M with re-
spect to suitably chosen bases of de Rham and Betti realizations are (2πi)−n, (2πi)−nζ(n −

1Actually, a slight variation of it; see the beginning of Section 6.4.
2This object is denoted by Mn,r in Section 6.8.
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1), (2πi)−1 (coming from L(1)), (2πi)−1 log(r), 1 (coming from N), and a “new period”. So
Grothendieck’s period conjecture predicts that

2πi, ζ(n− 1), log(r), and the new period of M

must be algebraically independent over Q.

The new period discussed above seems rather mysterious, and it would be very interesting
to somehow3 calculate it. When r is 2 (or a power of it), M is a mixed Tate motive over Z[1/2],
and hence by Deligne’s work [15] the new period will be a linear combination of alternating
multiple zeta values, which one should be able to calculate using the formula of Goncharov
and Brown ([25] and [9]) for the motivic coaction on iterated integrals.4 On the other hand,
for general r, at least a priori, the new period may not be an iterated integral on the projective
line P1 minus {0,∞} ∪ µr. (This is related to the question of whether the category of mixed
Tate motives over Z[1/r] is generated by the fundamental groupoid of P1 \ ({0,∞}∪µr), and
for r > 2 one expects the answer to this question to be in general negative. See Section 3 of
[21] for a discussion of this question.)

After the discussion of 3-dimensional mixed Tate motives with large u, in Section 6.9 we
briefly consider some 4-dimensional examples; this leads again to some interesting questions
about periods. One difference between the 4-dimensional and 3-dimensional examples is that
in the former case (at least, a priori) one gets a family of motives with a large u when patching
together a 3-dimensional L and a 2-dimensional N .

We end this introduction with some words on the organization of the paper. In Section
2 we review some basic material about Tannakian categories. The notion of extensions origi-
nating from subcategories of a Tannakian category is discussed in Section 3. Here we prove a
few lemmas on this concept that will be useful throughout the paper. Starting from Section
4 we work in a Tannakian category with a weight filtration. In Section 4 we introduce the
relevant objects and give the reformulation of Statement (∗) (Theorem 4.9.1). The goal of
Section 5 is to give the main results of the first part of the paper (Theorem 5.3.1 and its
corollaries), in which we show that the independence axioms introduced in the same section
result in refinements of Theorem 4.9.1 and Deligne’s theorem. At the end of Section 5 we also
prove a variant of Theorem 5.3.1 for q > p case (see Thoerem 5.7.1). Section 6 contains the
application to motives with large unipotent radicals of motivic Galois groups, as discussed
above. We should point out that prior to Section 6.8 we use the term “motive” only because
we find it more suggestive: the discussion is valid in any Tannakian category with a weight
filtration as long as the word “motive” is interpreted as “an object with a semisimple weight
associated graded”. In discussions where the Tate objects Q(n) play a role, we also need to
assume that there is a pure object Q(1) of weight -2 such that the functor −(1) := −⊗Q(1)
is invertible. Sections 6.8 and 6.9 take place in the setting of a Tannakian category of mixed
Tate motives over Q with the “correct” Ext groups. Finally, Section 6.10 uses 1-motives to
give counter-examples to several statements in the paper, if the hypotheses regarding the
independence axioms are omitted.

Acknowledgements. We would like to thank Daniel Bertrand and Madhav Nori for
a few insightful correspondences. We also thank Clément Dupont for a very helpful corre-
spondence about the motives Mn,r of Section 6.8, and for providing us with some valuable

3Ideally, one would like to do this by giving a geometric construction of M , but this may be too difficult
especially when n > 4. In general, giving geometric constructions of mixed Tate motives with a few weights is
a difficult problem. See [10, §1.4].

4This was told to us by Clément Dupont.
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references. Finally, we thank the anonymous referee for a careful reading of the paper and
many helpful comments and suggestions.

2. Preliminaries on Tannakian categories

The goal of this section is to review certain generalities about fundamental groups in
Tannakian categories and fix some notation. None of the results in this section are new. The
reader can refer to [17] for the basics of Tannakian categories, for instance. Throughout the
paper, by a Tannakian subcategory we always mean a Tannakian subcategory that is closed
under taking subobjects.

2.1. Notation. For any commutative ring R, we denote the category of R-modules (resp.
commutative R-algebras) by ModR (resp. AlgR). We often denote the Hom and End groups
in a category of modules simply by Hom and End, with the coefficient ring being understood
from the context.

Throughout, K is a field of characteristic zero. If V is a vector space over K, we denote
the general linear group of V by GL(V ); it is an algebraic group over K. If G is an algebraic
group over K, we denote the Lie algebra of G by Lie(G), and the category of finite-dimensional
representations of G (over K) by Rep(G).

As usual, given a morphism α : ω −→ ω′ of functors, for any object M of the domain
category the corresponding morphism ωM −→ ω′M in the target category is denoted by αM .

Finally, in various contexts, we use the notation f |X for the restriction of f toX (whatever
f and X are).

2.2. By a Tannakian category over K we mean a neutral Tannakian category over K, i.e.,
in the language of [17], a rigid abelian K-linear tensor category with K as the endomorphism
algebra of the unit object, for which a fiber functor over K ( = an exact faithful5 K-linear
tensor functor from the category to ModK) exists.

If T is a Tannakian category over K and ω : T −→ModK is a fiber functor (over K), we
denote the fundamental group of T with respect to ω by G(T, ω) ( = Aut⊗(ω) in the standard
notation); thus (by the fundamental theorem of Tannakian categories) this is an affine group
scheme over K with

G(T, ω)(R) = the group of automorphisms of the functor

ω ⊗ 1R : T −→ModK −→ModR

respecting the tensor structures

for any K-algebra R. For any object M of T, we have a representation

ρM : G(T, ω) −→ GL(ωM) σ 7→ σM

and (agian by the fundamental theorem) the functor

T −→ Rep(G(T, ω)) M 7→ (ωM, ρM ),

which with abuse of notation we also denote by ω, is an equivalence of categories.

5Actually including faithfulness here is redundant, as it follows from the rest of the requirements. See [19,
§2.10, 2.11].
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2.3. Let T be a Tannakian category over K with unit object denoted by 1. Let

ω : T −→ ModK

be a fiber functor. For any full Tannakian subcategory S of T, the inclusion S ⊂ T gives a
surjective restriction map

G(T, ω) −→ G(S, ω|S)

(surjective because S is assumed to be closed under taking subobjects, see [17, Proposition
2.21]).

2.4. Given any objects M1, . . .Mn of T, let 〈M1, . . . ,Mn〉⊗ be the Tannakian subcategory
generated by M1, . . .Mn; by definition, 〈M1, . . . ,Mn〉⊗ is the smallest full Tannakian subcate-
gory of T which contains the Mi. Every object of 〈M1, . . . ,Mn〉⊗ is obtained from M1, . . .Mn

and 1 by finitely many iterations of taking direct sums, tensor products, duals, and subobjects.
We have

〈M1, . . . ,Mn〉⊗ = 〈
⊕

1≤i≤n
Mi〉⊗.

2.5. Let M be an object of T. Given a fiber functor ω over K, we set

G(M,ω) := G(〈M〉⊗, ω|〈M〉⊗) = Aut⊗(ω|〈M〉⊗);

we call this the fundamental group of M with respect to ω. Since every object of 〈M〉⊗ is
obtained from M and 1 by finitely many iterations of taking direct sums, tensor products,
duals and subobjects, the map

ρM : G(M,ω) −→ GL(ωM)

(sending σ to σM ) is injective. In particular, G(M,ω) is an algebraic group over K.
Let g(M,ω) be the Lie algebra of G(M,ω). In view of the equivalence of categories

〈M〉⊗ −→ Rep(G(M,ω))

given by ω, the adjoint representation of G(M,ω) defines an object g(M,ω) in 〈M〉⊗ such
that

ω g(M,ω) = g(M,ω)

as representations of G(M,ω), where the G(M,ω)-action on ωg(M,ω) corresponds to g(M,ω)
(i.e. is ρg(M,ω)) and the G(M,ω)-action on g(M,ω) is given by the adjoint representation.

Identify G(M,ω) as a subgroup of GL(ωM) via ρM . This identifies

(6) g(M,ω) ⊂ Lie(GL(ωM)) = End(ωM).

Denote End(M) := Hom(M,M) (the internal Hom in T). Then we can identify ωEnd(M) =
End(ωM), with the action of G(M,ω) on End(ωM) corresponding to End(M) being by
conjugation. The inclusion (6) is compatible with the actions of G(M,ω), making

g(M,ω) ⊂ End(M).

2.6. For any object N of 〈M〉⊗, let G(M,N,ω) be the kernel of the surjection

G(M,ω) −→ G(N,ω)

induced by the inclusion 〈N〉⊗ ⊂ 〈M〉⊗ (so for instance, G(M,1, ω) = G(M,ω)). The Lie
subalgebra

g(M,N,ω) := Lie(G(M,N,ω))

of g(M,ω) is invariant under the adjoint action of G(M,ω), giving rise to a subobject

g(M,N,ω) ⊂ g(M,ω) ⊂ End(M).
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2.7. The subobjects g(M,N,ω) of End(M) do not depend on the choice of the fiber functor

ω. More precisely, for every object N of 〈M〉⊗, there is a canonical subobject

g(M,N) ⊂ End(M)

such that for every ω over K,

ω g(M,N) = g(M,N,ω) ⊂ End(ωM).

This can be seen via the machinery of algebraic geometry over a Tannakian category ([18, §5
,§6 ]) and is well-known, but in the interest of keeping the paper more self-contained, here we
include a proof:

Proposition 2.7.1. Suppose ω and ω′ are two fiber functors T −→ ModK . Then for any
objects M of T and N of 〈M〉⊗,

g(M,N,ω) = g(M,N,ω′)

(as subobjects of End(M)).

Proof. By a theorem of Deligne (see [19, §1.12, 1.13]), there exists a K-algebra R such that
the two functors ω ⊗ 1R and ω′ ⊗ 1R are isomorphic as ⊗-functors. Let

α : ω ⊗ 1R −→ ω′ ⊗ 1R

be an isomorphism respecting the tensor structures. Then conjugation by α|〈M〉⊗ gives an
isomorphism

cα : G(M,ω)R −→ G(M,ω′)R.

On the other hand, conjugation by

αM : ωM ⊗ 1R −→ ω′M ⊗ 1R

gives an isomorphism

cαM : GL(ωM)R −→ GL(ω′M)R.

The maps cα and cαM are compatible with one another, i.e. we have a commutative diagram

G(M,ω)R G(M,ω′)R

GL(ωM)R GL(ω′M)R,

cα, '

cαM , '

⊂ ⊂

where the vertical inclusions are by the identifications via ρM for ω and ω′ (i.e. are given by
σ 7→ σM ). Going to the Lie algebras by taking derivatives we get a commutative diagram

ωg(M,ω)⊗R = g(M,ω)⊗R g(M,ω′)⊗R = ω′g(M,ω′)⊗R

ωEnd(M)⊗R = End(ωM)⊗R End(ω′M)⊗R = ω′End(M).

Dcα, '

DcαM , '

⊂ ⊂

The horizontal arrow in the second row is again just conjugation by αM , so that

DcαM = αEnd(M).

On recalling that g(M,ω) is a subobject of End(M) and by commutativity of the previous
diagram, we get

(7) ω′g(M,ω)⊗R = αEnd(M)(ωg(M,ω)⊗R) = ω′g(M,ω′)⊗R
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(as subspaces of End(ω′M)⊗R). This shows that

ω′g(M,ω) = ω′g(M,ω′)

and hence g(M,ω) = g(M,ω′).

If N is any object of 〈M〉⊗, by considering the analogous map to cα for N one easily sees
that cα maps G(M,N,ω)R onto G(M,N,ω′)R. Thus

Dcα(g(M,N,ω)⊗R) = g(M,N,ω′)⊗R,
and as in (7) we get

ω′g(M,N,ω) = ω′g(M,N,ω′)

as subspaces of End(ω′M). �

3. Extensions originating from a subcategory

The goal of this section is to introduce and prove a few lemmas about the basic but useful
notion of extensions originating from subcategories of Tannakian categories. This concept will
provide a natural language for the results of the paper. As in the previous section, K is a field
of characteristic zero. Recall that by a Tannakian subcategory we mean one that is closed
under taking subobjects.

