The Grothendieck period conjecture and mixed motives with maximal unipotent radicals

Payman Eskandari Fields Institute, Feb 2024

@ Euler (around 1740):

$$\zeta(2) = \pi^2/6$$
 $\zeta(4)$

$$\zeta(2k) = \pi^{2k} \cdot (\mathbf{a} + \mathbf{b})$$

Lambert (1760): π is irrational.

Lindemann (1882): π is transcendental.

Corollary: $\zeta(2k)$ is transcendental.

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ (*Re*(*s*) > 1)

$= \pi^4/90$ $\zeta(6) = \pi^6/945$

rational number)

A different picture : Odd zeta values

- that perhaps there are $\alpha, \beta \in \mathbb{Q}$ such that
- values.
- Apéry (1978): $\zeta(3)$ is irrational.
- @ We don't even Know irrationality of $\zeta(5)$. Nothing is known about transcendence of any odd zeta value.
- should be algebraically independent.

@ Euler spent a lot of time on odd zeta values too. In 1785 he speculated

 $\zeta(3) = \alpha (\log 2)^3 + \beta \pi^2 \log 2.$

@ To date, very little known about transcendence/irrationality of odd zeta

Solution in modern times: $\{\pi, \zeta(3), \zeta(5), \zeta(7), ...\} \cup \{\log p : p \text{ prime}\}$

Grothendieck period conj.

Alg. Geometry

Var./Q

X

Various non-alg. geometric linearizations

Betti (singular) cohomology $H^n_B(X)$

de Rham cohomology $H^n_{dR}(X)$

Grothendieck period conjecture

L-adic cohomology $H_l^n(X)$

Nowadays, we finally have non-conjectural geometrically constructed tannakian categories of motives (Ayoub '14, Nori '00s).

- @ Tannakian: similar properties to categories of representations: abelian, tensor pro., nice duals, admits a fiber functor
- @ Key fact: Any tan. Cat. over K is equiv. to Rep(G) for some affine group scheme G over K. More precisely:

T tan. over K, any fiber functor $T \xrightarrow{\omega} \operatorname{Vec}_K$ gives an equiv. $T \to \operatorname{Rep}(Aut^{\otimes}(\omega))$

Grochendieck period conjecture

Various non-alg. geometric linearizations

Betti (singular) cohomology $H^n_B(X)$?

de Rham cohomology $H^n_{dR}(X)$

L-adic cohomology $H_l^n(X)$

an af. gr. sch. over K called the fund. gr. of T wrt ω

Def: Let X be a motive over a subfield of C. The motivic Galois group of Xis $G^{mot}(X) := fund. gr. of \langle X \rangle$ w.r.t. Betti fiber functor $(Aut^{\otimes}(\omega_B|_{\langle X \rangle}))$ Have an equiv. of calls $\langle X \rangle \longrightarrow Rep(G^{mot}(X))$ given by ω_B .

Grothendieck period conjecture (mid-late '60s): For every motive X over a number field,

dim $G^{mot}(X)$ = transcendence degree of field generated by periods of X. $H_1^B(\mathbb{C}^{\times}) =$ spanned by Example. $\mathbb{Q}(-1) := H^1(\mathbb{C}^{\times}); \text{ periods } 2\pi i \mathbb{Q}$ $H^1_{dR}(\mathbb{C}^{\times})$ spanned by dz/z/dz/z $G^{mot}(\mathbb{Q}(-1)) = \mathbb{G}_m$

- An alg. group over Q; can be identified as a subgroup of $GL(X_B)$

GPC for $\mathbb{Q}(-1) \Leftrightarrow$ transcendence of π

Unipotent radicals of motivic Galois groups

Sup. X = a motive.

 $\mathfrak{u}(X) := Lie(U^{mot}(X)) \subset W_{-1}End(X_B)$

@ Unipotent radicals of motivic Galois groups have been studied previously by Deligne, Bertrand, Hardouin, Bertolin, Jossen, K. Murty, E., etc. Ext groups in categories of

<---->

ø unipotent radicals of molivic Galois groups.

Cat. of motives has a functorial filtration W. Like the wt filt. on polarizable MHS's.

 $\mathfrak{u}(X) \subset W_{-1}\underline{End}(X)$

motives

GPC and alg. indep. of zeta values and logarithms @ Theorem (Borel '72, Soulé '78, Voevodsky/Levine): Ext groups for mixed Take molives

dim $Ext^{1}_{MTM(\mathbb{Q})}(1,\mathbb{Q}(n)) = \begin{cases} 1 & n=3,5,7,\dots \\ 0 & n=2,4,6,\dots \end{cases}$ $Ext^{1}_{MTM(\mathbb{Q})}(1,\mathbb{Q}(1)) \cong \mathbb{Q}^{\times} \otimes \mathbb{Q}$ L_a , "motive of L_a , "motive of log(a)", motive $H_1(\mathbb{C}^{\times}, \{1,a\}) \longleftrightarrow a \otimes 1$ over $\mathbb{Z}[1/a]$ per. mak. $\begin{bmatrix} (2\pi i)^{-1} & (2\pi i)^{-1} \log(a) \\ 0 & 1 \end{bmatrix}$

