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Abstract. In the first part of the article, we give a self-contained account of Tannakian
fundamental groups of extensions, generalizing a result of Hardouin from [17] and [16]. In
the second part, we use Hardouin’s characterization of Tannakian groups of extensions to give
a characterization of the unipotent radical of the Mumford-Tate group of an open complex
curve. Consequently, we prove a formula that relates the dimension of the unipotent radical
of the Mumford-Tate group of an open complex curve X \ S with X smooth and projective
and S a finite set of points to the rank of the subgroup of the Jacobian of X supported on S.

1. Introduction

Let X be a smooth complex projective curve and S ⊂ X(C) a finite nonempty set of
points. There is an exact sequence

(1) 0 −→ H1(X) −→ H1(X \ S)
residue−→ Q(−1)|S|−1 −→ 0

of (rational) mixed Hodge structures, where the first arrow is induced by the inclusion X\S ⊂
X. In connection to a new proof of the Manin-Drinfeld theorem for modular curves, Deligne
proved in the 1970s that this sequence splits (or equivalently, H1(X \S) is semisimple) if and
only if the rank of the subgroup of the Jacobian of X supported on S is zero (see [8, §10.3]
and [9, Remarque 7.5], and also [12] for another argument).

To any mixed Hodge structure H, one associates an algebraic group called the Mumford-
Tate group of H, which we denote by MT (H). This group can be defined in at least two
equivalent ways: In the original definition, due to Mumford (and then refined by Serre) in the
pure case, MT (H) is the subgroup of GL(HQ) (where as usual, HQ denotes the underlying
rational vector space of H) which fixes all Hodge classes of weight zero in finite direct sums
of objects of the form

H⊗m ⊗ (H∨)⊗n (m,n ∈ Z≥0) .

The second definition, which is somewhat more natural and more conceptual, is in terms of
Tannakian formalism: MT (H) is the fundamental group of the Tannakian subcategory 〈H〉
of the category of mixed Hodge structures generated by H (see Section 2 for a brief reminder
on Tannakian fundamental groups; see [2] for the equivalence of the two definitions). This
means that one has a canonical equivalence of categories between 〈H〉 and the category of
finite-dimensional representations of MT (H).

The unipotent radical of MT (H) measures how far H is from being semisimple. In
particular, H is semisimple if and only if the unipotent radical of MT (H) is trivial. Thus
Deligne’s result about H1(X \ S) can be paraphrased as follows: the unipotent radical of
MT (H1(X \ S)) is trivial if and only if the rank of the subgroup of the Jacobian of X
supported on S is zero.
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The unipotent radical of the Mumford-Tate group of a 1-motive (of which the Mumford-
Tate group of H1(X \ S) is an example) has been studied in great generality by Bertolin
([4] and [5]) and Jossen [20]. On his path to prove the main theorem of [20], Jossen gives a
characterization of this unipotent radical in loc. cit., Theorem 6.2.

In the case of H1(X \ S), Jossen’s characterization is the following: Suppose S =
{p0, . . . , pn}. Let P be the connected component of the Zariski closure of the subgroup
generated by

(p1 − p0, . . . , pn − p0)

in Jac(X)n, where Jac(X) is the Jacobian of X. Then P itself is an abelian subvari-
ety of Jac(X)n. Jossen’s theorem asserts that the Lie algebra of the unipotent radical of
MT (H1(X \ S)) is canonically isomorphic to H1(P ). In particular, the dimension of the
unipotent radical of MT (H1(X \ S)) is twice the dimension of P .

To get a more concrete description (one that does not involve the Zariski closure) of the
dimension of the unipotent radical of MT (H1(X \ S)), one can note that linear relations
between the points p1 − p0, . . . , pn − p0 with coefficients in the endomorphism algebra of
Jac(X) cut down the dimension of P .

One of the main results of this paper gives a more explicit description of the unipo-
tent radical of MT (H1(X \ S)) that avoids the Zariski closure (see Theorem 4.9.1). As a
consequence, in the case where Jac(X) is simple, we get the following clean formula for the
dimension of the unipotent radical (see Theorem 4.9.2(b)):

Theorem A. Let X, S, and Jac(X) be as above. Let g, E, and U(H1(X \S)) be respectively
the genus of X, the endomorphism algebra End(Jac(X)) ⊗ Q of Jac(X), and the unipotent
radical of the Mumford-Tate group of H1(X \ S). Suppose that Jac(X) is simple. Then the
dimension of U(H1(X\S)) is equal to 2g times the E-rank of the E-submodule of Jac(X)(C)⊗
Q generated by the subgroup supported on S.

In the general case where Jac(X) is not necessarily simple, for every division algebra in
End(Jac(X))⊗Q we get an upper bound for the dimension of U(H1(X \ S)) (see Theorem
4.9.2(a)).

Let us put this discussion on hold for the moment and go to the abstract setting of
(neutral) Tannakian categories. Let T be a Tannakian category over a field K of characteristic
zero, and ω a fiber functor over K (the example relevant to the earlier discussion being the
category of mixed Hodge structures and the forgetful functor H 7→ HQ). Suppose we have an
extension

(2) 0 −→ L −→ M −→ N −→ 0

in T. Denoting the Tannakian fundamental groups of objects with respect to ω by G(−), we
have a natural surjection

G(M) −→ G(L⊕N).

Let U(M) be the kernel of this map (if N and L are semisimple, then U(M) is the unipotent
radical of G(M)). By Tannakian formalism, there is an object

Lie(U(M)) ⊂ Hom(N,L)

whose image under ω is the Lie algebra of U(M). The question of characterization of
Lie(U(M)) has been studied and answered earlier by Hardouin and Bertrand in the case
where N = 1 and L is semisimple: A theorem of Hardouin ([17, Theorem 2], see also the
unpublished work [16]) asserts that in this case, Lie(U(M)) is the smallest subobject of

Hom(1, L) ∼= L
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such that the pushforward of (2) along the quotient map

L −→ L/Lie(U(M))

splits. The result was earlier proved by Bertrand [6, Theorem 1.1] in the setting of D-modules.
The case of arbitrary semisimple N (with L continued to be semisimple as well) can be

deduced from Hardouin’s result. In this case, the characterization becomes as follows: If ν is
the extension of 1 by Hom(N,L) corresponding to (2) under the canonical isomorphism

Ext(N,L) ∼= Ext(1, Hom(N,L))

(where Ext means the Yoneda Ext1 group in T), then Lie(U(M)) is the smallest subobject
of Hom(N,L) such that the pushforward of ν under the quotient map

Hom(N,L) −→ Hom(N,L)/Lie(U(M))

splits.
The goal of this paper is twofold. Our first goal, to which the first part of the paper is

devoted, is to give a self-contained and general treatment of Tannakian groups of extensions
in characteristic zero. More precisely, in the general setting of the extension (2) in a Tan-
nakian category, in Theorem 3.3.1 we give a characterization of Lie(U(M)) as a subobject of
Hom(N,L), without assuming that N or L is semisimple. In the semisimple case, the result
simplifies to Hardouin’s characterization (see Corollary 3.4.1). We also discuss a dual variant
of the characterization of Lie(U(M)) (Theorem 3.5.1 and in the semisimple case, Corollary
3.5.2), which is more convenient in some settings.