3.1. Let G be an affine group scheme over K. Let H be a subgroup of G. Let V be an
object of Rep(G). Denote by V H the (K-) subspace of V which is fixed by H. More precisely,

V H := {v ∈ V : ∀R ∈ AlgK , ∀σ ∈ H(R), σ(v ⊗ 1R) = v ⊗ 1R}.
Suppose H is normal in G. Then V H is a G-subrepresentation of V (i.e. a subobject of V in
Rep(G)).

The restriction functor

Rep(G/H) −→ Rep(G)

identifies Rep(G/H) as the full subcategory of Rep(G) consisting of those representation of
G on which H acts trivially. It is evident that for every object V of Rep(G), the object V H

is the largest subobject of V which belongs to the subcategory Rep(G/H).

3.2. Let T be a Tannakian category over K, with ω a fiber functor T −→ ModK . Let S
be a full Tannakian subcategory of T. The inclusion S ⊂ T gives a surjection

(8) G(T, ω) −→ G(S, ω|S).

Denote the kernel of this map by H.
Using the map (8) we may identify the category Rep(G(S, ω|S)) as the full subcategory of

Rep(G(T, ω)) consisting of all the objects on which H acts trivially. One has a commutative
diagram

(9)

S Rep(G(S, ω|S))

T Rep(G(T, ω)),

ω|S, '

ω, '

⊂ ⊂

where the horizontal arrows are the equivalences of categories given by the fundamental
theorem of Tannakian categories. On recalling that S is closed under subobjects and hence
in particular isomorphisms, it follows that any object A of T belongs to the subcategory S if
and only if H acts trivially on ωA.
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3.3. Let A be an object of T. Then (ωA)H is a G(T, ω)-subrepresentation of ωA; hence
there is a canonical subobject

AS ⊂ A

such that

ω(AS) = (ωA)H.

Since (ωA)H is the largest subobject of ωA ∈ Rep(G(T, ω)) which belongs to the subcategory
Rep(G(S, ω|S)), it follows that AS is the largest subobject of A which belongs to S.

Taking H-invariants gives a left exact functor

Rep(G(T, ω)) −→ Rep(G(S, ω|S)).

Thus we have a left exact functor

−S : T −→ S

which on objects acts like A 7→ AS (and on morphisms acts by restriction of domain and
codomain).

3.4. Let A be an object of T. Let E in Ext1T(1, A) ( = Yoneda Ext1 group in T) be the
class of the short exact sequence

0 −→ A −→ E −→ 1 −→ 0.

We say the extension E originates from or comes from S if there is a commutative diagram
in T

(10)

0 A′ E′ 1 0

0 A E 1 0,

where the rows are exact and the objects in the top row are in S. In other words, we say E

originates from S if there is an object A′ of S and a morphism A′ −→ A such that E is in the
image of the pushforward map

Ext1S(1, A′) −→ Ext1T(1, A).

We now give a few lemmas on the notion of extensions originating from subcategories
which are useful in the later sections. The lemmas take place in the above setting (i.e. with
E, S, and H as above). The first lemma highlights that the notion of extensions originating
from subcategories is a generalization of the notion of splitting of sequences.

Lemma 3.4.1. The following statements are equivalent:

(i) The extension E splits.
(ii) The extension E originates from some semisimple S.
(iii) The extension E originates from every S.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) are trivial. As for (i) =⇒ (iii), note that if E

splits, then it is the pushforward of the extension

0 −→ 0 −→ 1 −→ 1 −→ 0.

�

Lemma 3.4.2. The following statements are equivalent:

(i) The extension E originates from S.
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(ii) The extension ωE

0 −→ ωA −→ ωE −→ K −→ 0

splits in the category of representations of H.
(iii) The sequence

0 −→ (ωA)H −→ (ωE)H −→ K −→ 0

(obtained by taking H-invariants of ωE) is exact.
(iv) The sequence in S

0 −→ AS −→ ES −→ 1 −→ 0

obtained by applying −S to the defining sequence of E is exact.

Proof. The equivalence of (iii) and (iv) is clear, as the sequence in (iii) is obtained by applying
ω to the sequence in (iv). Note that since the functors−H and−S are left exact, the statements
in (iii) and (iv) are really just statements about surjectivity of (ωE)H −→ K and ES −→ 1.
The implication (iv) =⇒ (i) is also clear, as we can use the extension given in (iv) as the top
row in (10).

(i) =⇒ (iv): Suppose E originates from S, with a commutative diagram as in (10), with
exact rows and the top row in S. Since S is closed under taking subquotients, by replacing
A′ and E′ if necessary by their images in A and E, we may assume without loss of generality
that A′ ⊂ A and E′ ⊂ E, with the vertical arrows being considered as inclusion maps. Since
E′ is in S, we have E′ ⊂ ES. This proves that the restriction of the surjection E −→ 1 to ES

is still surjective, thus giving (iv).
(iii) =⇒ (ii): There is a commutative diagram of G(T, ω)-representations

0 (ωA)H (ωE)H K 0

0 ωA ωE K 0,

where the bottom row is ωE, the vertical arrows are inclusion, and the rows are exact. Con-
sider this diagram in the category of representations of H. The top row splits, hence so does
the bottom row ( = the pushout of the top row).

(ii) =⇒ (iii): Suppose (ii) holds. Choose a section s of ωE −→ K in Rep(H). Then s(1)
is fixed by H and thus belongs to (ωE)H. It follows that (ωE)H −→ K is surjective.

�

Lemma 3.4.3. Suppose A is an object of S. Then E originates from S if and only if E is
an object of S.

Proof. The “if” implication is trivial. As for the “only if” implication, suppose we have a
diagram as in (10), with exact rows and the objects of the top row in S. Then E is isomorphic
to the fibered coproduct of A and E′ over A′. Since A and E′ are in S, so is E. �

Lemma 3.4.4. Let A′ be a subobject of A such that the pushforward map

Ext1T(1, A′ +AS) −→ Ext1T(1, A)

(along the inclusion A′+AS −→ A) is injective. Suppose E is the pushforward of an extension

E′ ∈ Ext1T(1, A′)

along the inclusion map A′ −→ A. Then E originates from S if and only if E′ does.
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Proof. If E′ originates from S, then clearly so does E. Suppose E originates from S. Then
E is the pushforward of the extension ES given in Statement (iv) of Lemma 3.4.2 under the
inclusion AS −→ A. Let i : AS −→ A′+AS and i′ : A′ −→ A′+AS be inclusion maps. Apply
the δ-functor HomT(1,−) to the short exact sequence

0 −→ A′ ∩AS −→ A′ ⊕AS
i−i′−→ A′ +AS −→ 0

(where the injective arrow is the diagonal embedding). We get exact

Ext1T(1, A′ ∩AS) −→ Ext1T(1, A′)⊕ Ext1T(1, AS)
i∗−i′∗−→ Ext1T(1, A′ +AS),

where the lower stars denote pushforwards. The pushforward of the extension

i∗(ES)− i′∗(E′) ∈ Ext1T(1, A′ +AS)

in Ext1T(1, A) is zero. By the injectivity hypothesis in the statement, i∗(ES)−i′∗(E′) is already
zero. It follows that there is an extension E′′

0 −→ A′ ∩AS −→ E′′ −→ 1 −→ 0

which pushes forward (under inclusion maps) to both E′ and ES. But then A′ ∩ AS and
E′′, being subobjects of AS and ES, belong to S. Since E′′ pushes forward to E′, the latter
extension originates from S. �

Remark. Note that the injectivity hypothesis in the statement of the previous lemma is guar-
anteed if

HomT(1, A/(A′ +AS)) = 0

(and this will be the case whenever we use the result in the paper). This can be seen from
the long exact sequence obtained by applying HomT(1,−) to

0 −→ A′ +AS −→ A −→ A/(A′ +AS) −→ 0.

4. Extension classes and subgroups of the fundamental group - Part I

4.1. From this point on we suppose that T is a Tannakian category over a field K of
characteristic zero, equipped with a functorial exact finite increasing filtration W•, compatible
with the tensor structure. We refer to W• as the weight filtration. Here, the expression
“functorial exact finite increasing filtration W•” means that for every integer n, we have an
exact functor Wn : T −→ T, such that for every object M of T, we have

Wn−1M ⊂ WnM (∀n)

WnM = 0 (∀n� 0)

WnM = M (∀n� 0),

and such that the inclusions WnM ⊂M for various M give a morphism of functors from Wn

to the identity (and hence the Wn form an inductive system of functors). Compatibility with
the tensor product means that for every objects M and N , we have

(11) Wn(M ⊗N) =
∑
p,q

p+q=n

WpM ⊗WqN.

The associated graded functor GrW is the functor defined on objects by

GrWM :=
⊕
n

GrWn M,
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where GrWn M := WnM/Wn−1M , and on morphisms in the obvious way using the fact that
we have morphisms of functors Wn−1 −→ Wn. By the snake lemma, the associated graded
functor (in fact, each GrWn ) is also exact. Also GrW is a graded tensor functor, in the sense
that (via a canonical isomorphism) we have

GrW (M ⊗N) = GrW (M)⊗GrW (N),

with this identification being compatible with weights, i.e. being the direct sum of identifica-
tions

GrWn (M ⊗N) =
⊕
p,q

p+q=n

GrWp M ⊗GrWq M

induced by (11).
As it is customary, we call an object M with Wn−1M = 0 and WnM = M a pure object

of weight n. Note that unless otherwise indicated, we do not assume that an object of the
form GrWM (i.e. a direct sum of pure objects) is necessarily semisimple.

Given any fiber functor ω (over K) and any object M , set

W•ωM := ω(W•M).

This defines an exact ⊗-filtration on ω, in the language of Saavedra Rivano [36], Chapter
IV, §2 (note that Saavedra Rivano works with decreasing filtrations instead, and that his
Condition FE 1) is guaranteed here because K is a field).

Given any objects M and N , we identify

ωHom(M,N) = Hom(ωM,ωN).

One can then show that

ωWnHom(M,N) = {f ∈ Hom(ωM,ωN) : f(W•ωM) ⊂W•+nωN}.

4.2. Here and elsewhere in the paper, we shall use the notation and conventions of Section
2 for Tannakian fundamental groups and their Lie algebras.

Let M be an object of T. Given any fiber functor ω, let P (M,ω) be the parabolic
subgroup of GL(ωM) which stabilizes the filtration W•. Then

Lie(P (M,ω)) = W0End(ωM).

The elements of G(M,ω) ( = the fundamental group of M with respect to ω) preserve sub-
objects of M , so that

G(M,ω) ⊂ P (M,ω).

Going to the Lie algebras we have

g(M) ⊂ W0End(M).

Every element of P (M,ω) induces an automorphism of GrWωM , giving rise to a homomor-
phism

P (M,ω) −→ GL(GrWωM).

Let U(M,ω) be the kernel of this map; then U(M,ω) is the unipotent radical of P (M,ω). It
is easy to see that

Lie(U(M,ω)) = W−1End(ωM).

Set

U(M,ω) := G(M,GrWM,ω)
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( = the kernel of the restriction map G(M,ω) −→ G(GrWM,ω) induced by the inclusion
〈GrWM〉⊗ ⊂ 〈M〉⊗). Then

(12) U(M,ω) = G(M,ω) ∩ U(M,ω).

In particular, U(M,ω) is a unipotent group. If G(GrWM,ω) happens to be reductive (i.e. if
GrWM is semisimple), then U(M,ω) will be the unipotent radical of G(M,ω).

We set
u(M) := g(M,GrWM)

and
u(M,ω) := Lie U(M,ω)

( = g(M,GrWM,ω) in the notation of Section 2). Then (for every ω),

ω u(M) = u(M,ω).

By (12), we have
u(M) = g(M) ∩W−1End(M).

4.3. A result of Deligne (written by Jossen in the appendix of [33]) describes the subobject
u(M) of W−1End(M) as follows6. From now on, if there is no ambiguity, we shall simply
write Hom (resp. Exti) for the Hom groups HomT (resp. the Yoneda ExtiT groups) in T.

Recall from the Introduction that for each integer p, the p-th extension class

Ep(M) ∈ Ext1(1, Hom(M/WpM,WpM))

of M is the extension corresponding to the sequence

(13) 0 −→ WpM −→ M −→ M/WpM −→ 0

under the canonical isomorphism

(14) Ext1(M/WpM,WpM) ∼= Ext1(1, Hom(M/WpM,WpM)).