@ Theorem (Deligne '89): For odd n >1, the nontrivial extension of 1 by Q(n) has a period matrix

 \leftarrow Same for $MTM(\mathbb{Z})$

$Ext^{1}_{MTM(\mathbb{Z})}(1,\mathbb{Q}(1)) = 0$

 $\begin{array}{c} (2\pi i)^{-n} & (2\pi i)^{-n}\zeta(n) \\ 0 & 1 \end{array}$

Call this motive Z_n "the motive of $\zeta(n)$ "

• Warm up exercise: GPC and alg. indep. of $\{\pi, \zeta(n)\}$ and $\{\pi, \log a\}$ (n odd, >1)

Suppose $0 \longrightarrow \mathbb{Q}(n) \longrightarrow X \longrightarrow 1 \longrightarrow 0$ is nonsplit.

$\mathbb{G}_a \cong \left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\}$

Corollary: GPC for Z_n (resp. L_a) \Leftrightarrow alg. indep. of $\{\pi, \zeta(n)\}$ (resp. $\{\pi, \log(a)\}$).

$\mathcal{N} \rightarrow \mathcal{U}^{mot}(X) \longrightarrow \mathcal{G}^{mot}(X) \longrightarrow \mathcal{G}^{mot}(GrX) \longrightarrow 1$ \mathbb{G}_m

X nonsemisimple => $U^{mot}(X) = G_a => \dim G^{mot}(X) = 2$

(Well-known) Proposition: GPC implies alg. indep. of $\{\zeta(n) : n \text{ odd}\} \cup \{\pi\} \cup \{\log p : p \text{ prime}\}$. Pt: Let's focus on alg. indep. of $\{\log p\}$ over $\mathbb{Q}(\pi, \zeta(3), \zeta(5), ...)$ first. Set $Z_{\leq 2k+1} := \bigoplus Z_n$. Enough to show that $\dim G^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N} L_{p_n}) < \dim G^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N+1} L_{p_n})$ We have: $1 \to U^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N+1} L_{p_n}) \to G^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N+1} L_{p_n}) \to \mathbb{G}_m \to 1$

 $1 \to U^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N} L_{p_n}) \to G^{mot}(Z_{\leq 2k+1} \bigoplus \bigoplus_{n \leq N} L_{p_n}) \to \mathbb{G}_m \to 1$

Enough to show (*) is not \cong . Enough to have $L_{p_{N+1}} \notin \langle Z_{\leq 2k+1} \bigoplus \bigoplus m_{n \leq N} L_{p_n} \rangle$

Every object unramified at p_{N+1}

Ramified at p_{N+1}

Remains to show alg. indep. of $\{\zeta(n) : n \text{ odd > 1}\} \cup \{\pi\}$. Recall $Z_{\leq 2k+1} = \bigoplus Z_n$. Again easy to see that it is enough to argue that $n \leq 2k+1$

Lemma: Let $G = U \rtimes R$ be an alg. group over a field of char. 0, with R Apply with $G = G^{mot}(Z_{\leq 2k-1}), N = Q(2k+1):$

 $Ext^{1}_{\langle Z_{\leq 2k-1} \rangle}(1, \mathbb{Q}(2k+1)) = Hom(\underline{\mathfrak{u}}^{ab}(Z_{\leq 2k-1}), \mathbb{Q}(2k+1)) = 0$

 $Z_{2k+1} \notin \langle Z_{\leq 2k-1} \rangle$

reductive and U unipotent. Let u^{ab} be the abelianization of the Lie alg. of U, considered as a G-rep. Then for every semisimple object N of Rep(G) with $Hom_G(1,N)=0$, we have $Ext^1_G(1,N) \cong Hom_G(\mathfrak{u}^{ab},N)$.

> Weight considerations $\left(\underline{\mathfrak{u}}(Z_{<2k-1}) \subset W_{-1}\underline{End}(Z_{<2k-1})\right)$

To see the alg. indep. of π , log 5, $\zeta(3)$ here we used a 4-dim'l motive with $\operatorname{Gr}^{W} \simeq \mathbb{Q}(3) \oplus \mathbb{Q}(1) \oplus 1^{2}$. Can we do this with a smaller motive? 1. Is there a 3-dim't motive that has Z_3 and L_5 as subquotients? Answered by Grothendieck's theory of blended extensions

und Motives with maximal unipotent radicals

Towards molives with maximal unipotent radicals

(Extensions panachées) 2. If so, would the GPC for it imply the alg. indep. of π , log 5, $\zeta(3)$?