We should point out that the generalization to the non-semisimple situation is indeed
useful in practical applications: extensions as in (2) with non-semisimple L and N arise
naturally, for example, in a non-semisimple Tannakian category with a weight filtration, e.g.
the category of mixed motives. In fact, in [13] we build on Theorem 3.3.1 to refine a result
of Deligne from [20, Appendix] on unipotent radicals of Tannakian fundamental groups in
a Tannakian category with a weight filtration, and then give applications to mixed motives
which have “large” unipotent radicals of motivic Galois groups (see the aforementioned paper
for more details).

The second goal of the paper, to which the second part of the paper is devoted, is to
apply the method of the first part to study the unipotent radical of the Mumford-Tate group
of an open curve. Here we take T to be the category of mixed Hodge structures and apply
results about Tannakian groups of extensions to the extension (1). This approach leads to a
characterization of the unipotent radical of the Mumford-Tate group of an open curve (see
Theorem 4.9.1). The dimension formula and upper bounds mentioned above follow from this
characterization of the unipotent radical (see Theorem 4.9.2).

The proof of Theorem 4.9.1 has two ingredients: The first ingredient is the semisimple
case of Theorem 3.3.1 due to Hardouin (or more precisely, its dual variant given in Corollary
3.5.2). This gives a characterization of Lie(U(H1(X \ S)) as follows: if µ is the element of

Ext(H1(X)|S|−1,1)

corresponding to (1) under the canonical isomorphisms

Ext(Q(−1)|S|−1, H1(X)) ∼= Ext(H1(X)⊗Q(−1)|S|−1,1)
Poincaré duality∼= Ext(H1(X)|S|−1,1),

then the orthogonal complement (see Section 3.5) of Lie(U(H1(X\S)) is the largest subobject

of H1(X)|S|−1 on which µ restricts to zero. The second ingredient of the argument is now the

calculation of the restrictions of the extension µ along different maps H1(X) −→ H1(X)|S|−1.
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Theorem 4.9.1 can be deduced alternatively from Jossen’s general characterization of the
unipotent radical of the Mumford-Tate group of an arbitrary 1-motive given in [20, Theorem
6.2]. Although Theorem 4.9.1 is weaker than Jossen’s [20, Theorem 6.2], we hope that the
reader might find some value in the simplicity of our approach and exposition, which solely rely
on the general material on Tannakian groups and the calculation of the relevant extensions
in the category of mixed Hodge structures. This approach can be applied to any situation
where the relevant extensions can be calculated and described nicely. It is also hopefully more
accessible to some audiences.

The paper is organized as follows. In the next section, we recall some basic generalities
about Tannakian categories. In Section 3 we prove the characterizations of Lie(U(M)) in a
general Tannakian category and for general L and N (with notation as above). A reader not
familiar with the language of Tannakian categories but familiar with properties of the category
of mixed Hodge structures may assume in Sections 2 and 3 that T is the latter category and ω
is the forgetful functor. In Section 4, we come back to the problem of studying the unipotent
radical of the Mumford-Tate group of an open curve, and prove Theorems 4.9.1 and 4.9.2.
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This work was a prequel to the work [13].

2. Preliminaries

In this section we briefly recall a few facts and constructions about Tannakian categories.
For any commutative ring R, let ModR denote the category of R-modules. Throughout, K
is a field of characteristic zero. The categories of groups and commutative K-algebras are
respective denoted by Groups and AlgK . For an affine group scheme G over K, let Rep(G)
be the category of finite-dimensional representations of G over K. We use the language of [11]
for the theory of Tannakian categories. Our Tannakian categories are all neutral.

2.1. Let T be a Tannakian category over K with unit object 1; thus T is a K-linear rigid
abelian tensor category with the identity 1 of the tensor structure satisfying End(1) = K,
for which there exists a fiber functor, i.e. a K-linear exact faithful tensor functor

T −→ ModK .

Let ω be such a functor. Let

Aut⊗(ω) : AlgK −→ Groups

be the functor that sends a commutative K-algebra R to

Aut⊗(ω ⊗ 1R) := the group of automorphisms of the functor

ω ⊗ 1R : T −→ModR

respecting the tensor structures.
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The fundamental theorem of the theory of Tannakian categories [11, Theorem 2.11] asserts
that Aut⊗(ω) is representable by an affine group scheme G(T, ω) over K (so that Aut⊗(ω) is
the functor of points of G(T, ω)), and that the functor

T −→ Rep(G(T, ω))

sending

M 7→ ωM

(with the natural action of G(T, ω) on ωM) is an equivalence of tensor categories. We call
G(T, ω) the fundamental (or the Tannakian) group of T with respect to ω.

If T′ is also a Tannakian category over K, a tensor functor φ : T′ −→ T gives rise to a
morphism

φ# : G(T, ω) −→ G(T′, ω ◦ φ)

of group schemes over K, sending an automorphism of ω ⊗ 1R for any K-algebra R to the
obvious automorphism induced on (ω⊗1R)◦φ = (ω ◦φ)⊗1R. The morphism φ# is surjective
(or faithfully flat) if and only if φ is fully faithful and moreover, satisfies the following property:
for every M ∈ T′, every subobject of φ(M) is isomorphic to φ(L) for some subobject L of M
(see [11, Proposition 2.21], for instance). In particular, if T′ is a full Tannakian subcategory of
T which is closed under taking subobjects, then the inclusion T′ ⊂ T gives rise to a surjective
morphism G(T, ω) −→ G(T′, ω|T′), where ω|T′ is the restriction of ω to T′.