Applying Hom(M/WpM,−) to the inclusion WpM −→M we get an injection

Hom(M/WpM,WpM) −→ Hom(M/WpM,M).

On the other hand, applying Hom(−,M) to the quotient map M −→ M/WpM we get an
injection

Hom(M/WpM,M) −→ End(M).

Composing the two injections, we get a map

(15) Hom(M/WpM,WpM) −→ End(M).

After applying a fiber functor ω, this simply sends an element

f ∈ Hom(ωM/ωWpM,ωWpM)

to the composition

(16) ωM
quotient−−−−−−→ ωM/ωWpM

f−→ ωWpM
inclusion−−−−−−→ ωM.

From this it is clear that indeed, the image of the map (15) is contained in W−1End(M). We
shall identify Hom(M/WpM,WpM) as a subobject of W−1End(M) via the map (15). Note
that Hom(M/WpM,WpM) is an abelian Lie subalgebra of W−1End(M).

Pushing forward extensions along the inclusion map we get a map

(17) Ext1(1, Hom(M/WpM,WpM)) −→ Ext1(1,W−1End(M)),

6We thank Peter Jossen for patiently explaining to us some parts of Deligne’s argument from [33, Appendix].
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which is injective, as (by weight considerations),

Hom(1,
W−1End(M)

Hom(M/WpM,WpM)
) = 0.

To simplify the notation, we shall identify

Ext1(1, Hom(M/WpM,WpM))

with its image under (17).
Deligne defines the (total) extension class of M to be

E(M) :=
∑
p

Ep(M) ∈ Ext1(1,W−1End(M)),

(this is denoted by cl(M) in [33]), and proves that the extension E(M) can be used to describe
u(M):

Theorem 4.3.1 (Deligne, Appendix of [33]).
The subobject u(M) ⊂ W−1End(M) is the smallest subobject of W−1End(M) such that
the extension E(M) is the pushforward of an element of Ext1(1, u(M)) under the inclusion
u(M) −→W−1End(M).

It is worth highlighting that the theorem asserts that u(M) is the smallest subobject with
the stated property, not just the smallest Lie subobject with the property. Also note that by
weight considerations, the pushforward map

(18) Ext1(1, u(M)) −→ Ext1(1,W−1End(M))

is injective, so that the element pushing forward to E(M) is indeed unique.

Remark. As we pointed out in the Introduction, in general, the individual extensions Ep(M)
may not be in the image of the pushforward map (18). See Section 6.10 (and Remark (2)
therein) for examples in the category of mixed Hodge structures using the Jacquinot-Ribet
deficient points on semiabelian varieties.

4.4. We adopt the following notation for pushforwards of extensions along quotient maps.
If E is an extension of an object A by B, then for any subobject B′ of B we denote the
pushforward of E along the quotient B −→ B/B′ by E/B′.

Given any subobject A ⊂ W−1End(M), applying the functor Hom(1,−) to the short
exact sequence

0 −→ A −→ W−1End(M) −→ W−1End(M)/A −→ 0

we get a long exact sequence. In particular, we have exact

Ext1(1, A) −→ Ext1(1,W−1End(M)) −→ Ext1(1,W−1End(M)/A),

where the arrows are pushforwards along inclusion and quotient maps. Thus Deligne’s result
can be equivalently stated as that u(M) is the smallest subobject of W−1End(M) such that
the pushforward

E(M)/u(M) ∈ Ext1(1,W−1End(M)/u(M))

of E(M) splits.
The formulation of Theorem 4.3.1 as given in the statement is more natural for Deligne’s

proof, as his argument goes by constructing an explicit extension of 1 by u(M) which pushes
forward to E(M). The formulation in terms of E(M)/u(M) is however more natural when
one wants to study the individual extensions Ep(M), as we shall see.
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4.5. The canonical isomorphism (14) is given by first applying the functor

Hom(M/WpM,−)

to an element of Ext1(M/WpM,WpM), and then pulling back along the canonical map

1 −→ End(M/WpM)

(which after applying a fiber functor ω, sends 1 to the identity map on ω(M/WpM)). Going
through this, we see that assuming M/WpM 6= 0, the extension

Ep ∈ Ext1(1, Hom(M/WpM,WpM))

is the class of

(19) 0 −→ Hom(M/WpM,WpM) −→ Hom(M/WpM,M)† −→ 1 −→ 0,

where Hom(M/WpM,M)† is the subobject of Hom(M/WpM,M) characterized by

ωHom(M/WpM,M)† = Hom(ωM/ωWpM,ωM)†

:=
{
f ∈ Hom(ωM/ωWpM,ωM) :

f mod ωWpM = λ(f)IdωM/ωWpM

for some λ(f) ∈ K
}

for any fiber functor ω. The injective (resp. surjective) arrow in (19) is, after applying ω,
the natural inclusion (resp. the map f 7→ λ(f) , with λ(f) ∈ K as in the definition of
Hom(M/WpM,M)† above).

If M/WpM = 0, set Hom(M/WpM,M)† := 1; then Ep is again given by the sequence
(19), with the surjective arrow being the identity map on 1.7

4.6. Fix an integer p. After applying a fiber functor ω to the identification

Hom(M/WpM,WpM) ⊂ W−1End(M)

we get an identification

Hom(ωM/ωWpM,ωWpM) ⊂ W−1End(ωM),

which thinks of f : ωM/WpM −→ ωWpM as the composition (16). This way,

(20) Hom(ωM/ωWpM,ωWpM)

becomes an abelian Lie subalgebra of W−1End(ωM). The exponential map

exp : W−1End(ωM) −→ U(M,ω)(K) ⊂ GL(ωM)(K)

is given by the usual exponential series. On the Lie subalgebra (20), it is simply given by

exp(f) = I + f.

7Equivalently, one can define Hom(M/WpM,M)† in the following way, which works in all cases:
Hom(M/WpM,M)† is the subobject of Hom(M/WpM,M)⊕ 1 whose image under any fiber functor ω is

{(f, λ) ∈ Hom(ωM/ωWpM,ωM)⊕K : f mod ωWpM = λIdωM/ωWpM}.

That is, Hom(M/WpM,M)† is the kernel of the appropriate morphism Hom(M/WpM,M)⊕ 1 −→ End(M).
The injective (resp. surjective) arrow in (19) is then induced by the inclusion (resp. projection) map into
(resp. from) the direct sum. We shall however work with the first definition, as it will simplify the expressions
in our proofs.
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4.7. In this subsection we shall introduce certain Lie subalgebras of u(M) and subgroups of
U(M,ω) (for any ω) which play a crucial role in the paper. For any integer p, let

up(M) := u(M) ∩Hom(M/WpM,WpM)

and for any ω,

up(M,ω) := ω up(M) = u(M,ω) ∩Hom(ωM/ωWpM,ωWpM).

Then up(M,ω) is an abelian Lie subalgebra of u(M,ω).
For any Lie subalgebra l of W−1End(ωM), we denote the subgroup of U(M,ω) whose

Lie algebra is l by exp(l) (thus exp(l)(K) = exp(l)). Set

Up(M,ω) := exp(up(M,ω))

= U(M,ω) ∩ exp(Hom(ωM/ωWpM,ωWpM))

= G(M,ω) ∩ exp(Hom(ωM/ωWpM,ωWpM)).

This is an abelian unipotent subgroup of U(M,ω).

Lemma 4.7.1. Up(M,ω) is the kernel of the restriction homomorphism

G(M,ω) −→ G(WpM ⊕ (M/WpM), ω)

(induced by 〈WpM ⊕ (M/WpM)〉⊗ ⊂ 〈M〉⊗).

Proof. Tentatively, let us refer to the kernel of the homomorphism given in the statement of
the lemma as U ′. It is clear that U ′ is contained in U(M,ω). In particular, U ′ is also unipotent
and thus it is enough to show that U ′ and Up(M,ω) have the same K-valued points. We have

Up(M,ω)(K) = G(M,ω)(K) ∩ exp(Hom(ωM/ωWpM,ωWpM)).

Let σ ∈ G(M,ω)(K). Then σ ∈ U ′(K) if and only if σWpM = I and σM/WpM = I. Under
the identification G(M,ω) ⊂ P (M,ω) (via σ 7→ σM ), σWpM is simply the restriction σ|ωWpM

of σ to ωWpM , and σM/WpM is the map σ that σ, as an element of the parabolic subgroup
P (M,ω), induces on ωM/ωWpM (given by σ(v + ωWp) = σ(v) + ωWp, where v ∈ ωM). On
recalling that

exp(Hom(ωM/ωWpM,ωWpM)) = I +Hom(ωM/ωWpM,ωWpM),

it is easy to see that the subgroup of P (M,ω)(K) which acts as identity on both ωWpM and
ωM/ωWpM is

exp(Hom(ωM/ωWpM,ωWpM)).

The claim follows. �

Remark. Our examples in Section 6.10 (also see Remark (3) therein) show that in general,
u(M) may not be generated by the up(M), even as a Lie algebra. It is however true that if
Ep(M)/u(M) splits for every p, then u(M) =

∑
p
up(M). See Remark (2) at the end of Section

5.1. (Note that the sum
∑
p
up(M) in general may not be a Lie subalgebra of u(M).)
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4.8. Let us recall Statement (∗) from the Introduction:

Proposition 4.8.1. For any subobject A of Hom(M/WpM,WpM), we have up(M) ⊂ A if
and only if the quotient

Hom(M/WpM,M)† /A

belongs to the subcategory 〈WpM,M/WpM〉⊗.

This follows from Theorem 3.3.1 of [23]8, with L, N , and U(M) of loc. cit. being re-
spectively WpM , M/WpM , and Up(M,ω) here. However, in the interest of keeping the paper
more self-contained, let us recall the argument: The statement is trivial if M/WpM = 0 so
we may assume otherwise. To simplify the notation, let us tentatively denote the subcate-
gory 〈WpM,M/WpM〉⊗ by C. Let A be a subobject of Hom(M/WpM,WpM) and ω a fiber
functor. In view of Section 3.2 and Lemma 4.7.1, the quotient

Hom(M/WpM,M)† /A

belongs to C if and only if Up(M,ω) acts trivially on

(21) ω(Hom(M/WpM,M)† /A) = ωHom(M/WpM,M)† /ω A.

Choose a section of the natural surjection ωM −→ ωM/ωWpM to identify

ωM = ωWpM ⊕ ωM/ωWpM

(as vector spaces). This also gives a decomposition of ωHom(M/WpM,M). In view of the
sequence (19) and on noting that Hom(M/WpM,WpM) belongs to C, the group Up(M,ω)
acts trivially on (21) if and only if it (or equivalently, Up(M,ω)(K)) fixes the image of the
element

(0, I) ∈ Hom(ωM/ωWpM,ωM)† ⊂ Hom(ωM/ωWpM,ωM)

= Hom(ωM/ωWpM,ωWpM)

⊕ End(ωM/ωWpM)

in (21). Identifying Hom(ωM/ωWpM,ωM) as a subspace of End(ωM) in the obvious way,
given any σ ∈ Up(M,ω)(K), in view of the fact that σ fixes ωWpM and ωM/ωWpM , one
calculates that

σ · (0, I) − (0, I) = log(σ).

Thus Up(M,ω)(K) fixes (0, I) mod ωA if and only if ωA contains up(M,ω).

4.9. Proposition 4.8.1 can be reformulated in the language of extensions originating from
subcategories of T (see Section 3.4) as follows:

Theorem 4.9.1. Let A be a subobject of Hom(M/WpM,WpM). Then the extension Ep(M)/A,
viewed as an extension of 1 by W−1End(M)/A or Hom(M/WpM,WpM)/A, originates from
the subcategory 〈WpM,M/WpM〉⊗ if and only if A contains up(M).

In other words, up(M) is the smallest subobject of Hom(M/WpM,WpM) such that
the extension Ep(M)/up(M), viewed as an extension of 1 by W−1End(M)/up(M) or by

Hom(M/WpM,WpM)/up(M), originates from 〈WpM,M/WpM〉⊗.

