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   ζ(s) =
∞

∑
n=1

1
ns (Re(s) > 1)

Euler (around 1740):      

 ζ(2) = π2/6 ζ(4) = π4/90 ζ(6) = π6/945
⋮

ζ(2k) = π2k ⋅ (a rational number)

Lambert (1760):  is irrational. 

Lindemann (1882):  is transcendental.

π

π

Corollary:  is transcendental. ζ(2k)



A different picture : Odd zeta values

Euler spent a lot of time on odd zeta values too. In 1785 he speculated 
that perhaps there are  such thatα, β ∈ ℚ

ζ(3) = α(log 2)3 + βπ2 log 2.
To date, very little known about transcendence/irrationality of odd zeta 
values. 

Apéry (1978):  is irrational.ζ(3)

We don’t even Know irrationality of . Nothing is known about 
transcendence of any odd zeta value.

ζ(5)

Likely expectation in modern times:  
should be algebraically independent.

{π, ζ(3), ζ(5), ζ(7), …} ∪ {log p : p prime}

Grothendieck period conj.
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Nowadays, we finally have non-conjectural geometrically constructed tannakian 
categories of motives (Ayoub ’14, Nori ’00s).   

Tannakian: similar properties to categories of representations: abelian, tensor pro., 
nice duals, admits a fiber functor

Key fact: Any tan. Cat. over K is equiv. to Rep(G) for some affine group scheme G 
over K. More precisely:  

     tan. over K, any fiber functor  gives an equiv. T T ω VecK T → Rep(Aut⊗(ω))

an af. gr. sch. over K called the 
fund. gr. of  wrt T ω



:= fund. gr. of  w.r.t. Betti fiber functor (Aut )Gmot(X) ⟨X⟩ ⊗(ωB |⟨X⟩ )

an alg. group over ; can be identified as a subgroup of GL(X )ℚ B

Have an equiv. of cat.’s        given by .⟨X⟩ Rep(Gmot(X)) ωB

Def: Let X be a motive over a subfield of . The motivic Galois group of 
X is

ℂ

Grothendieck period conjecture (mid-late ’60s): For every motive X over 
a number field, 
dim  = transcendence degree of field generated by periods of X.Gmot(X)

Example. ; periods ℚ(−1) := H1(ℂ×) 2πiℚ
dz/z

 = spanned by HB
1 (ℂ×)

 spanned byH1
dR(ℂ×)

0

Gmot(ℚ(−1)) = .m
GPC for   transcendence of ℚ(−1) ⇔ π



Unipotent radicals of motivic Galois groups 

Ext groups in categories of 
motives

unipotent radicals of 
motivic Galois groups.

<—->

Unipotent radicals of motivic Galois groups have been studied previously by 
Deligne, Bertrand, Hardouin, Bertolin, Jossen, K. Murty, E., etc.

Sup. X = a motive.

Cat. of motives has a functorial filtration  like the wt filt. on polarizable MHS’s.W∙

1                              1Umot(X) Gmot(X) Gmot(GrW(X))
Semisimple

reductive

Unipotent radical

W0GL(XB)
parabolic subgr. 

for W

GL(GrW(XB)) 1W−1GL(XB)1

unipotent radical of Umot(X) = Gmot(X)

1(X) := Lie(Umot(X)) ⊂ W−1End(XB)
Tan. Formalism

1(X) ⊂ W−1End(X)
A motive



Theorem (Borel ’72, Soulé ’78, Voevodsky/Levine): Ext groups for 
mixed Tate motives

dim  = Ext1
MTM(ℚ)(1,ℚ(n))

1     n=3,5,7,…

0     n=2,4,6,…

Ext1
MTM(ℚ)(1,ℚ(1)) ≅ ℚ× ⊗ ℚ

Theorem (Deligne ’89): For odd n >1, the nontrivial extension of  by 
 has a period matrix

1
ℚ(n)

.[(2πi)−n (2πi)−nζ(n)
0 1 ]

MTM(ℤ)Same for

Ext1
MTM(ℤ)(1,ℚ(1)) = 0

a ⊗ 1H1(ℂ×, {1,a})

[(2πi)−1 (2πi)−1log(a)
0 1 ]per. mat.