2.2. LetM be an object of T. Let 〈M〉 denote the full Tannakian subcategory of T generated
by M , that is, the smallest full Tannakian subcategory of T that contains M , and is closed
under taking subobjects (or subquotients). Set

G(M,ω) := G(〈M〉, ω|〈M〉) = Aut⊗(ω|〈M〉);

we refer to this group as the fundamental (or the Tannakian) group of M with respect to
ω. Starting with M and 1, we can obtain every object of 〈M〉 by finitely many iterations of
taking direct sums, duals, tensor products, and subquotients. It follows that the natural map

G(M,ω) −→ GLωM σ 7→ σM

(restricting to the action on ωM) is injective, so that, indeed, G(M,ω) is an algebraic group
over K. (Here, complying with the standard notation for natural transformations, σM :
ωM −→ ωM is how σ acts on ωM .) Often we will identify G(M,ω) as a subgroup of GLωM
via the injection above.

Since 〈M〉 is closed under taking subobjects, the natural map G(T, ω) −→ G(M,ω)
(induced by the inclusion 〈M〉 ⊂ T) is surjective. The kernel of this map consists of all
σ ∈ G(T, ω) such that σM is identity (then by functoriality, σN is also identity for every
N ∈ 〈M〉).

2.3. For any algebraic group G, let Lie(G) be the Lie algebra of G. Let N be a normal
subgroup of G(M,ω). Consider the adjoint representation

(3) Ad : G(M,ω) −→ GLLie(N ).

In view of the equivalence of categories

(4) 〈M〉 −→ Rep(G(M,ω)) A 7→ ωA,

there is a canonical object Lie(N ) in 〈M〉 with

ωLie(N ) = Lie(N ),
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such that the natural action of G(M,ω) on ωLie(N ) (through the definition of G(M,ω) as the
group of tensor automorphisms of the functor ω) coincides with the adjoint representation
(3).

3. The fundamental group of an extension

The goal of this section is to study the fundamental group of an extension in a Tannakian
category. As before, let T be a Tannakian category over a field K of characteristic zero. Fix
a fiber functor ω : T −→ModK . We shall drop ω from the notation for fundamental groups,
and simply write G(M) (for M an object of T). We use the notation IA for the identity map
on an object A of a given category. We use an unadorned Hom to denote a Hom group in
a category of modules, with the coefficient ring understood from the context. In T or any
category of modules, the dual of an object A is denoted by A∨.

3.1. Let L,M and N be objects of T given in an exact sequence

(5) 0 −→ L
i−→ M

q−→ N −→ 0,

where (as indicated in the diagram) the morphisms L −→ M and M −→ N are respectively
denoted by i and q.

The inclusion ι : 〈L⊕N〉 ⊂ 〈M〉 induces a surjective morphism

ι# : G(M) −→ G(L⊕N).

Let U(M) be the kernel of this map; it consists of those σ ∈ G(M) which act trivially on
ωL ⊕ ωN , or equivalently, on both ωL and ωN (i.e. σL = IωL and σN = IωN ). Note that
while for simplicity we did not incorporate L and N in the notation for U(M), in general,
U(M) will also depend on L and N . Our goal in this section is to study the group U(M).

First, let us describe the map ι# more concretely. Use the map i (see (5)) to identify
ωL as a subspace of ωM . Moreover, once and for all, choose a section of the surjection
ωq : ωM −→ ωN to identify

ωM = ωL⊕ ωN
(as vector spaces). Then the functor ω applied to the sequence (5) gives

(6) 0 −→ ωL −→ ωL⊕ ωN −→ ωN −→ 0,

where the second and third arrows are the inclusion and projection maps.
Let σ be an element of G(M). Since σ is an automorphism of the functor ω, we have a

commutative diagram

0 ωL ωL⊕ ωN ωN 0

0 ωL ωL⊕ ωN ωN 0.

σL σM σN

It follows that

σM =

(
σL f
0 σN

)
∈ GLωL⊕ωN

for some f ∈ Hom(ωN,ωL). Let

G(M) ⊂ GLωL⊕ωN

be the subgroup consisting of the elements which stabilize ωL. Regarding G(M) as a subgroup
of GLωM = GLωL⊕ωN (via σ 7→ σM ), we have

G(M) ⊂ G(M).
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Similarly, for any σ in G(L⊕N),

σL⊕N =

(
σL 0
0 σN

)
∈ GLωL⊕ωN .

Thinking of G(L⊕N) (resp. GLωL×GLωN ) as a subgroup of GLωL⊕ωN via σ 7→ σL⊕N (resp.
the diagonal embedding), we have

G(L⊕N) ⊂ GLωL ×GLωN .
The map ι# is then the restriction of

ϕ : G(M) −→ GLωL ×GLωN(
g ∗
0 g′

)
7→

(
g 0
0 g′

)
(g ∈ GLωL, g′ ∈ GLωN ).

Let
U(M) := ker(ϕ).

Thus U(M) is the subgroup of GLωL⊕ωN consisting of the elements of the form(
IωL ∗
0 IωN

)
,

and in particular, is an abelian unipotent group. We have a commutative diagram

(7)

1 U(M) G(M) G(L⊕N) 1

1 U(M) G(M) GLωL ×GLωN 1,

ι#

ϕ

⊂ ⊂

where the injective arrows are inclusion maps and the rows are exact. Thus

U(M) ⊂ U(M).

Being a subgroup of an abelian unipotent group, U(M) is abelian and unipotent.
As discussed in Section 2.3, the adjoint representation of G(M) gives a canonical object

Lie(U(M)) of 〈M〉 whose image under ω is Lie(U(M)). Since U(M) is abelian, the action
of G(M) on Lie(U(M)) factors through an action of G(L ⊕ N), so that indeed, the object
Lie(U(M)) belongs to the subcategory 〈L⊕N〉.

The Lie algebra of U(M) can be identified with

Hom(ωN,ωL)

(with trivial Lie bracket). The exponential map

exp : Lie(U(M)) = Hom(ωN,ωL) −→ U(M)(K)

(with its inverse denoted by log) is given by

(8) exp(f) =

(
IωL f
0 IωN

)
.

Let Hom(N,L) denote the internal hom object in the category T. We identify

ω(Hom(N,L)) = Hom(ωN,ωL)

via the canonical isomorphism between the two.
The following observation is standard.
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Proposition 3.1.1. The inclusion map

Lie(U(M)) −→ Hom(ωN,ωL)

is ω of a morphism

Lie(U(M)) −→ Hom(N,L).

(In other words, Lie(U(M)) can be identified as a subobject of Hom(N,L).)