8Theorem 3.3.1 of [23] is obtained by a slight modification of Hardouin’s argument for Theorem 2 of [28].
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Proof of Theorem 4.9.1. Let A be a subobject of Hom(M/WpM,WpM). By Lemma 3.4.4
(also see the remark after the same lemma), and in view of the facts (1) that the extension
Ep(M)/A of 1 by W−1End(M)/A is the image of its namesake as an extension of 1 by
Hom(M/WpM,WpM)/A under the obvious pushforward map

Ext1(1, Hom(M/WpM,WpM)/A) −→ Ext1(1,W−1End(M)/A),

and (2) that (by weight considerations) there are no nonzero morphisms from 1 to objects of
weight < 0, the following statements are equivalent for any full Tannakian subcategorty S of
T:

(i) The extension Ep(M)/A, viewed as an element of

Ext1(1,W−1End(M)/A),

originates from S.
(ii) The extension Ep(M)/A, viewed as an element of

Ext1(1, Hom(M/WpM,WpM)/A),

originates from S.

In view of Lemma 3.4.3 and on recalling the explicit description of

Ep(M) ∈ Ext1(1, Hom(M/WpM,WpM))

from Section 4.5, Statement (ii) with S taken to be the subcategory 〈WpM,M/WpM〉⊗ is
equivalent to the following statement:

(iii) The object

Hom(M/WpM,M)†/A

belongs to 〈WpM,M/WpM〉⊗.

Thus Theorem 4.9.1 is equivalent to Proposition 4.8.1 (or Statement (∗) of the Introduction).
�

5. Extension classes and subgroups of the fundamental group - Part II

In the previous section we saw that up(M) is the smallest subobject ofHom(M/WpM,WpM)

such that the extension Ep(M)/up(M) originates from 〈WpM,M/WpM〉⊗. Our goal in this

section is to give criteria under which the subcategory 〈WpM,M/WpM〉⊗ in this statement
can be replaced by smaller subcategories. Of particular interest will be the case in which we
can replace it with a semisimple category, as then Ep(M)/up(M) will split.

5.1. Let us first make an observation regarding the pushforwards of the extension Ep(M).
Recall that we are using the same notation for

Ep(M) ∈ Ext1(1, Hom(M/WpM,WpM))

and its image in Ext1(1,W−1End(M)) under the pushforward map (17).

Lemma 5.1.1. Let S be a full Tannakian subcategory of T. Then the following statements
are equivalent:

(i) The extension

Ep(M)/up(M) ∈ Ext1(1, Hom(M/WpM,WpM)/up(M))

originates from S.
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(ii) The extension

Ep(M)/up(M) ∈ Ext1(1,W−1End(M)/up(M))

originates from S.
(iii) The extension

Ep(M)/u(M) ∈ Ext1(1,W−1End(M)/u(M))

originates from S.

Proof. That (i) implies (ii) and (ii) implies (iii) is clear, as under the obvious maps the
extension in (i) pushes forward to the extension in (ii) and then to the one in (iii) (in fact,
we already observed the equivalence of (i) and (ii) in the proof of Theorem 4.9.1). That (iii)
implies (i) follows similarly as in the proof of Theorem 4.9.1 from Lemma 3.4.4 on recalling
that

u(M) ∩ Hom(M/WpM,WpM) = up(M)

(so that the obvious map

Hom(M/WpM,WpM)/up(M) −→ W−1End(M)/u(M)

is injective). �

Remark. (1) In particular, by taking S to be the semisimple subcategory 〈1〉⊗ we see that
the three extensions in the lemma split at the same time.

(2) The lemma together with Deligne’s Theorem 4.3.1 implies that if every Ep(M)/u(M)
splits (i.e. if every Ep(M) is in the image of (18)), then u(M) =

∑
p
up(M). Indeed,

let us tentatively set u′ =
∑
p
up(M). If Ep(M)/u(M) splits for every p, then so does

Ep(M)/up(M) and hence Ep(M)/u′ (the latter as an extension of 1 byW−1End(M)/u′).
It follows that E(M)/u′ splits, so that by Deligne’s theorem u(M) ⊂ u′.

5.2. For any integers p and q with q ≤ p, define

J
{p,q}
1 := {(i, j) ∈ Z2 : i ≤ p < j}

J
{p,q}
2 := {(i, j) ∈ Z2 : i < j and (q < j ≤ p or i > p)}.

Figure 1 shows the two sets. In the figure, the axes are oriented according to the standard
labelling of entries of a matrix (the pair (i, j) is placed where the entry ij of a matrix sits).

We consider the following independence axioms for an object M of T:

• (IA1){p,q}: The two objects⊕
(i,j)∈J{p,q}1

Hom(GrWj M,GrWi M) and
⊕

(i,j)∈J{p,q}2

Hom(GrWj M,GrWi M)

have no nonzero isomorphic subobjects. (Note that if q′ ≤ q ≤ p, then (IA1){p,q′}
implies (IA1){p,q}.
• (IA2){p,q}: The two sets

J
{p,q}
1 (M) := {i− j : (i, j) ∈ J{p,q}1 , GrWi M 6= 0, GrWj M 6= 0}

and

J
{p,q}
2 (M) := {i− j : (i, j) ∈ J{p,q}2 , GrWi M 6= 0, GrWj M 6= 0}
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i

j

i = j
j

=
q

j
=
p

i = p

Figure 1. The set of lattice points in the region marked by solid (resp. thick

dashed) lines is J
{p,q}
1 (resp. J

{p,q}
2 ).

are disjoint. (Note that J
{p,q}
1 (M) and J

{p,q}
2 (M) are respectively the set of weights

of the two object in (IA1){p,q} above.)
• (IA3): The numbers

i− j (i < j, GrWi M 6= 0, GrWj M 6= 0)

are all distinct. (Equivalently, if M has n distinct weights, then W−1End(M) has
(
n
2

)
distinct weights.)

It is clear that (IA2){p,q} implies (IA1){p,q}, and (IA3) implies (IA2){p,q} for every p and

q. Also note that whether or not M satisfies any of these axioms only depends on GrWM .

5.3. We can now state the main result of this part of the paper:

Theorem 5.3.1. Let q ≤ p. Consider the following statements:

(i) M satisfies (IA1){p,q} and GrWM is semisimple ( = completely reducible).
(ii) M satisfies (IA2){p,q}.

If either statement holds, then the extension Ep(M)/up(M) originates from the subcategory

〈WqM,GrWM〉⊗.

The proof of Theorem 5.3.1 shall be given in the Sections 5.4 - 5.6 below. Here we
consider some consequences of the theorem:

(1) Since q ≤ p, the subcategegory 〈WqM,GrWM〉⊗ is contained in the subcategory
〈WpM,M/WpM〉⊗. Thus combining Thoerems 4.9.1 and 5.3.1 we get the following
refinement of Theorem 4.9.1: if Statements (i) or (ii) above hold for some q ≤ p, then
up(M) is the smallest subobject of Hom(M/WpM,WpM) such that Ep(M)/up(M)

originates from 〈WqM,GrWM〉⊗.
(2) Perhaps the most interesting application of Theorem 5.3.1 is in the following scenario:

Fix p. Suppose GrWM is semisimple; for instance, this will be the case if T is a
category of motives, or if T is the category of mixed Hodge structures and GrWM
is polarizable. Suppose M satisfies (IA1){p,q} for all q ≤ p (this holds for instance, if
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M satisfies (IA3)). Then up(M) is the smallest subobject of Hom(M/WpM,WpM)

such that Ep(M)/up(M) originates from the semisimple subcategory 〈GrWM〉⊗, i.e.
splits. In particular, Ep(M)/u(M) splits. For future referencing, we record this as a
corollary:

Corollary 5.3.2. Fix p. Suppose GrWM is semisimple and that M satisfies (IA1){p,q}
for all q ≤ p. Then up(M) is the smallest subobject of Hom(M/WpM,WpM) such that
Ep(M)/up(M) splits. In particular,

Ep(M)/u(M)

splits.

As a special case, we obtain:

Corollary 5.3.3. If GrWM is semisimple and (IA3) holds, then for every p the extension
Ep(M)/u(M) splits.

Remark. Recall that by Deligne’s Theorem 4.3.1, the extension∑
p

Ep(M)/u(M)

splits. As we pointed out earlier, in general, the individual extensions Ep(M)/u(M) may not
split (see Section 6.10 and Remark (2) therein for examples). The above results give sufficient
conditions for when an individual Ep(M)/u(M) splits.

5.4. From this point until the end of Section 5.6 our goal is to prove Theorem 5.3.1. Given
any fiber functor ω, let U≥q(M,ω) be the kernel of the surjection

G(M,ω) −→ G(WqM ⊕GrWM,ω)

induced by the inclusion 〈WqM ⊕ GrWM〉⊗ ⊂ 〈M〉⊗. Then U≥q(M,ω) is the subgroup
of U(M,ω) which acts trivially on ωWqM . Let U≥q(M,ω) be the subgroup of GL(ωM)
consisting of the elements which fix the weight filtration, and act trivially on GrWωM and
ωWqM :

U≥q(M,ω) := {σ ∈ U(M,ω) : σ|ωWqM = I}.
Then

U≥q(M,ω) = U(M,ω) ∩ U≥q(M,ω).

We have
Lie(U≥q(M,ω)) = Hom(ωM/ωWqM,ωM) ∩W−1End(ωM),

where Hom(ωM/ωWqM,ωM) is identified as the subspace of End(ωM) consisting of the
elements which vanish on ωWqM . Then

u≥q(M,ω) := Lie(U≥q(M,ω)) = u(M,ω) ∩ Hom(ωM/ωWqM,ωM).

Finally, set
u≥q(M) := u(M) ∩ Hom(M/WqM,M),

where the intersection means fibered product over End(M). Here

Hom(M/WqM,M)

is thought of as a subobject of End(M) via the obvious injection induced by the quo-
tient map M −→ M/WqM (note that this is compatible with the previous identification
of Hom(ωM/ωWqM,ωM) as a subspace of End(ωM)). We then have

u≥q(M,ω) = ω u≥q(M).
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5.5. Identifying

(22) GrWEnd(M) = End(GrWM) =
⊕
i,j

Hom(GrWj M,GrWi M),

we have
GrWW−1End(M) =

⊕
i,j
i<j

Hom(GrWj M,GrWi M).

Then for every q,

GrWu≥q(M) ⊂ GrWHom(M/WqM,M) ∩ GrWW−1End(M)

=
⊕
i,j

i,q<j

Hom(GrWj M,GrWi M).(23)

The following lemma is the only place in the proof of Theorem 5.3.1 that conditions (i)
and (ii) of the theorem play a part.

Lemma 5.5.1. Let q ≤ p. Suppose Statement (i) or (ii) of Theorem 5.3.1 holds. Then
GrWu≥q(M) decomposes as the direct sum of

GrWu≥q(M) ∩
⊕

(i,j)∈J{p,q}1

Hom(GrWj M,GrWi M)

and
GrWu≥q(M) ∩

⊕
(i,j)∈J{p,q}2

Hom(GrWj M,GrWi M).

Proof. The direct sum in (23) is over all pairs (i, j) in J
{p,q}
1 t J{p,q}2 , so that we can rewrite

(23) as

GrWu≥q(M) ⊂

(I)︷ ︸︸ ︷⊕
(i,j)∈J{p,q}1

Hom(GrWj M,GrWi M)

⊕

(II)︷ ︸︸ ︷⊕
(i,j)∈J{p,q}2

Hom(GrWj M,GrWi M) .

First suppose GrWM is semisimple and M satisfies (IA1){p,q}. Then the object GrWu≥q(M)

(living in the semisimple category 〈GrWM〉⊗) is a direct sum of simple objects. By (IA1){p,q},
each simple direct factor either lives in (I) or (II).

On the other hand, if (IA2){p,q} holds, then each nonzero graded component GrWn u≥q(M)
must live in (I) or (II) (whichever has a nonzero weight n part). �

5.6. We are ready to give the proof of Theorem 5.3.1. We may assume that M/WpM is
not zero. Consider Ep(M) as an extension of the unit object by Hom(M/WpM,WpM), given
by (19). In view of Section 5.4 and Lemma 3.4.2, it is enough to check right exactness of
the sequence obtained by applying U≥q(M,ω)-invariance to ω(Ep(M)/up(M)) for a suitably
chosen fiber functor ω. Let ω0 be an arbitrary fiber functor. We shall take the composition

ωgr : T
GrW−→ T

ω0−→ ModK
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as our fiber functor ω.
Via the identification

Hom (M/WpM,M) ⊂ End (M),

we think of the image under ωgr of every subobject of Hom(M/WpM,M) as a subspace of
ωgrEnd(M). Throughout, we shall write the elements of

ωgrEnd (M) = End (ωgrM) = End (
⊕
n

ω0Gr
W
n M)

=
⊕
i,j

Hom (ω0Gr
W
j M,ω0Gr

W
i M)

as 2 by 2 block matrices with rows (resp. columns) broken up as {i : i ≤ p} ∪ {i : i > p}
(resp. the same with j replacing i). Then an element

f ∈ ωgrHom(M/WpM,M)† = Hom(ωgr(M/WpM), ωgrM)†

looks like (
0 ∗
0 λ(f)I

)
.