 groups all vanish.Ext2

Call this motive  
“the motive of ” 

Zn
ζ(n)

 , “motive of 
log(a)”, motive 
over 

La

ℤ[1/a]

GPC and alg. indep. of zeta values and logarithms



Warm up exercise: GPC and alg. indep. of  and {π, ζ(n)} {π, log a}

1 —-> (X) —-> (X) ——> (GrX) —-> 1Umot Gmot Gmot

.m.a ≅ {[1 *
0 1 ]}

X nonsemisimple => (X)   => dim (X) = 2 Umot = .a Gmot

Corollary: GPC for  (resp. )  alg. indep. 0f  (resp. ). Zn La ⇔ {π, ζ(n)} {π, log(a)}

Suppose   0 —->  —-> X ——> 1 —-> 0 is nonsplit. ℚ(n)

(n odd, >1)



Proposition: GPC implies alg. indep. 0f .{ζ(n) : n odd} ∪ {π} ∪ {log p : p prime}

Pf:

Enough to show (*) is not . Enough to have ≅ LpN+1
∉ ⟨Z≤2k+1⨁ ⊕n≤N Lpn

⟩

Let’s focus on alg. indep. of {log p} over  first.ℚ(π, ζ(3), ζ(5), …)

Set  .Z≤2k+1 := ⨁
n≤2k+1

Zn Enough to show that

dim ( ) < dim ( )Gmot Z≤2k+1⨁ ⊕n≤N Lpn
Gmot Z≤2k+1⨁ ⊕n≤N+1 Lpn

1 → Umot(Z≤2k+1⨁ ⊕n≤N+1 Lpn
) → Gmot(Z≤2k+1⨁ ⊕n≤N+1 Lpn

) → .m → 1
(*)

1 → Umot(Z≤2k+1⨁ ⊕n≤N Lpn
) → Gmot(Z≤2k+1⨁ ⊕n≤N Lpn

) → .m → 1

Every object unramified at  pN+1Ramified at pN+1

(Well-known)

>1

We have:



Remains to show alg. indep. of .{ζ(n) : n odd >1} ∪ {π}

Recall . Again easy to see that it is enough to argue that Z≤2k+1 = ⨁
n≤2k+1

Zn

Lemma: Let G  be an alg. group over a field of char. 0, with  
reductive and  unipotent. Let  be the abelianization of the Lie alg. 0f 
, considered as a G-rep. Then for every semisimple object N of Rep(G) 

with (1,N)=0, we have .

= U ⋊ R R
U 1ab

U
HomG Ext1

G(1,N) ≅ HomG(1ab, N)

Apply with G= , N= :Gmot(Z≤2k−1) ℚ(2k + 1)

Ext1
⟨Z≤2k−1⟩(1,ℚ(2k + 1)) = Hom(1ab(Z≤2k−1), ℚ(2k + 1)) = 0

Z2k+1 ∉ ⟨Z≤2k−1⟩

Weight considerations

( )1(Z≤2k−1) ⊂ W−1End(Z≤2k−1)



Towards motives with maximal unipotent radicals

To see the alg. indep. of  here we used a 4-dim’l motive with π, log 5,ζ(3)
GrW ≃ ℚ(3) ⊕ ℚ(1) ⊕ 12 .
Can we do this with a smaller motive?

1. Is there a 3-dim’l motive that has  and  as subquotients?Z3 L5

2. If so, would the GPC for it imply the alg. indep. of ? π, log 5,ζ(3)

Answered by Grothendieck’s theory of blended extensions
(Extensions panachées)

Motives with maximal unipotent radicals



Blended extensions

Invented by Grothendieck to study filtrations  with 0 ⊊ X1 ⊊ X2 ⊊ X3 = X
X1 ≃ A1, X2/X1 ≃ A2, X3/X2 ≃ A3

 X

0 X1 X2 X2/X1 0

0 X1 X X/X1 0

00

X/X2 X/X2

0 0



Blended extensions

Invented by Grothendieck to study filtrations  with 0 ⊊ X1 ⊊ X2 ⊊ X3 = X
X1 ≃ A1, X2/X1 ≃ A2, X3/X2 ≃ A3