Proof. In view of the equivalence of categories (4), it is enough to show that the natural
actions of G(M) on Lie(U(M)) and Hom(ωN,ωL) are compatible. In other words, we need
to show that for any commutative K-algebra R and σ ∈ G(M)(R), we have

σLie(U(M)) = σHom(N,L)|Lie(U(M))R ,

where for any vector space V over K, we denote VR := V ⊗R. We may identify

(ωHom(N,L))R = Hom((ωN)R, (ωL)R))

(Hom in R-modules). Considering the evaluation map N ⊗ N∨ −→ 1 and the canonical
isomorphism Hom(N,L) ∼= N∨ ⊗ L (which after applying ω, are the corresponding maps in
linear algebra), one easily sees that the map σHom(N,L) is given by

f 7→ σL ◦ f ◦ σ−1
N (f ∈ Hom((ωN)R, (ωL)R)).

We now calculate the map σLie(U(M)). By definition, the action of G(M) on Lie(U(M)) is the
restriction of the adjoint representation of G(M) to Lie(U(M)). Let

f ∈ Lie(U(M))R ⊂ Lie(U(M))R = Hom((ωN)R, (ωL)R).

Then σLie(U(M))(f) is characterized by

exp(σLie(U(M))(f)) = σM exp(f)σ−1
M ,

where exp is the isomorphism between Lie(U(M)) and U(M) as varieties over K, and via the
inclusion U(M) ⊂ U(M), is given by (8) (with coefficients extended to R). Writing

σM =

(
σL h
0 σN

)
where h ∈ Hom((ωN)R, (ωL)R), we have

σM exp(f)σ−1
M =

(
σL h
0 σN

)(
I(ωL)R f

0 I(ωN)R

)(
σ−1
L −σ−1

L ◦ h ◦ σ
−1
N

0 σ−1
N

)
=

(
I(ωL)R σL ◦ f ◦ σ−1

N
0 I(ωN)R

)
= exp(σL ◦ f ◦ σ−1

N ).

Thus

σLie(U(M))(f) = σL ◦ f ◦ σ−1
N ,

as desired. �

Remark 3.1.2.
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(1) The embedding

Lie(U(M)) ⊂ Hom(ωN,ωL)

is independent of the section of ωq used to identify ωM = ωL⊕ωN . Indeed, if we had
chosen a different section of ωq and hence a different identification of ωM as ωL⊕ωN ,
then the resulting embedding G(M) ↪→ GLωL⊕ωN would differ from the previous one
by conjugation by an element of U(M). Since U(M) is abelian, the two embeddings
agree on U(M). Thus our identification of Lie(U(M)) as a subobject of Hom(N,L)
is independent of the choice of the section of ωq.

(2) If L and N are semisimple, then U(M) is the unipotent radical of G(M), and in
particular will only depend on M (and not on the choices of L or N). (Recall that L
and N are semisimple if and only if the category 〈L⊕N〉 is semisimple if and only if
G(L⊕N) is reductive.)

3.2. Before we proceed any further, let us recall a categorical construction. The extension
(5) gives an element of

Ext(N,L),

where Ext denotes the Yoneda Ext1 group in T. Recall that one has a canonical isomorphism

(9) Ext(N,L) ∼= Ext(1, Hom(N,L)).

Let

ν ∈ Ext(1, Hom(N,L))

be the extension class corresponding to (5) under the canonical isomorphism (9). The exten-
sion ν is obtained by first applying Hom(N,−) to the sequence (5):

0 −→ Hom(N,L) −→ Hom(N,M) −→ Hom(N,N) −→ 0,

and then pulling back along the canonical morphism

e : 1 −→ Hom(N,N)

characterized by that

ωe(1) ∈ ωHom(N,N) = Hom(ωN,ωN)

is the identity map. Going through this procedure, assuming N 6= 0, we see that ν is the class
of the extension

(10) 0 −→ Hom(N,L) −→ Hom(N,M)† −→ 1 −→ 0,

where

- Hom(N,M)† is the subobject of Hom(N,M) characterized by

ωHom(N,M)† = Hom(ωN,ωM)†

:=
{
f ∈ Hom(ωN,ωM) : (ωq) ◦ f = λ(f)IdωN for some λ(f) ∈ K

}
,

- after applying ω, the injective arrow is f 7→ (ωi) ◦ f , and
- after applying ω, the surjective arrow is the map f 7→ λ(f) , where λ(f) ∈ K is as in

the definition of Hom(N,M)† above.

If N (and hence Hom(N,L)) is zero , then ν is the trivial extension

0 −→ 0 −→ 1 −→ 1 −→ 0.

For convenience, we set Hom(N,M)† := 1 in this case.
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3.3. We are ready to give the characterization of the subobject Lie(U(M)) of Hom(N,L).
To simplify the notation, we identifyHom(N,L) with its image under the injectionHom(N,L) −→
Hom(N,M)†.

Theorem 3.3.1. Let A be a subobject of Hom(N,L). Then A contains Lie(U(M)) if and
only if the quotient

Hom(N,M)†/A

belongs to the subcategory 〈L⊕N〉. (Thus Lie(U(M)) is the smallest subobject of Hom(N,L)
with this property.)

Proof. The theorem is trivial if N = 0, so we may assume N 6= 0. An object X of 〈M〉 belongs
to the subcategory 〈L⊕N〉 if and only if the subgroup U(M) of G(M) acts trivially on ωX.
Thus the assertion in the theorem can be paraphrased as that A contains Lie(U(M)) if and
only if the action of U(M) on ω(Hom(N,M)†/A) is trivial.

Let σ ∈ G(M)(K). Let A ⊂ Hom(N,L). The morphism

Hom(N,M)† −→ Hom(N,M)†/A

gives rise to a commutative diagram

Hom(ωN,ωM)† Hom(ωN,ωM)†/ωA

Hom(ωN,ωM)† Hom(ωN,ωM)†/ωA .

σ
Hom(N,M)† σ

Hom(N,M)†/A

Thus

σHom(N,M)†/A(f + ωA) = σHom(N,M)†(f) + ωA

for every f ∈ Hom(ωN,ωM)†.
As before, we use our fixed section of ωq : ωM −→ ωN to identify ωM = ωL ⊕ ωN .

Then we have

(11)

Hom(ωN,ωM) = Hom(ωN,ωL)⊕Hom(ωN,ωN)⋃ ⋃
Hom(ωN,ωM)† = Hom(ωN,ωL)⊕K · IωN .