The surjective arrow

Hom(ωgr(M/WpM), ωgrM)† −→ K

in ωgrEp sends f to λ(f).
Consider the element

f0 =

(
0 0
0 I

)
∈ Hom(ωgr(M/WpM), ωgrM)†.

We will show that if Conditions (i) or (ii) of Theorem 5.3.1 hold (and q ≤ p), then the element
f0 + ωgrup(M) of

Hom(ωgr(M/WpM), ωgrM)†

ωgrup(M)

is fixed by U≥q(M,ωgr); this proves surjectivity of(
Hom(ωgr(M/WpM), ωgrM)†

ωgrup(M)

)U≥q(M,ωgr)

−→ K

and hence the theorem. Since U≥q(M,ωgr) is unipotent, it is enough to verify that f0 +
ωgrup(M) is fixed by every σ ∈ U≥q(M,ωgr)(K) ⊂ GL(ωgrM). Given such a σ, we must
show that

(24) σf0σ
−1 − f0 ∈ ωgrup(M) = up(M,ωgr).

Writing

σ =

(
σ1 A
0 σ2

)
,

we have

log(σ) =

(
log σ1 ∗

0 log σ2

)
∈ u≥q(M,ωgr) = ω0Gr

Wu≥q(M).

Applying ω0 to the decomposition of GrWu≥q(M) given in Lemma 5.5.1, it follows that(
log σ1 0

0 log σ2

)
∈ u≥q(M,ωgr),
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so that

δ :=

(
σ1 0
0 σ2

)
∈ U≥q(M,ωgr)(K).

We thus have

σf0σ
−1 − f0 =

(
0 Aσ−12
0 0

)
= log(σδ−1) ∈ u≥q(M,ωgr).

We have shown that σf0σ
−1 − f0 is in u(M,ωgr). Being an element of the form

(
0 ∗
0 0

)
, it

will be actually in up(M,ωgr), as desired.

5.7. We end this section with a variant of Theorem 5.3.1 for q > p, which again gives a suffi-
cient condition to guarantee that Ep(M)/up(M) originates from the category 〈WqM,GrWM〉⊗.9

Note that when q > p, then none of the two categories 〈WqM,GrWM〉⊗ and 〈WpM,M/WpM〉⊗
necessarily contains the other.

For q > p, consider the following three sets:

J ′
{p,q}
1 := {(i, j) ∈ Z2 : i ≤ p, j > q}

J ′
{p,q}
2 := {(i, j) ∈ Z2 : p < i ≤ q < j}

J ′
{p,q}
3 := {(i, j) ∈ Z2 : q < i < j}.

Say an object M of T satisfies (IA1′){p,q} if the objects⊕
(i,j)∈J ′{p,q}k

Hom(GrWj M,GrWi M)

for k = 1, 2, 3 have no nonzero isomorphic subobjects. We say M satisfies (IA2′){p,q} if the
sets of weights of these objects are disjoint. Then (IA2′){p,q} implies (IA1′){p,q}, and (IA3)
implies (IA2′){p,q} for every p, q.

Theorem 5.7.1. Let q > p. Suppose one of the following statements holds:

(i) GrWM is semisimple and M satisfies (IA1′){p,q}.
(ii) M satisfies (IA2′){p,q}.

Then the extension Ep(M)/up(M) originates from 〈WqM,GrWM〉⊗.

Proof. The proof is similar to the proof of Theorem 5.3.1. Note that the pairs (i, j) appearing

in (23) are those in J ′
{p,q}
1 ∪ J ′{p,q}2 ∪ J ′{p,q}3 . Similar to Lemma 5.5.1, Hypothesis (i) or (ii)

above imply that GrWu≥q(M) is the direct sum of its intersections with the three objects

(25)
⊕

(i,j)∈J ′{p,q}k

Hom(GrWj M,GrWi M)

for k = 1, 2, 3. Taking ωgr and f0 as in the proof of Theorem 5.3.1, we shall show that for
every σ ∈ U≥q(M,ωgr)(K),

σf0σ
−1 − f0 ∈ u(M,ωgr).

(it will then automatically be in up(M,ωgr)). Decompose

log σ = τ1 + τ2 + τ3,

9The content of this subsection will not be used anywhere else in the paper. A reader mainly interested in
the application to motives may skip to Section 6.
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where τk is the component in (25); each τk is in u≥q(M,ωgr), thanks to Hypothesis (i) or (ii).
Writing the elements of End(ωgrM) as 3 × 3 block matrices with the rows (resp. columns)
broken up as {i : i ≤ p} ∪ {i : p < i ≤ q} ∪ {i : i > q} (resp. the same with j replacing i), we
have

log(σ) =

0 τ1
0 τ2

τ3


(with zero missing entries), so that

σ =

I τ1(exp(τ3)− 1)/τ3
I τ2(exp(τ3)− 1)/τ3

exp(τ3)


and

σ−1 =

I τ1(exp(−τ3)− 1)/τ3
I τ2(exp(−τ3)− 1)/τ3

exp(−τ3)

 ,

where for brevity, for a nilpotent map N we have set

(exp(N)− 1)/N :=
∑
n≥0

Nn/(n+ 1)! .

Then one calculates

σf0σ
−1 − f0 =

0 τ1(1− exp(−τ3))/τ3
0 0

0

 .

This belongs to u(M,ωgr) because τ1, τ3 are in the Lie algebra u(M,ωgr) and

[τ1, τ3] = τ1τ3

[[τ1, τ3], τ3] = τ1τ
2
3

... .

�

6. Motives with large unipotent radicals of motivic Galois groups

6.1. In this section, unless otherwise indicated, T is any reasonable Tannakian category of
mixed motives in characteristic zero, or the category of mixed Hodge structures. Examples
of the former include the (now known to be equivalent [13]) Tannakian categories of mixed
motives over a subfield of C due to Nori [29] and Ayoub [2], Voevodsky’s category of mixed
Tate motives over Q (or those over Z, etc.), and categories of mixed motives defined via
realizations (see Deligne [18] or Jannsen [31]). See the Remark at the end of this subsection
for what we exactly need of T. We shall use the word motive to refer to any object of T
whose weight associated graded is semisimple. Of course, in the case that T is a reasonable
category of mixed motives, this will simply mean an arbitrary object of T. In the case of
the category of mixed Hodge structures, this will include (graded-) polarizable objects, and
in particular, the Hodge realizations of mixed motives.

Let M be a motive. We say u(M) is large (or that M has a large u) if

u(M) = W−1End(M).
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Similarly, we say up(M) is large if

up(M) = Hom(M/WpM,WpM).

Then u(M) is large if and only if up(M) is large for every p. The interest in motives with large
u is partly because of Grothendieck’s period conjecture. If T is a good category of motives
over a number field, among the motives with a fixed associated graded, the periods of a motive
with large u should generate a field with the largest possible transcendence degree. We refer
the reader to [1] for a detailed discussion of Grothendieck’s period conjecture.

Our main goal in this section is to use the earlier results of the paper to obtain motives
with large u and three weights. We will be particularly interested in motives M with three
weights −2n < p < 0, associated graded isomorphic to

Q(n)⊕A⊕ 1
where A is a given pure motive of weight p, and such that u(M) is large. We shall prove a
precise classification result for such motives in terms of homological algebra, which completely
classifies such motives up to isomorphism when n 6= −p and Ext1(1,Q(n)) = 0 (e.g. for even
n if T is any reasonable category of motives over Q). The condition n 6= −p here is an
independence axiom (referring to the language of the previous section). See Corollary 6.7.1
for the precise statement of the classification result. As an example, in Section 6.8 we shall
consider the case where A is the simple Tate motive Q(k) and construct certain interesting
mixed Tate motives over Q.

It turns out that the machinery we shall need works in more generality with little extra
effort. So we have decided to develop the results in more generality first and then apply them
to the case of motives with three weights. We shall however start with the simplest case
below, i.e. motives with only two weights; the observations made in this case will be useful
when we deal with more than two weights.

Remark. Our restriction to the categories of motives and mixed Hodge structures here is
for reasons to do with motivation and applications. Unless we explicitly say otherwise, the
discussions can be assumed to take place in the following setting: Take T to be any Tannakian
category over a field K of characteristic zero, equipped with a weight filtration (as in previous
sections), and interpret the word “motive” as an object of T whose associate graded with
respect to the weight filtration is semisimple. In discussions where the Tate objects Q(n)
make an appearance, Q(n) may denote any object of weight −2n and dimension 1 (even if
K 6= Q).

6.2. We shall use the following terminology: an extension of 1 by an object L is totally
nonsplit if its pushforward to any nonzero quotient of L is nontrivial ( = nonsplit); dually,
we say an extension of an object L by 1 is totally nonsplit if its pullback to any nonzero
subobject of L is nontrivial. Note that if L is simple, then “totally nonsplit” and “nonsplit”
are equivalent.

Suppose M is an object with two weights, fitting in a short exact sequence

(26) 0 −→ L −→ M −→ 1 −→ 0,

where L is a pure motive of weight p < 010. Then

W−1End(M) = Hom(1, L) ∼= L.

By Theorem 4.9.1 (or Deligne’s Theorem 4.3.1 or Hardouin’s [28, Theorem 2], see also the
latter’s predecessor, Bertrand’s [6, Theorem 1.1]), u(M) ( = up(M)) is the smallest subobject

10Note that this makes M also a motive (as GrWM ' L⊕ 1 is semisimple).
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of L such that the pushforward of the extension (26) to Ext1(1, L/u(M)) splits. (Indeed, note
that via the identification of Hom(1, L) and L, the extension Ep(M) appearing in Theorem
4.9.1 is simply (26). Also note that the total class E(M) of M is a nonzero multiple of Ep(M).)
Thus u(M) is large if and only if (26) is totally nonsplit. In particular, if L is simple, then

u(M) =

{
L if M is not semisimple

0 if M is semisimple.

Remark. Let T be any Tannakian category over K with a weight filtartion. Then for any
object M of T with semisimple GrWM the following statements are equivalent:

(i) u(M) is zero.
(ii) M is semisimple.
(iii) M is isomorphic to GrWM .

Indeed, choosing a fiber functor one easily sees (i) ⇒ (ii) ⇒ (iii) ⇒ (i) (note that among
these the implication (i) ⇒ (ii) is the only one that needs the assumption of semisimplicity
of GrWM). This gives another argument for the characterization of u(M) given above when
L is simple.

6.3. In this section we will use the results of Sections 4 and 5 to give a criterion for a motive
to have a large u in terms of its subobjects and subquotients.

Theorem 6.3.1. Let p < 0 and M be a motive such that

(27) M/WpM ' 1, GrWp M 6= 0

(so that in particular, 0 and p are the highest two weights of M). Suppose moreover that:

(i) u(WpM) is large,
(ii) u(M/Wp−1M) is large, and
(iii) M satisfies (IA1){p,q} for all q ≤ p.

Then u(M) is large.

Proof. Note that sinceM/WpM is pure, for any choice of fiber functor ω, we have U≥p(M,ω) =
Up(M,ω). Indeed, if σ is in G(M,ω), then σGrWM and σWpM are both identity if and only if

σGrW (M/WpM) and σWpM are both identity, and by purity GrW (M/WpM) 'M/WpM . Thus
the kernel of the surjection

u(M) −→ u(WpM)

induced by the inclusion 〈WpM〉⊗ ⊂ 〈M〉⊗ is up(M). In light of purity of M/WpM , from this
it follows that u(M) is large if and only if u(WpM) and up(M) are both large.

In view of Hypothesis (iii) and the fact that M is a motive, Corollary 5.3.2 tells us that
up(M) is the smallest subobject of Hom(M/WpM,WpM) such that Ep(M)/up(M) splits. Fix
an isomorphism between M/WpM and 1 to identify the two objects. Then

up(M) ⊂ Hom(M/WpM,WpM) = Hom(1,WpM) ∼= WpM.