 X

0 X1 X2 X2/X1 0

0 X1 X X/X1 0

00

X/X2 X/X2

0 0

Gr(X) ϕ ⊕ Ar

A2

A1

A3



0 A1 L A2 0

Fix extensions  and : ℒ <

ℒ :

< :
A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

<
ℒ

0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

0 A2 N A3 0

EXTPAN( ) := col. Of 
all bl. ext’s of  by 

<, ℒ
< ℒ

Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

<, ℒ
<

ℒ



0 A1 L A2 0

Fix extensions  and : ℒ <

ℒ :

< :

EXTPAN( ) := col. Of 
all bl. ext’s of  by 

<, ℒ
< ℒ

Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

<, ℒ
<

ℒ0 A2 N A3 0

Prop: a) Extpan( ) is 
nonempty iff  
vanishes in . 

<, ℒ
ℒ ∘ <

Ext2(A3, A1)0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

<
ℒ



0 A1 L A2 0

Fix extensions  and : ℒ <

ℒ :

< :
A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

<
ℒ

0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

0 A2 N A3 0

EXTPAN( ) := col. Of 
all bl. ext’s of  by 

<, ℒ
< ℒ

Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

<, ℒ
<

ℒ

Prop: a) Extpan( ) is 
nonempty iff  
vanishes in .  

b) Extpan( ) is 
canonically a torsor 
over . 

<, ℒ
ℒ ∘ <

Ext2(A3, A1)

<, ℒ

Ext1(A3, A1)



Back to our question 1: Take

0 ℚ(n + 1)

Lp

ℚ(1) 0

0 Mn,p

Zn(1)

0

00

1

0 0

1

ℚ(n + 1)

ℒ :

< : 0 

ℚ(n + 1)

Lpℚ(1) 0

0 Zn(1)

1

0

There is  , unique up to iso., fitting inMn,p

(p prime)

(n odd >1)

per. mat.

(2πi)−n−1 (2πi)−n−1ζ(n) (2πi)−n−1πn,p

0 (2πi)−1 (2πi)−1log p
0 0 1

Ext2(1,ℚ(n + 1)) = 0

Ext1(1,ℚ(n + 1)) = 0 GrWMn,p ≃ ℚ(n + 1) ⊕ ℚ(1) ⊕ 1
Zn Lp

ℚ(1)



Def: Say a motive X has a maximal unipotent radical if

.1(X) = W−1End(X)

Def: An extension (class)  of  by  is totally nonsplit if its class 
in  does not come from any proper subject of 

.

ℰ X Y
Ext1(1, Hom(X, Y))

Hom(X, Y)
For extensions of 1 by simple X, totally nonsplit = nonsplit.

Moving on to the second question:

0 → WmX/WℓX → WnX/WℓX → WnX/WℓX → 0
(ℓ < m < n)are tot. nonsplit.    

X has a max. uni. rad.

All the all ext’ns

Converse false in general.

Convese true if X has 2 weights (Bertrand/Hardouin).



(i) The extensions of  by  and  by  coming from X are 
tot. nonsplit. 

GrW
a2

X GrW
a1

X GrW
a3

X GrW
a2

X

(ii)  and  have no nonzero isomorphic 
subobjects.

Hom(GrW
a2

X, GrW
a1

X) Hom(GrW
a3

X, GrW
a2

X)

Then X has a maximal unipotent radical.

Theorem (E.- K. Murty) Let  be a (not necessarily mixed Tate) motive with 
exactly 3 wts Suppose:

X
a1 < a2 < a3 .

dim  = dimGmot(Mn,p) W−1End(Mn,p)
+dim .m = 4

Cor:  has a max. uni. rad.Mn,p

GPC for  Mn,p ⇔ Alg. indep. of 
{π, log p, ζ(n), πn,p}

Open question: What is ?πn,p
(A per. of MTM( ))ℤ[1/p]

Its per. mat.:

Recall: given odd n>1 and p,  w.∃!Mn,p

(2πi)−n−1 (2πi)−n−1ζ(n) (2πi)−n−1πn,p

0 (2πi)−1 (2πi)−1log p
0 0 1

GrWMn,p ≃ ℚ(n + 1) ⊕ ℚ(1) ⊕ 1
Zn Lp