Suppose σ ∈ U(M)(K). Then σL and σN are both identity, and the action of σ on the G(M)
- invariant subspace Hom(ωN,ωL) of Hom(ωN,ωM)† is trivial. Thus

σHom(N,M)†/A = IHom(ωN,ωM)†/ωA

if and only if

σHom(N,M)†/A(IωN + ωA) = IωN + ωA

where here, as well as in the rest of this argument except in (12) below, IωN is considered as
an element of Hom(ωN,ωM)† via the decomposition (11). This is equivalent to

σHom(N,M)†(IωN )− IωN ∈ ωA.

Note that σHom(N,M) (and hence σHom(N,M)†) is given by the formula

f 7→ σM ◦ f ◦ σ−1
N = σM ◦ f (f ∈ Hom(ωN,ωM)).
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We have

(12) σM =

(
IωL log(σM )
0 IωN

)
∈ GLωL⊕ωN (K),

where log(σM ) ∈ Hom(ωN,ωL). Then

σHom(N,M)†(IωN ) = σM ◦ IωN = log(σM ) + IωN ,

so that
σHom(N,M)†(IωN )− IωN = log(σM ).

We have shown that any element σ ∈ U(M)(K) acts trivially on ω(Hom(N,M)†/A) if and
only if log(σM ) is in ωA. The group U(M) is unipotent and hence U(M)(K) is dense in
U(M). It follows that U(M) acts trivially on ω(Hom(N,M)†/A) if and only if for every
σ ∈ U(M)(K), we have log(σM ) ∈ ωA, i.e. if and only if Lie(U(M) ⊂ ωA. This completes
the proof. �

3.4. For every subobject A of Hom(N,L), pushing extensions forward along the natural
map Hom(N,L) −→ Hom(N,L)/A we have a map

Ext(1, Hom(N,L)) −→ Ext(1, Hom(N,L)/A).

We denote the image of ν under this map by ν/A. Theorem 3.3.1 has the following corollary:

Corollary 3.4.1.

(a) If A is a subobject of Hom(N,L) such that ν/A is trivial, then Lie(U(M)) ⊂ A.
(b) Suppose L and N are semisimple. Then ν/Lie(U(M)) is trivial (and hence Lie(U(M))

is the smallest subobject of Hom(N,L) with this property).

Proof. We may assume N 6= 0. Suppose ν/A is trivial. Then

Hom(N,M)†/A ' Hom(N,L)/A ⊕ 1,

and hence Hom(N,M)†/A belongs to the subcategory generated by L and N . Thus (a)
follows from Theorem 3.3.1.

As for (b), the theorem implies that Hom(N,M)†/Lie(U(M)) is in 〈L ⊕ N〉, which is
a semisimple category by the hypothesis of semisimplicity of L and N . Thus ν/Lie(U(M))
splits. �

Remark 3.4.2. The semisimple case of Corollary 3.4.1 is originally due to Hardouin (see
Theorem 2 of [17] as well as Théorème 2.1 of the related unpublished article [16]). Hardouin
shows that when L and N are semisimple, Lie(U(M)) is the smallest subobject of Hom(N,L)
such that ν/Lie(U(M)) is trivial. The same statement was earlier proved by Bertrand ([6,
Theorem 1.1]) in the special case where T is the category of D-modules over a differential
field of characteristic zero. (Both Hardouin and Bertrand take N = 1, but one can deduce
the case of arbitrary (semisimple) N from that.)

3.5. Consider the canonical nondegenerate pairing

(13) (L∨⊗N) ⊗ Hom(N,L) −→ 1

given (after applying ω) by
(γ ⊗ x)⊗ f 7→ γ(f(x)).

For any subobject A of Hom(N,L) (resp. L∨⊗N), we denote by A⊥ the subobject of L∨⊗N
(resp. Hom(N,L)) orthogonal to A with respect to the above pairing. It is clear that A can
be recovered from A⊥ by A⊥⊥ = A.
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In particular, we have a subobject

Lie(U(M))⊥ ⊂ L∨⊗N.

In this subsection we shall give a dual variant of Theorem 3.3.1 which characterizes this
object. In some situations (such as the application in Section 4), this variant might be more
convenient to use than the original version.

Let

µ ∈ Ext(L∨⊗N,1)

be the extension class corresponding to the defining extension of M (i.e. (5)) under the
canonical isomorphism

(14) Ext(N,L) ∼= Ext(L∨⊗N,1).

The extension µ is obtained as follows. Let

ev : L∨⊗ L −→ 1

be the evaluation pairing between L and its dual. Then µ is the pushforward of the extension

0 −→ L∨⊗ L
I
L
∨⊗i

−−−−→ L∨⊗M
I
L
∨⊗q

−−−−→ L∨⊗N −→ 0

(obtained by tensoring (5) by L∨) through the morphism ev. More explicitly, when L is not
zero, µ is the extension

(15) 0 −→ 1 −−→ (L∨⊗M)† −−→ L∨⊗N −→ 0,

where

- (L∨⊗M)† is the quotient of L∨⊗M by (IL∨ ⊗ i)(ker(ev)),
- the injective arrow is the composition

1
', induced by ev−−−−−−−−−−→ (L∨⊗ L)

/
ker(ev)

induced by I
L

∨ ⊗ i
−−−−−−−−−−−→ (L∨⊗M)†,

and
- the surjective arrow is induced by IL∨ ⊗ q.

If L = 0, then µ is the extension

0 −→ 1 −→ 1 −→ 0 −→ 0.

For convenience, in this case we set (L∨⊗M)† := 1.
We shall use the following notation for restrictions of extensions. For every subobject B

of L∨⊗N , let µ|B be the restriction of µ to B (i.e. the pullback of µ along the inclusion map
B −→ L∨⊗N).

We can now state the dual variants of Theorem 3.3.1 and Corollary 3.4.1.

Theorem 3.5.1. Let B be a subobject of L∨⊗N . Then

B ⊂ Lie(U(M))⊥

if and only if the preimage of B under the surjective arrow in (15) belongs to the subcategory
〈L⊕N〉.

Proof. One can prove this directly, similar to the proof of Theorem 3.3.1, by calculating the
action of U(M) on (L∨ ⊗ M)† (and its subobjects) explicitly. We shall instead use a few
categorical considerations to show that the statement is equivalent to Theorem 3.3.1. Let T
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be an object of T. For any subobject A of T , denote by A⊥ the orthogonal complement of A
with respect to the evaluation pairing

T ∨⊗ T −→ 1.