Via the latter identification, the extension

Ep(M) ∈ Ext1(1, Hom(1,WpM)) = Ext1(1,WpM)

is simply the canonical extension

(28) 0 −→ WpM −→ M −→ 1 −→ 0 ,

where the surjective arrow is the quotient map M −→M/WpM = 1. Let A be any subobject
of WpM such that Ep(M)/A splits. The goal is to show that A = WpM .
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Modding out by Wp−1M , the extension (28) pushes forward to

(29) 0 −→ GrWp M −→ M/Wp−1M −→ 1 −→ 0.

By Section 6.2, u(M/Wp−1M) is large if and only if this extension is totally nonsplit. In view
of Hypothesis (ii), it follows that we must have

(30) A + Wp−1M = WpM.

Indeed, otherwise, by modding out (28) by A+Wp−1M we see that the pushforward of (29)
to a nonzero subquotient of GrWp M splits, contradicting the fact that (29) is totally nonsplit.

Now consider the diagram

A

0 Wp−1M WpM GrWp M 0.

⊂

We just saw that diagonal arrow is surjective. It follows that the extension in the diagram is
the pushforward of an extension of GrWp M by A ∩Wp−1M (under inclusion map). Thus the
extension

Ep−1(WpM) ∈ Ext1(1, Hom(GrWp M,Wp−1M))

is the pushforward of an extension of 1 by

Hom(GrWp M,A ∩Wp−1M) ⊂ Hom(GrWp M,Wp−1M),

i.e. that
Ep−1(WpM)/Hom(GrWp M,A ∩Wp−1M)

splits. By Theorem 4.9.1, we get

up−1(WpM) ⊂ Hom(GrWp M,A ∩Wp−1M).

But since u(WpM) is large, so is up−1(WpM). Thus

Hom(GrWp M,A ∩Wp−1M) = Hom(GrWp M,Wp−1M).

Since GrWp M is nonzero, this implies that Wp−1M ⊂ A. Combining with (30) we get that

A = WpM , as desired.11 �

Remark. (1) As pointed out in the proof, Hypothesis (ii) of Theorem 6.3.1 is equivalent
to the extension (29) being totally nonsplit. If we assume moreover that GrpM is
simple, then this is equivalent to M/Wp−1M not being semisimple.

(2) Let M be a motive which satisfies (27) (with p < 0). It is easy to see that if up(M) is
large, then so is u(M/Wp−1M). Indeed, if the latter is not large, then the pushforward
of (29) to a nonzero quotient of GrWp M splits. The same split extension is then the
pushforward of (28) to a nonzero quotient of WpM , so that by Theorem 4.9.1 up(M)
is not large.

Now suppose that u(M) is large. As we observed in the beginning of the proof of
Theorem 6.3.1, this implies that both u(WpM) and up(M) are large. We record the
conclusion:

If M is a motive satisfying (27) (with p < 0) and u(M) is large, then both u(WpM)
and u(M/Wp−1M) are large.

11Note that the assumption that GrWp M is nonzero is actually important for the proof. Thus when we want
to apply Theorem 6.3.1 to show that a given motive M has a large u, we do not have a choice about what to
take as p; it is determined by the motive M .
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Note that here we did not need to assume M satisfies any independence axiom.
Theorem 6.3.1 asserts that if we further assume that M satisfies the independence
axiom given in Hypothesis (iii) of the theorem, then the converse to the statement
above is also true.

(3) Hypothesis (iii) of the theorem (which was used in the proof to guarantee that
Ep(M)/up(M) splits) is actually important: the statement of the theorem is false
if we remove Hypothesis (iii). See Subsection 6.10 for an example.

6.4. In view of Theorem 6.3.1 one may hope to form motives with large u by patching
together suitable smaller such motives. The goal of the next few subsections is to try to
classify, up to isomorphism, all motives M with large u which satisfy (27) and which, up to
isomorphism, have a fixed Wp−1M (with large u) and GrWp M (with the isomorphisms not
part of the data). To this end, let us first consider a related problem. For the discussion in
this subsection, T can be any abelian category (we will eventually apply the discussion to our
category of motives).

Throughout, we fix objects A,B and C in T (in our final application, these will be
respectively (the fixed objects which are to be isomorphic to) GrWp M , Wp−1M , and 1).
Grothendieck considers the following problem in SGA 7 [26, §9.3 of Exposé 9]: classify all
tuples

(M ; (Mi)−3≤i≤0; γ0, γ−1, γ−2)

where
M = M0 ⊃ M−1 ⊃ M−2 ⊃ M−3 = 0

are objects of T and

M/M−1 = M0/M−1
γ0−→ C, M−1/M−2

γ−1−→ A, M−2/M−3 = M−2
γ−2−→ B

are isomorphisms. The classification is to be done up to isomorphisms of such tuples, defined
in the obvious way. Here it is convenient for us to consider a slight variant of this problem,
where we do not include the data of the isomorphisms γi in the tuple, but instead just require
that the quotients M0/M−1, M−1/M−2 and M−2/M−3 = M−2 are isomorphic to C, A and
B, respectively.

We say that a pair of extension classes

(L,N) ∈ Ext1(A,B) × Ext1(C,A)

is compatible if there is a commutative diagram in T:

(31)

0 0

0 B L A 0

0 B M N 0 ,

C C

0 0

where the rows and columns are exact, the first (complete) row represents L, and the second
(complete) column represents N. We say an object M is attached to the pair (L,N) if it fits
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in a diagram as above. Note that if we have a diagram as above, (by adjusting the maps when
needed) we may replace the first row (resp. second column) by any other representative of L
(resp. N).

In SGA 7, a diagram as above is called an extension panachée 12 of the second column
sequence by the top row sequence. Thus to say the pair (L,N) is compatible amounts to saying
that an extension panachée of (an or every representative of) Nby (an or every representative
of) L exists, or that (L,N) is “panachable”, in the language of [8].

The theory of Yoneda extensions gives a simple characterization of compatible pairs. Let

◦ : Ext1(A,B) × Ext1(C,A) −→ Ext2(C,B)

be the Yoneda (composition) pairing; it sends the pair (L,N) with L given by

(32) 0 −→ B −→ L
π−→ A −→ 0

and N given by

0 −→ A
ι−→ N −→ C −→ 0

to the extension L◦N given by

0 −→ B −→ L
ι◦π−→ N −→ C −→ 0.

Lemma 6.4.1.

(a) The pair (L,N) is compatible if and only if L◦N = 0.
(b) Suppose Ext1(C,B) = 0. If (L,N) is compatible, then up to isomorphism there is a

unique object attached to it.

Proof. This is Lemma 9.3.8 of [26]. Fix the extension (32) representing L. If M is attached
to the pair, fitting into a diagram as in (31), then the class

M ∈ Ext1(C,L)

of the first column in the diagram pushes forward to N under π. Conversely, if N is in the
image of the pushforward

π∗ : Ext1(C,L) −→ Ext1(C,A),

with M represented by

0 −→ L −→ M −→ C −→ 0

in the preimage of N, then the object M is attached to our pair. Thus the pair (L,N) is
compatible if and only if N is in the image of π∗. Now by the general theory of Yoneda
extensions, applying the functor Hom(C,−) to (32) we get an exact sequence

Ext1(C,B) −→ Ext1(C,L)
π∗−→ Ext1(C,A)

δ=L◦−−−−−→ Ext2(C,B)

(see [11, Section 3] or [37, page 561]). This proves Part (a).
As for the statement in Part (b), ifM andM ′ are attached to (L,N), fitting into diagrams

as in (31) with the classes of the corresponding first columns denoted by M and M′ (both in
Ext1(C,L)) respectively, then it follows from the above long exact sequence that M and M′

differ by an element in the image of Ext1(C,B). If this Ext group is zero, then M= M′, and
hence in particular M and M ′ are (non-canonically) isomorphic. �

12or as Bertrand translates in [7], a blended extension
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Remark. In a reasonable Tannakian category of mixed motives over a number field it is
expected that one should have Ext2(X,Y ) = 0 for every objects X and Y . So in that
context, every pair should be compatible. See the Remark in the end of Section 6.7 for a more
detailed discussion of the Ext groups in our particular categories of interest.

6.5. We shall continue in the setting of the previous subsection (T any abelian category,
and B,A,C three fixed objects of T). Our goal in this subsection is to see when the same
object is attached to two compatible pairs of extensions.

We use the notation End( ) (resp. Aut( )) for the endomorphism algebra (resp. auto-
morphism group) of an object in T. The endomorphism algebra End(A) of A acts on both
Ext1(A,B) and Ext1(C,A). Indeed, the action on Ext1(A,B) is a right action given by pull-
back: if f is an endomorphism of A, set L · f := f∗L (f∗ for pullback along f). The action
on Ext1(C,A) is a left action given by push forward: f ·N := f∗N (to see the bilinearity
properties of these actions see [11] or [37]). If f is an automorphism of A, then L · f and
f ·N are simply obtained by twisting respectively the surjective and injective arrows of L

and N by f−1, i.e. L · f (resp. f ·N) is the class of the extension obtained by replacing the
surjective (resp. injective) arrow π (resp. ι) in a representative of L (resp. N) by f−1 ◦ π
(resp. ι ◦ f−1).

We restrict the two actions above on Ext1(A,B) and Ext1(C,A) to the actions of the
group Aut(A). We also modify the action on Ext1(C,A) so that it also becomes a right
action, by setting N·f := f−1∗ N. Thus N·f is the class of the extension obtained by twisting
the injective arrow of N by f . Similarly, we have right actions of Aut(B) (resp. Aut(C)) on
Ext1(A,B) (resp. Ext1(C,A)).

We now equip the product

(33) Ext1(A,B) × Ext1(C,A)

with the following right actions of Aut(B), Aut(A), and Aut(C): the group Aut(B) (resp.
Aut(C)) acts by acting on the first (resp. second) factor, and Aut(A) acts diagonally, i.e. by
the formula

(L,N) · f := (L · f,N · f) = (f∗L, f−1∗ N).

There three actions commute with one another. Indeed, the actions of Aut(B) and Aut(C)
trivially commute, and the commutativity of the actions of Aut(A) with each of Aut(B) and
Aut(C) is clear from the description of the actions in terms of twisting the arrows, as different
groups act by twisting different arrows. Thus we get an action of Aut(B)×Aut(A)×Aut(C)
on the product (33). We say two pairs of extensions are equivalent if they are in the same
orbit of this action.

Lemma 6.5.1. Let (L,N) and (L′,N′) be in (33).

(a) Suppose (L,N) and (L′,N′) are equivalent. Then every object attached to the pair
(L,N) is also attached to the pair (L′,N′). (In particular, (L,N) is compatible if
and only if (L′,N′) is compatible.)

(b) Suppose every object of T is equipped with an exact functorial increasing filtration
W• which is finite on every object (we refer to this as the weight filtration). Suppose
moreover that the highest weight of B is less than the lowest weight of A, and that the
highest weight of A is less than the lowest weight of C. Then if there is an object M
attached to both (L,N) and (L′,N′), then the two pairs are equivalent.

Proof. (a) Let (L′,N′) = (L,N) · (fB, fA, fC) for some fB ∈ Aut(B), fA ∈ Aut(A), and
fC ∈ Aut(C). Suppose M is attached to (L,N). In a diagram as in (31) (with the first
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row and second column respectively representing L and N), twist the arrows B −→ L and
B −→ M by fB, the arrow L −→ A by f−1A , the arrow A −→ N by fA, and the arrows
M −→ C and N −→ C by fC , while keeping L −→ M and M −→ N unchanged. The
diagram remains commutative and with exact rows and columns, and its first row (resp.
second column) represents L′ (resp. N′).

(b) Suppose an object M is attached to both (L,N) and (L′,N′). We consider two
diagrams as in (31), one with objects L,N with the first row and second column representing
L and N, and the other with objects L′, N ′ with the first row and second column representing
L′ and N′. In the diagram for (L,N), we name the maps as follows: In the first row, (resp.
second row, second column) the injective arrow is ιL (resp. ιM , ιN ) and the surjective arrow
is πL (resp. πM , πN ). We refer to the maps L −→M and M −→ C as α and β, respectively.
Accordingly, denote the maps in the diagram for (L′,N′) by ιL′ , πL′ , ι

′
M , π

′
M , ιN ′ , πN ′ , α

′ and
β′ (each map being the analogue to its lookalike in the first diagram). (Note that the central
object in both diagrams in M .)