Dualizing the exact sequence

0 −→ A −→ T −→ T/A −→ 0,

we get

0 −→ (T/A)∨ −→ T ∨ −→ A∨ −→ 0.

Use this to identify

A⊥
(by definition)

= ker(T ∨ −→ A∨) ∼= (T/A)∨.

There is a commutative diagram

Ext(1, T ) Ext(T ∨,1)

Ext(1, T/A) Ext(A⊥,1),

pushforward

dualizing, '

pullback

dualizing, '

where the horizontal maps dualize extensions. Apply this with T = Hom(N,L), and use the
pairing (13) to identify L∨ ⊗ N as T ∨ (so that (13) becomes simply the evaluation pairing
between T and T ∨). It is easy to see that ν and µ are duals of one another, with the
isomorphism between (L∨⊗M)† and the dual of Hom(N,M)† defined by the pairing

(L∨⊗M)† ⊗ Hom(N,M)† −→ 1

which after applying ω is given by

g ⊗ x ⊗ f 7→ g(λ(f)x− f((ωq)(x))).

(Here g ⊗ x is the image of g⊗x ∈ ω(L∨)⊗ωM in ω(L∨⊗M)†, and f is in Hom(ωN,ωM)†.)
Thus by the above diagram, for any subobject A of Hom(N,L), we have an isomorphism
between

(Hom(N,M)†/A)∨

and the preimage of A⊥ under the surjective arrow in (15). The equivalence of Theorems
3.3.1 and 3.5.1 is clear from this. �

The argument also gives the following dual variant of Corollary 3.4.1:

Corollary 3.5.2.

(a) If B is a subobject of L∨⊗N such that µ|B is trivial, then B ⊂ Lie(U(M))⊥.
(b) Suppose L and N are semisimple. Then the restriction of µ to Lie(U(M))⊥ is trivial.

(Hence Lie(U(M))⊥ is the largest subobject of L∨⊗N with this property.)
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4. The unipotent radical of the Mumford-Tate group of H1 of an algebraic
curve

Let MHS be the category of rational mixed Hodge structures. The category MHS is
a neutral Tannakian category over Q. The forgetful functor ωB : MHS → ModQ sending
an object to its underlying rational vector space is a fiber functor. For any rational mixed
Hodge structure M , the group G(M) with (T, ω) = (MHS, ωB) is called the Mumford-Tate
group of M . In this section, we will use the results of the previous section to study the
unipotent radical of the Mumford-Tate group of the degree one cohomology of a smooth
complex projective curve minus a finite set of points.

4.1. Notation. By a mixed Hodge structure we always mean a rational one. As usual, Q(−n)
denotes the Hodge structure of weight 2n with underlying rational vector space (2πi)−nQ,
with its complexification identified with C via (2πi)−n ⊗ 1 7→ (2πi)−n. The unit object 1 is
Q(0). For any object M of MHS, we denote by MQ the underlying rational vector space of
M . If R is a commutative Q-algebra, MR denotes MQ ⊗R.

Given a pure Hodge structure H of weight -1, we denote by JH the intermediate Jacobian

JH :=
HC

F 0HC +HQ
,

where F · is the Hodge filtration.
Given any smooth complex variety X, by H i(X) we mean the mixed Hodge structure on

the degree i Betti cohomology of X (with underlying rational vector space H i(X,Q)). We
shall identify H i(X)C = H i(X,C) with H i

dR(X) ( = smooth complex de Rham cohomology)
via the isomorphism of de Rham. By Hi(X) we mean the dual of H i(X); it is a mixed Hodge
structure with underlying rational vector space Hi(X,Q).

All the Ext (= Yoneda Ext1) groups in this section are in MHS.

4.2. In [7], Carlson gives an explicit description of Ext groups in MHS. We briefly recall
this description here in a special case that is of interest to us.

Let A be a pure Hodge structure of weight 1. Carlson gives a canonical isomorphism

Ext(A,1) −→ J(A∨),

where A∨ is the dual Hodge structure to A. The isomorphism is functorial in A. See [7] for
details. (In [7], Carlson proves the analogous result for integral mixed Hodge structures. The
proof of the rational case is identical.)

4.3. From this point on, let X be a smooth complex projective curve. We denote the
Jacobian variety of X by Jac(X). Let CHhom

0 (X) be the group of divisors of degree 0 on X
modulo the subgroup of principal divisors. (In other words, CHhom

0 (X) is the homologically
trivial subgroup of the Chow group CH0(X).) The group CHhom

0 (X) is the group of complex
points of Jac(X).

Set CHhom
0 (X)Q := CHhom

0 (X)⊗Q. The Abel-Jacobi map on X gives an isomorphism

AJX : CHhom
0 (X)Q −→ JH1(X),

sending the class of p − q, with p, q ∈ X, to the class of the functional
p∫
q

on the space of

harmonic 1-forms on X. (See for instance, [3, Chapter 1]. Note that here, said integral means
the integral over any path from q to p. The choice of the path will not matter in JH1(X).)
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Composing AJX with Carlson’s isomorphism we get an isomorphism

(16) Ext(H1(X),1) ∼= CHhom
0 (X)Q.

We shall identify these two groups to simplify the notation.

4.4. Let S be a finite nonempty set of (complex) points of X. We identify H1(X) as a
subobject of H1(X \ S) via the map induced by the inclusion (X \ S) ⊂ X. The reader can
refer to Deligne’s [8, §10.3] for a thorough study of the mixed Hodge structure H1(X \ S).

Since X \ S is affine, every element of H1(X \ S)C can be represented by a meromorphic
differential form on X with possible singularities only along S, and has a well-defined residue
at every p ∈ X. Indeed, if c = [ω] with ω a meromorphic form, set resp(c) := resp(ω) ( = the
residue of ω at p, which is 1/(2πi) times the integral of ω along a small positively oriented
loop around p). The subspace H1(X)C of H1(X \S)C consists of the cohomology classes with
zero residue everywhere (in other words, classes of differentials of the second kind).

For any vector space or mixed Hodge structure V , we denote by (V S)′ the kernel of the
map

V S −→ V (vp)p∈S 7→
∑
p∈S

vp

(where the vp are in V ).
One has a short exact sequence of mixed Hodge structures

(17) 0 −→ H1(X) −→ H1(X \ S)
resS−→ (Q(−1)S)′ −→ 0,

where the injective arrow is inclusion and resS : H1(X \ S)C → (CS)′ is the map c 7→
(resp(c))p∈S .

4.5. We shall apply the results of Section 3.3 to the exact sequence (17). The Hodge
structure H1(X) is polarizable and hence semisimple (see for instance, [21, §7.1.2] and [10,
Proposition 3.6]). Thus the group

U(H1(X \ S)) := ker
(
G(H1(X \ S)) −→ G(H1(X)⊕Q(−1))

)
is the unipotent radical of the Mumford-Tate group of H1(X \S). In view of Section 3.5, the
determination of the group U(H1(X \ S)) amounts to finding

Lie(U(H1(X \ S)))⊥ ⊂ H1(X)∨⊗ (Q(−1)S)′.

We use the Poincaré duality isomorphism

PD : H1(X)(1) −→ H1(X)∨ [η] 7→ 1

2πi

∫
X

η ∧ − ,

where η is a closed smooth 1-form on X and the isomorphism

H1(X)(1)⊗ (Q(−1)S)′ −→ (H1(X)
S

)′ c⊗ (ap)p∈S 7→ (apc)p∈S

to identify

H1(X)∨⊗ (Q(−1)S)′ ∼= (H1(X)
S

)′.

Following the notation of Section 3.5, we let

µ ∈ Ext((H1(X)
S

)′,1)

be the element corresponding to the sequence (17) under the canonical isomorphism

(18) Ext((Q(−1)S)′, H1(X)) ∼= Ext(H1(X)∨⊗ (Q(−1)S)′,1) = Ext((H1(X)
S

)′,1).
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By Corollary 3.5.2 (and on recalling that H1(X) is semisimple), Lie(U(H1(X \ S)))⊥ is the

largest subobject of (H1(X)
S

)′ with the property that the restriction of µ to it is trivial.

4.6. Let us consider the restrictions of µ to some obvious subobjects of (H1(X)
S

)′. For each

p ∈ S, let ιp : H1(X)→ H1(X)
S

be the embedding into the p-coordinate. Given p, q ∈ S, we
have a morphism

ιp − ιq : H1(X) −→ (H1(X)
S

)′

(which is an embedding if p 6= q).

Proposition 4.6.1. Let p, q ∈ S. Via the identification (16), we have

(ιp − ιq)∗(µ) = p− q
(where (ιp − ιq)∗(µ) is the pullback of µ along ιp − ιq, and with abuse of notation the class of

p− q in CHhom
0 (X)Q is also denoted by p− q).

Proof. This is a reformulation of a well-known result about Hodge theory of open curves,
which in turn is a special case of general results about equivalence of various definitions of
the Abel-Jacobi map (see the remark below). With abuse of notation, let ιp also denote the
embedding of Q(−1) as the p-coordinate of Q(−1)S . Then we have a commutative diagram

Ext((Q(−1)S)′, H1(X))
(ιp−ιq)∗−−−−−→ Ext(Q(−1), H1(X))

∼ = ∼ =
Ext((H1(X)

S
)′,1)

(ιp−ιq)∗−−−−−→ Ext(H1(X),1),

where the vertical isomorphisms are given by (14) and Poincaré duality. Under the isomor-
phism on the left (i.e. (18)), µ and (17) correspond to each other. The pullback of the
extension (17) along ιp − ιq : Q(−1) −→ (Q(−1)S)′ is the extension

(19)

0 −→ H1(X) −→ (resS)−1((ιp − ιq)(Q(−1)))
resp−→ Q(−1) −→ 0.

=

H1(X \ {p, q})
This extension corresponds to p− q under

(20) Ext(Q(−1), H1(X)) ∼= Ext(H1(X),1) ∼= JH1(X) ∼= CHhom
0 (X)Q.

See for example, §9.0-§9.2 of Jannsen [19]. �

Remark 4.6.2. The fact that the extension (19) corresponds to p − q under (20) is already
stated in §4.3 of Deligne’s [9]. The same paragraph outlines a motivically-inspired definition of
the Abel-Jacobi map, which naturally takes values in Ext groups in any suitable cohomology
theory. Via this approach and in the case of Hodge theory (or more precisely, cohomology
with values in MHS), the Abel-Jacobi image of p − q is by definition the extension (19) (in
other cohomology theories, by definition the Abel-Jacobi image is the analogous extension).
A detailed description of this motivic approach towards the Abel-Jacobi map for any smooth
complex variety can be found in §9.0 and §9.1 of Jannsen’s book [19]. The fact that for
Hodge theory the Abel-Jacobi map defined in terms of extensions coincides with the classical
(Griffiths) Abel-Jacobi map with values in intermediate Jacobians is asserted in Lemma 9.2
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of [19] and follows from the works [18] and [14] of Jannsen and Esnault-Viehweg. (See §9.2 of
[19] for more details.)

4.7. We now calculate the slightly more complicated restrictions of µ. Let

E = End0(Jac(X)) := End(Jac(X))⊗Q

be the endomorphism algebra of the Jacobian of X. We have an (anti-) isomorphism

E −→ End(H1(X)) f 7→ f?,

where for any element f of the endomorphism algebra of Jac(X), by f? we mean the pullback
map on cohomology.1 This induces an isomorphism

(21) (ES)′ −→ Hom(H1(X), (H1(X)
S

)′) (fp)p∈S 7→
∑
p∈S

ιpf
?
p .

Consider the composition

(22) Hom(H1(X), (H1(X)
S

)′)
φ 7→φ∗µ−→ Ext(H1(X),1)

(16)∼= CHhom
0 (X)Q = Jac(X)(C)⊗Q.

Since every simple subobject of (H1(X)
S

)′ is the image of a morphism H1(X)→ (H1(X)
S

)′

(because 〈H1(X)〉 is semisimple), the following corollary of Proposition 4.6.1 can be used to
describe all restrictions of µ.

Corollary 4.7.1. Let (fp)p∈S ∈ (ES)′. Then

(
∑
p∈S

ιpf
?
p )∗ µ =

∑
p∈S

fp (p− e),

where e is any point in X.

Proof. Let (fp)p∈S ∈ (ES)′ and e ∈ X. Since
∑
p∈S

fp = 0, we have

∑
p∈S

ιpf
?
p =

∑
p∈S

(ιp − ιe)f?p .