Let b, a and c be respectively the highest weights of B,A and C. Focusing on the first
diagram, using exactness of the weight filtration together with the hypothesis that every
weight of B is less than every weight of A, which in turn is less than every weight of C, we
see that

WbL = ιL(B), WaL = L, WbN = 0, WaN = ιN (A), WcN = N

and

WbM = ιM (B), WaM = α(L), WcM = M.

We have similar equalities for the ′-adorned analogues coming from the second diagram. In
particular,

ιM (B) = ι′M (B) = WbM, α(L) = α′(L′) = WaM.

Thus we get isomorphisms α−1α′ : L′ −→ L and ι−1M ι′M : B −→ B (uniquely) defined by the

property that α(α−1α′) = α′ and ιM (ι−1M ι′M ) = ι′M . We have a commutative diagram with
exact rows

0 B L′ A 0

0 B L A 0 ,

ι−1
M ι′M

ιL′

α−1α′

πL′

=: γ

ιL πL

where the vertical arrows are isomorphisms (to see the commutativity of the first square
further compose with α). Thus L′ is obtained from L by twisting ιL by ι−1M ι′M and twisting
πL by γ−1.

On the other hand, since we have ιM (B) = ι′M (B) = WbM , by exactness of the second
rows in the diagrams of the two pairs, πM and π′M induce isomorphisms

πM : M/WbM −→ N , π′M : M/WbM −→ N ′.

Similarly, thanks to exactness of the first columns (and on recalling α(L) = α′(L′) = WaM),
we have isomorphisms

β : M/WaM −→ C , β′ : M/WaM −→ C,
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induced by β and β′, respectively. We now have a commutative diagram with exact rows

(34)

0 A N ′ C 0

0 A N C 0,

=:λ

ιN′

πMπ
′
M

−1

πN′

β β′
−1

ιN πN

where the vertical arrows are isomorphisms (to see commutativity of the second square pre-
compose with π′M : M −→ N ′). It follows that N′ is obtained from N by twisting ιN by λ

and twisting πN by β′ β
−1

.
To complete the proof, it suffices to show that γ = λ, as then

(L′,N′) = (L,N) · (ι−1M ι′M , γ, β β
′−1).

Ignoring the dashed arrow, we have a commutative diagram

C M/WaM C

N M/WbM N ′

M

L L′

A A ,

β

'
β′

'
πN

πM
'

π′M
'

πN′

πM π′M

πL

α

α−1α′

'

α′

πL′

ιN ιN′

where the vertical arrows in the middle are the obvious maps. The map γ is the unique map
which if it is included as the dashed arrow, it makes the bottom trapezoid of the diagram
commute. But from the diagram we easily see that λ also does this job. Indeed, to check
commutativity of the trapezoid with λ as the dashed arrow, it is enough to check commuta-
tivity after composing with ιN . Now using commutativity of the rest of the diagram above
and the left square in (34), we have

ιN πL (α−1α′) = πM α′ = ιN λπL′ .

�

6.6. We now combine the results of the previous two subsections on compatible pairs. We
shall assume that T is an abelian category equipped with a weight filtration (i.e. a functorial,
exact, increasing filtration which is finite on every object). As in the previous two subsections,
B,A,C are fixed objects of T. The following result, which for future reference we record as
a proposition, has been mostly already proved in the previous two subsections.

Proposition 6.6.1. Suppose every weight of B is less than every weight of A, and that
every weight of A is less than every weight of C. Let b, a, c be the highest weights of B,A,C,
respectively.

(a) Any pair of extensions (L,N) in (33) is compatible if and only if L ◦ N = 0 in
Ext2(C,B).
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(b) If M is an object which is attached to some pair of extensions in (33), then we have

(35) B ' WbM, A ' WaM/WbM, C ' M/WaM.

(c) Any object M satisfying (35) is attached to some pair (L,N) of extensions in (33).
Moreover, M is attached to any other pair (L′,N′) if and only if (L′,N′) is equivalent
to (L,N). We have a (well-defined) surjective map

the collection of objects M satisfying −→ the collection of compatible pairs

(35), up to isomorphism in (33), up to equivalence

which sends the isomorphism class of M to the equivalence class of any pair (or all
pairs) (L,N) to which M is attached.

(d) If Ext1(C,B) = 0, then the surjection above is a bijection.

Proof. (a) This is Lemma 6.4.1(a).
(b) This follows from the observations made at the beginning of the proof of Lemma

6.5.1(b) about the weight filtration of M . (Note that the isomorphisms are non-canonical, as
they depend on the particular choice of diagram (31).)

(c) Given M satisfying (35), we have a diagram

0 0

0 WbM WaM WaM/WbM 0

0 WbM M M/WbM 0

M/WaM M/WaM

0 0

(with obvious maps, exact rows and columns). Now use some choice of isomorphisms (35) to
replace WbM , WaM/WbM , and M/WaM respectively by B, A, and C. Take L (resp. N)
to be the extension class of the top row (resp. last column) in the new diagram. Then M is
attached to the (compatible) pair (L,N). By Lemma 6.5.1(b), M is attached to another pair
(L′,N′) if and only if (L′,N′) is equivalent to (L,N). On the other hand, if M ′ is isomorphic
to M , then M ′ is clearly attached to the same pairs as M . Thus we have a well-defined map
as in the statement. It is surjective by the definition of compatibility and Part (b).

(d) This follows from Lemma 6.4.1(b) and Lemma 6.5.1(a). �

6.7. We now return to the discussion of motives with large u (with T again a Tannakian
category of mixed motives or the category of rational mixed Hodge structures). Given any two
motives A and B, let us say an extension class in Ext1(A,B) has a large u if the object in the
middle of a representing short exact sequence has a large u. This is clearly well-defined, and
moreover, the property of having a large u is invariant under the action of Aut(A)×Aut(B)
(because the collection of the objects that can appear as the middle object for two extension
classes in the same orbit are the same, as by twisting the arrows we can turn a representative
of one extension class to a representative of another extension class in the same orbit). Note
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that if A is simple (resp. pure), then an extension class in Ext1(1, A) has a large u if and
only if it is nonsplit (resp. totally nonsplit).

We say a pair of extensions (L,N) in (33) has a large u if both extensions L and N have
a large u. This property is invariant under our notion of equivalence of pairs.

We now fix an integer p < 0, and motives B and A with

B = Wp−1B, A ∼= GrWp A 6= 0.

(In other words, all weights of B are < p, and A is nonzero and pure of weight p; note that
B may be mixed.) Proposition 6.6.1 gives a surjection (bijection if Ext1(1, B) = 0) from the
collection of motives M satisfying

(36) Wp−1M ' B, GrWp M ' A, M/WpM ' 1

up to isomorphism to the collection of compatible pairs in

Ext1(A,B) × Ext1(1, A)

(= the kernel of the composition pairing into Ext2(1, B)) up to equivalence (i.e. the action
of Aut(B) × Aut(A) × Aut(1)). By Theorem 6.3.1, if B ⊕ A ⊕ 1 satisfies the independence
axiom (IA1){p,q} for every q ≤ p, then given any compatible pair (L,N) with a large u, any
object M attached to the pair also has a large u. Conversely, if an object M satisfying (36)
has a large u, then so does any pair (L,N) in the equivalence class of the extension pairs
corresponding to M (see Remark (2) after Theorem 6.3.1; note that here no independence
axiom needs to be satisfied).

We record the following special case as a corollary:

Corollary 6.7.1. Let −2n < p < 0 and p 6= −n. Let A be a nonzero simple motive of weight
p. Suppose moreover that Ext1(1,Q(n)) = 0. Then there is a bijection

the collection of objects M the collection of compatible pairs

with GrWM ' Q(n)⊕A⊕ 1 −→ of nonsplit extentions in

and large u(M), up to Ext1(A,Q(n)) × Ext1(1, A),

isomorphism up to equivalence,

which assigns to the isomorphism class of an object M the equivalence class of the compatible
pairs to which M is attached. If we omit the condition Ext1(1,Q(n)) = 0, this map is well-
defined and surjective.

(Note that the condition p 6= −n guarantees (IA3).)

Remark.

(1) In any reasonable Tannakian category of mixed motives over a number field, all the
Ext2 groups (and hence all the higher Ext group) are expected to vanish. The Ext1

groups in such a category should be related to Chow groups and motivic cohomology
(and algebraic K-theory). See for instance, the beautiful articles of Nekovar [35] and
Jannsen [32]. The only case of a Tannakian category of motives where the Ext groups
are actually known is the case of the category of mixed Tate motives. See Remark (2)
for a discussion of this case.

(2) Let MT(K) be Voevodsky’s category of mixed Tate motives over a number field K.
The Ext2 groups in MT(K) are zero, and the groups

Ext1MT(K)(1,Q(n))
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are given by the K-theory of the field K modulo torsion, which in turn is described
by theorems of Borel and Soulé (and Dirichlet in the case of K1). In particular, if K
is totally real and n is even, the Ext1 group above vanishes. (See [16] for the precise
description of the Ext groups in MT(K) and the subcategory of mixed Tate motives
over the ring of integers of K. Note that if MM(K) is any category of mixed motives
over K for which the full Tannakian subcategory generated by Q(1) and closed under
extensions is equivalent to Voevodsky’s MT(K), then the Ext1 groups above are the
same in MM(K) and MT(K).)

(3) In the category MHS of rational mixed Hodge structures, the Ext2 groups vanish
(see [3]). The Ext1 groups in this category are described by the results of Carlson
[12].

6.8. In this subsection, we shall take T to be Voevodsky’s category MT(Q) of mixed Tate
motives over Q. As an application of the previous results, we shall classify (up to isomorphism)
all 3-dimensional objects of MT(Q) with three distinct weights, large u, and satisfying an
independence axiom (see below for more details).13 Note that for any 3-dimensional object
M of MT(Q) with three distinct weights and large u, the unipotent radical of the motivic
Galois group G(M,ωB) (with ωB the Betti realization functor) has dimension equal to 3 ( =
dimW−1End(ωBM)). Since

G(GrWM,ωB) ' Gm,

the motivic Galois group G(M,ωB) has dimension 4. Thus Grothendieck’s period conjecture
would predict that the transcendence degree of the field generated by the periods of M should
be 4.

Let us first recall the description of the Ext groups between simple objects in MT(Q)
(see [16], for instance):

dimExt1(1,Q(n)) =

{
0 if n is even or ≤ 0

1 if n is odd and ≥ 3

(37) Ext1(1,Q(1)) ∼= Q× ⊗Q .

Moreover, Ext2 groups all vanish in MT(Q).
Back to our classification problem, we may assume that our motives have highest weight

equal to 0. We shall classify all motives with an associated graded of the form

Q(n)⊕Q(k)⊕ 1 (n > k > 0, n 6= 2k)

which have large u. (The condition n 6= 2k is an independence axiom. The case where n = k
is complicated, as then one can no longer use Theorem 6.3.1.) For any such motive, the pair
(L,N) in

(38) Ext1(Q(k),Q(n)) × Ext1(1,Q(k))

associated to it by Corollary 6.7.1 (also see Proposition 6.6.1) has nonsplit entries. In view
of the description of the Ext1 groups in the category, we see that k must be odd and n must
be even. But then we have a bijection as in Corollary 6.7.1.

Let us consider the action of Aut(Q(n)) × Aut(Q(k)) × Aut(1) on (38). Since the au-
tomorphism group of every Q(a) is Q∗, it follows from bilinearity of the actions of End(A)
on Ext1(A,B) and Ext1(B,A) (for any A,B in any K-linear category) that the action of

13The classification is then valid in any Tannakian category MM(Q) of mixed motives over Q for which
the smallest full Tannakian subcategory containing Q(1) and closed under extensions is equivalent to MT(Q).
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Aut(Q(k)) can be absorbed into the actions of the other two factors: (λ, γ, δ) acts the same
as (λγ−1, 1, γδ) (where λ, γ, δ ∈ Q∗). It follows that an orbit of the action of Aut(Q(n)) ×
Aut(Q(k))×Aut(1) on (38) coincides with an element of

(39)
(
Ext1(Q(k),Q(n))

/
Aut(Q(n))

)
×
(
Ext1(1,Q(k))

/
Aut(1)

)
(with both actions made right actions, as before).

Case I: k = 1. Then n is ≥ 4 (and even), and

Ext1(Q(k),Q(n)) ∼= Ext1(1,Q(n− k))

is a 1-dimensional vector space over Q, and all its nonzero elements are in the same Aut(Q(n))-
orbit.