Thus

(
∑
p∈S

ιpf
?
p )∗ µ =

∑
p∈S

((ιp − ιe)f?p )∗ µ

=
∑
p∈S

(f?p )∗(ιp − ιe)∗ µ

=
∑
p∈S

fp (p− e) ,

1We use the symbol ∗ for pullback of extensions and the symbol ? for pullback of cohomology induced by
morphisms of varieties.
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where in the last line we used Proposition 4.6.1 together with the commutativity of the
diagram

Ext(H1(X),1) ∼= JH1(X)
' , AJX←−−−−− CHhom

0 (X)Q = Jac(X)(C)⊗Q

(f?)∗
y y f

Ext(H1(X),1) ∼= JH1(X)
' , AJX←−−−−− CHhom

0 (X)Q = Jac(X)(C)⊗Q .

�

For any (fp)p∈S ∈ (ES)′, the value of
∑
p∈S

fp (p − e) does not depend on the choice of

e ∈ X. To simplify the notation, let us denote this common value by∑
p∈S

fp (p) .

Note that if
(fp)p∈S ∈ (QS)′ ⊂ (ES)′,

then
∑
p∈S

fp(p) defined above agrees with the other possible interpretation of the notation (i.e.

the image of the divisor
∑
p∈S

fpp of degree zero with coefficients in Q in CHhom
0 (X)Q).

4.8. Having computed the restrictions of µ, we return to the problem of determination of
U(H1(X \ S)).

Proposition 4.8.1. Let (fp)p∈S ∈ (ES)′. The following statements are equivalent:

(i) The restriction of µ to the image of
∑
p∈S

ιpf
?
p splits.

(ii)
∑
p∈S

fp(p) is zero in CHhom
0 (X)Q.

(iii) The image of
∑
p∈S

ιpf
?
p is contained in Lie(U(H1(X \ S)))⊥.

Proof. Recall that by Corollary 3.5.2, Lie(U(H1(X \ S)))⊥ is the largest subobject of (H1(X)
S

)′

with the property that the restriction of µ to it splits (see Section 4.5). This gives the equiv-
alence of statements (i) and (iii) of the proposition. The equivalence of (i) and (ii) follows
from Corollary 4.7.1, on noting (by weight considerations) that for any quotient B of H1(X),
the canonical map

Ext(B,1) −→ Ext(H1(X),1)

is injective. �

In particular, the proposition recovers the following well-known result, originally due to
Deligne (see the remark below), which gives an arithmetic criterion for when U(H1(X \ S))
is trivial (or equivalently, for when the sequence (17) splits):

Corollary 4.8.2. The group U(H1(X \ S)) is trivial if and only if the subgroup of the Jacobian
of X supported on S has zero rank.

Proof. Note that Lie(U(H1(X \ S)))⊥ = (H1(X)
S

)′ if and only if Im(ιp − ιq) is contained

in Lie(U(H1(X \ S)))⊥ for every p, q ∈ S, which in turn is equivalent to p − q being zero in
CHhom

0 (X)Q for every p, q ∈ S. �
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Remark 4.8.3. Corollary 4.8.2 is originally due to Deligne, implicit in [8] and announced
explicitly in [9, Remarque 7.5], in relation to a new proof of the Manin-Drinfeld theorem on
modular curves. See [12] for a more detailed discussion of this.

4.9. We are ready to give the main result of this part of the paper. The results gives a
characterization of Lie(U(H1(X \ S)))⊥ (and hence U(H1(X \ S))).

Theorem 4.9.1. Let A be the subobject of (H1(X)
S

)′ which is the sum of the images of all
the maps of the form ∑

p∈S
ιpf

?
p ∈ Hom(H1(X), (H1(X)

S
)′),

with (fp)p∈S ∈ (ES)′ and
∑
p∈S

fp(p) = 0 (see Section 4.7). Then

A = Lie(U(H1(X \ S)))⊥ .

Proof. The inclusion A ⊂ Lie(U(H1(X \ S)))⊥ is immediate from Proposition 4.8.1. To see
the reverse inclusion, first note that since 〈H1(X)〉 is semisimple, Lie(U(H1(X \ S)))⊥ is a
direct sum of simple subobjects. Let B be a simple subobject of Lie(U(H1(X \ S)))⊥. Then

B is the image of a map H1(X) −→ (H1(X)
S

)′. Any such map is of the form
∑
p∈S

ιpf
?
p

for some (fp)p∈S ∈ (ES)′. By Proposition 4.8.1, for the image of such a map to be in

Lie(U(H1(X \ S)))⊥ we must have
∑
p∈S

fp(p) = 0 in CHhom
0 (X)Q. Thus B ⊂ A. �

We end the paper by deducing the following result about the dimension of U(H1(X \ S))
(note that Part (b) is Theorem A of the Introduction).

Theorem 4.9.2. Let g be the genus of X. Recall that E is the endomorphism algebra of the
Jacobian Jac(X).

(a) Let D be any division algebra contained in E. Then the dimension of U(H1(X \ S))
is at most 2g times the D-rank of the D-submodule of Jac(X)(C) ⊗ Q generated by
the subgroup supported on S.

(b) Suppose H1(X) is simple. Then the dimension of U(H1(X \ S)) is equal to 2g times
the E-rank of the E-submodule of Jac(X)(C)⊗Q generated by the subgroup supported
on S.

Proof. Let A be as in Theorem 4.9.1.

(a) For any subalgebra R of E, let ΛR be the composition

(RS) ↪→ (ES)′
(21)−−−→ Hom(H1(X), (H1(X)

S
)′)

(22)−−−→ Jac(X)(C)⊗Q .

This isR-linear by Corollary 4.7.1. The image of ΛR is theR-submodule of Jac(X)(C)⊗
Q generated by the subgroup supported on S. Let AR be the subobject of (H1(X)S)′

which is the sum of the images of the maps
∑
p∈S

ιpf
?
p with (fp)p∈S in ker(ΛR), so that

AR ⊂ A and AE = A. If β = {(f (r)
p )p∈S}1≤r≤d is an R-spanning set for ker(ΛR), then

AR is the sum of the images of
∑
p∈S

ιp(f
(r)
p )

?
for 1 ≤ r ≤ d. Moreover, if R = D is

a division algebra and β is D-linearly independent, then AD is the direct sum of the
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images of the previous d maps. Since each of these images is then a copy of H1(X)
(because D is a division algebra), we have

dimLie(U(H1(X \ S)))⊥ = dim(A) ≥ dim(AD)

= 2g · dimD(ker(ΛD))

= 2g (|S| − 1− dimD Im(ΛD)) .

Taking orthogonal complements we get the desired bound.
(b) Since H1(X) is simple, E is a division algebra. Taking D = E, by the proof of Part

(b) we have

dim(A) = dim(AE) = 2g (|S| − 1− dimE Im(ΛE)).

The claimed formula follows.

�
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