The extensions of 1 by Q(1) are the Kummer motives. For each positive rational number
r, let

[r] ∈ Ext1(1,Q(1))

be the extension class arising from the weight filtration of the 1-motive (see [14])

(40) Kr := [Z 1 7→r−−−→ Gm]

(considered as an object of MT(Q)). Then [r] is the element of Ext1(1,Q(1)) corresponding
to r ⊗ 1 under the isomorphism (37). Thus {[p] : p prime > 0} is a basis of Ext1(1,Q(1))
(over Q). A complete inequivalent set of representatives for the nonzero orbits of the action
of Q∗ = Aut(1) on Ext1(1,Q(1)) is formed by the elements [r], where r runs through all
rational numbers > 1 which are not of the form sa for any s ∈ Q and a ∈ Z with a > 1. In
view of Corollary 6.7.1, each such [r] gives a (unique, up to isomorphism) motive Mn,r with
large u and associated graded isomorphic to

Q(n)⊕Q(1)⊕ 1.
These motives are non-isomorphic, and are up to isomorphism, all the motives with associated
graded as above and large u.

A discussion of the periods of Mn,r is in order. By construction, W−2Mn,r is a nontrivial
extension of Q(1) by Q(n). Being a twist (by Q(1)) of a nontrivial extension of 1 by Q(n−1),
the motive W−2Mn,r has the period matrix(

(2πi)−n (2πi)−nζ(n− 1)
0 (2πi)−1

)
with respect to suitably chosen bases of Betti and de Rham realizations. (Note that n− 1 is
odd and ≥ 3. That a nontrivial extension of 1 by Q(n− 1) has ζ(n− 1)/(2πi)n−1 as a period
follows from the work [18] of Deligne in the setting of realizations, and later the work [16]
of Deligne and Goncharov in the setting of Voevodsky motives.) One the other hand, Mn,r

has the Kummer 1-motive Kr as a subquotient (by W−2nMn,r = W−3Mn,r). With respect to
suitably chosen bases of Betti and de Rham realizations, Kr has the period matrix(

(2πi)−1 (2πi)−1 log r
0 1

)
(see [14] for the explicit realizations of 1-motives). With respect to suitably chosen bases, the
matrix of periods of Mn,r looks like(2πi)−n (2πi)−nζ(n− 1) ∗

0 (2πi)−1 (2πi)−1 log r
0 0 1

 .
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As mentioned earlier, Grothendieck’s period conjecture predicts the transcendence degree of
the field generated over Q by the periods of Mn,r to be 4. Thus assuming the period conjecture,
the numbers

2πi, log r, ζ(n− 1), and the entry denoted by ∗
are algebraically independent over Q.

It would be very interesting to somehow calculate the entry ∗ in the matrix above. As
we discussed in the Introduction, when r 6= 2, Deligne’s work [15] (and a fortiori Brown’s [9])
do not predict the nature of ∗.

Case II: k > 1 and n 6= k+ 1 (so n ≥ k+ 3). Then both quotients in (39) are singletons.
Thus up to isomorphism, there is a unique motive Zn,k with large u and associated graded
isomorphic to Q(n)⊕Q(k)⊕1. The subobject W−2kZn,k (resp. subquotient Zn,k/W−2k−1Zn,k)
of Zn,k is a nontrivial extension of Q(k) by Q(n) (resp. 1 by Q(k)). The matrix of periods of
Zn,k with respect to suitably chosen bases is of the form(2πi)−n (2πi)−nζ(n− k) ∗

0 (2πi)−k (2πi)−kζ(k)
0 0 1

 .

The period conjecture predicts that 2πi, ζ(k), ζ(n − k) and the entry denoted by ∗ are alge-
braically independent over Q. Again it would be interesting to find what the entry ∗ is. Note
that the motive Zn,k is in the subcategory MT(Z), as from the beginning we may have done
the entire discussion of this case in MT(Z) (as the relevant Ext groups in this case are the
same in MT(Z) and MT(Q)). Thus by Brown’s work [9], all periods of Zn,k will be in the
algebra generated by 2πi and the multiple zeta values.

Case III: k > 1 and n = k + 1. This case is the dual situation to Case I. Here the
second factor of (39) is a singleton, and the motives under investigation are classified up to
isomorphism by Aut(1)-orbits of Ext1(1,Q(1)). Consider the complete inequivalent set of
representatives {[r]} for these orbits as in Case I. Then for each r, we get an object M ′n,r
corresponding to the element of (39) with the orbit of [r] as its first coordinate. The motives
M ′n,r are non-isomorphic and up to isomorphism, give all motives with large u and associated
graded isomorphic to Q(n)⊕Q(n− 1)⊕ 1.

The motives obtained in this case are intimately related to the Mn,r of Case I. Indeed,
M ′n,r

∨(n) has a large u (as the property of having a large u is invariant under dualizing and
tensoring by Q(1)), and its associated graded is isomorphic to Q(n)⊕Q(1)⊕1. Moreover, the
quotient M ′n,r

∨(n)/W−2n is isomorphic to the 1-motive Kr given in (40) (as by construction
we have W−2kM

′
n,r ' Kr(k), and Kr is isomorphic to its Cartier dual Kr

∨(1)). It follows
that M ′n,r

∨(n) is isomorphic to Mn,r (as they both correspond to the same equivalence class
of compatible pairs).

6.9. Let us continue to take T = MT(Q). The motives of Section 6.8 together with the
earlier results of the paper can be used to obtain 4-dimensional mixed Tate motives with
4 weights and a large u.14 We illustrate this with an example. Let M be the motive M4,r

of the previous section, which has associated graded isomorphic to Q(4) ⊕ Q(1) ⊕ 1. The
weight filtration of M gives an element L in Ext1(1,W−2M). Let N a nonzero element of
Ext1(1,Q(5)). Since Ext2 groups vanish in MT(Q), there is an object in MT(Q) attached
to the pair

(L(5),N) ∈ Ext1(Q(5), (W−2M)(5)) × Ext1(1,Q(5)).

14Inductively, one can obtain motives with more and more weights which have a large u.
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Note that here, at least a priori, there might be non-isomorphic objects attached to the pair,

as Ext1(1, (W−2M)(5)) is not zero. Any object M̃ attached to the pair is 4-dimensional, with
associated graded isomorphic to

Q(9)⊕Q(6)⊕Q(5)⊕ 1.

Such M̃ satisfies (IA3), and hence by Theorem 6.3.1, u(M̃) is large (note that both M and

N have a large u). The field generated over Q by the periods of M̃ contains 2πi, ζ(3), log r,
the “new period” of M , and ζ(5). In fact, by the classification of Section 6.8, the quotient

M̃/Q(9) (which is easily seen to also have a large u) must be isomorphic to the motive M ′6,r
(of Case III of Section 6.8), so that the new period of M ′6,r will also be a period of M̃ . The

period conjecture predicts that the field generated over Q by the periods of M̃ should be

of transcendence degree 7 (=
(
4
2

)
+ 1), so that M̃ should have one more new period, which

together with the aforementioned six numbers should form an algebraically independent set
over Q.

Remark. Note that k = 5 is the smallest positive integer such that

GrWM(k)⊕ 1

satisfies the independence axiom required to be able to use Theorem 6.3.1.

6.10. Hypothesis (iii) of Theorem 6.3.1 was used in the proof to conclude that Ep(M)/up(M)
splits. This hypothesis is actually important for the statement of the theorem to remain true.
A counter-example to the statement without this condition can be given in the category MHS
of rational mixed Hodge structures using the work [30] of Jacquinot and Ribet on deficient
(in the sense of loc. cit.) points on semiabelian varieties, as we shall discuss below. We shall
freely use the basics of the theory of 1-motives (including the realizations of a 1-motive), as
introduced by Deligne in [14].

Consider a tuple (K,A, v, f), where

- K is a number field,
- A is a simple abelian variety over K with rank(A(K)) > 0,
- v ∈ At(K) (where At is the dual abelian variety),
- and f : At −→ A is an isogeny over K,

such that f(v)− f t(v) ∈ A(K) is a point of infinite order.15 Let V be a semiabelian variety
over K, an extension of A by Gm, which under the canonical isomorphism

Ext(A,Gm) ∼= At

corresponds to v ∈ At(K). Denote the projection map V −→ A by π. In [30, Section 4], a
point xf ∈ V (K) is constructed such that

(i) π(xf ) = f(v)− f t(v), and
(ii) for every nonzero integer n the point xf is divisible by n in V (Kn), where Kn is the

field obtained from K by adjoining the n-torsion subgroup of V (such a point is called
a deficient point in [30]).

15For instance, take A = At to be an elliptic curve with complex multiplication by Z[i], K large enough so
that complex multiplication by i is defined over K and A(K) has positive rank, v a point of infinite order in
At(K), and f = i (so that f t = −i).
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Let M be the 1-motive [Z
17→xf−→ V ] over K. Fixing an embedding K ⊂ K ⊂ C, denote the

Hodge realization of any 1-motive N over K by TN . Thus TM has weights -2,-1, 0 and

W−2TM = H1(Gm) ' Q(1) , W−1TM = H1(V ) , GrW0 TM = 1.

We shall see that (with T = MHS) u(TM) is not large, whereas both u(W−1TM) and
u(TM/W−2TM) are large. This would provide a counter-example to the statement of Theo-
rem 6.3.1 with Hypothesis (iii) of the theorem omitted.

First, let us consider W−1TM and TM/W−2TM . The former is a nonsplit extension of
the simple Hodge structure H1(A) by Q(1) (because v has infinite order), and hence (by a
similar argument as in Section 6.2) has a large u. The latter is the Hodge realization of the
1-motive

[Z
17→π(xf )−→ A].

Since π(xf ) is a point of infinite order, TM/W−2TM is a nonsplit extension of 1 by H1(A),
and hence has a large u.

To see that u(TM) is not large, let ` be a prime number. Given any 1-motive N over K,
denote the `-adic realization of N by T`N , and let Π`(N) be the image of the natural map
Gal(K/K) −→ GL(T`N)(Q`). Then Property (ii) above implies that the natural (restriction)
map

(41) Π`(M) −→ Π`(W−1M)

(where W−1M = [0 −→ V ])) is injective (as well as surjective). By the Mumford-Tate
conjecture for 1-motives on the unipotent parts (proved by Jossen [33, Theorem 1]), the
Hodge theoretic analogue of this map, i.e. the restriction map

G(TM,ωB) −→ G(T (W−1M), ωB) (ωB = the forgetful fiber functor)

is also injective (the two groups above are calculated in MHS). Thus u−1(TM) is zero.

Remark.

(1) Here we do not need the full power of the Mumford-Tate conjecture on the unipotent
parts to go from the injectivity of (41) to the vanishing of u−1(TM); just the more
basic statement [7, Theorem 1] is enough. Indeed, [7, Theorem 1] and injectivity of
(41) imply that W−2u(TM) is zero. It follows that u(TM) and consequently u−1(TM)
is a pure object of weight -1. On the other hand,

u−1(TM) ⊂ Hom(TM/W−1TM,W−1TM) ∼= W−1TM.

It follows that u−1(TM) is zero (as otherwise, in light of simplicity of H1(A) the
extension E−2(W−1TM) would split).

(2) Note that the example given in this section shows that in general, without any inde-
pendence axiom, the individual extensions Ep/u need not split (see Corollaries 5.3.2
and 5.3.3 of Theorem 5.3.1, as well as Deligne’s Theorem 4.3.1 and the Remark after).
Indeed, in the above example, E−1(TM)/u(TM) does not split: if it did, then by
Lemma 5.1.1 so would E−1(TM)/u−1(TM). But E−1(TM) ( = E−1(TM)/u−1(TM))
does not split as xf is a point of infinite order.

(3) In fact, the example given in this section also shows that in general, u may not be
generated as a Lie algebra by the subobjects up. Indeed, with M as above, u(TM) is
not zero (because TM is not semisimple), while both u−1(TM) and u−2(TM) are zero.
(That the latter is zero can be seen by an argument similar to the one given in Remark



ON UNIPOTENT RADICALS OF MOTIVIC GALOIS GROUPS 43

(1): u−2(TM) is pure of weight -1 and a subobject of Hom(TM/W−2TM,W−2TM) ∼=
(TM/W−2TM)∨(1); the latter object has no nonzero subobject of weight -1.)
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