Invented by Grothendieck to study filtrations $0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 = X$ with $X_1 \simeq A_1, X_2/X_1 \simeq A_2, X_3/X_2 \simeq A_3$

S

Blended extensions

Invented by Grothendieck to study filtrations $0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 = X$ with $X_1 \simeq A_1, X_2/X_1 \simeq A_2, X_3/X_2 \simeq A_3$

 $Gr(X) \xrightarrow{\phi} \bigoplus A_r$

Blended extensions

Fix extensions \mathcal{L} and \mathcal{N} : $\mathcal{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathcal{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathcal{N} by \mathcal{L} is a comm. diagram of the form, with exact rows and columns

EXTPAN(N, L) := col. Of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Fix extensions \mathcal{L} and \mathcal{N} : $\mathcal{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathcal{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathcal{N} by \mathcal{L} is a comm. diagram of the form, with exact rows and columns

0

 $\circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$

 $\circ \longrightarrow A_1 \longrightarrow X \longrightarrow N \longrightarrow \circ$

 $A_3 \quad A_3$

EXTPAN(N, L) := col. Of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Prop: a) $Extpan(\mathcal{N}, \mathcal{L})$ is nonempty iff $\mathcal{L} \circ \mathcal{N}$ vanishes in $Ext^2(A_3, A_1)$.

Fix extensions \mathcal{L} and \mathcal{N} : $\mathcal{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathcal{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathcal{N} by \mathcal{L} is a comm. diagram of the form, with exact rows and columns

0

 $\circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$

 $\circ \longrightarrow A_1 \longrightarrow X \longrightarrow N \longrightarrow \circ$

 $A_3 \quad A_3$

0

EXTPAN(N, L) := col. Of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Prop: a) $Extpan(N, \mathcal{L})$ is nonempty iff $\mathcal{L} \circ \mathcal{N}$ vanishes in $Ext^2(A_3, A_1)$.

b) $Extpan(N, \mathcal{L})$ is canonically a torsor over $Ext^{1}(A_{3}, A_{1})$.

(p prime) > 1 > 0 (n odd >1) $\mathscr{L}: \quad \circ \longrightarrow \mathbb{Q}(n+1) \longrightarrow Z_n(1) \longrightarrow \mathbb{Q}(1) \longrightarrow \circ$

 \bigcirc

 L_n $Gr^W M_{n,p} \simeq \mathbb{Q}(n+1) \oplus \mathbb{Q}(1) \oplus 1$ per. mat. $(2\pi i)^{-n-1}$ $(2\pi i)^{-n-1}\zeta(n)$ $(2\pi i)^{-n-1}\pi_{n,p}$ $\begin{array}{cccc} 0 & (2\pi i)^{-1} & (2\pi i)^{-1}\log p \\ 0 & 0 & 1 \end{array}$

Moving on to the second question: Def: say a motive X has a maximal unipotent radical if $\mathfrak{u}(X) = W_{-1}End(X).$

Def: An extension (class) \mathcal{E} of X by Y is totally nonsplit if its class in $Ext^{1}(1, Hom(X, Y))$ does not come from any proper subject of Hom(X, Y).

@ For extensions of 1 by simple X, totally nonsplit = nonsplit.

Converse false in general.

Convese true if X has 2 weights (Bertrand/Hardouin).

So X has a max. uni. rad. $= \sum_{k=1}^{n} \begin{cases} \text{All the all ext'ns} \\ 0 \to W_m X/W_\ell X \to W_n X/W_\ell X \to W_n X/W_\ell X \to 0 \\ \text{are tot. nonsplit.} \end{cases}$

Theorem (E.- K. Murty) Let X be a (not necessarily mixed Tate) motive with exactly 3 wits $a_1 < a_2 < a_3$. Suppose: (i) The extensions of $Gr_{a_2}^W X$ by $Gr_{a_1}^W X$ and $Gr_{a_3}^W X$ by $Gr_{a_2}^W X$ coming from X are tot. nonsplit. (ii) $Hom(Gr_{a_2}^WX, Gr_{a_1}^WX)$ and $Hom(Gr_{a_3}^WX, Gr_{a_2}^WX)$ have no nonzero isomorphic subobjects. Then X has a maximal unipotent radical.

Recall: given odd n>1 and p, $\exists !M_{n,p}$ w. L_n L_p $Gr^W M_{n,p} \simeq \mathbb{Q}(n+1) \oplus \mathbb{Q}(1) \oplus 1$ Its per. mak.: $\begin{bmatrix} (2\pi i)^{-n-1} & (2\pi i)^{-n-1}\zeta(n) & (2\pi i)^{-n-1}\pi_{n,p} \\ 0 & (2\pi i)^{-1} & (2\pi i)^{-1}\log p \end{bmatrix}$ 0

Cor: $M_{n,p}$ has a max. uni. rad. dim $G^{mot}(M_{n,p}) = \operatorname{dim} W_{-1} \underline{End}(M_{n,p})$ $+ \dim \mathbb{G}_m = 4$

GPC for $M_{n,p} \Leftrightarrow Alg. indep. of {\pi, \log p, \zeta(n), \pi_{n,p}}$

Open question: What is $\pi_{n,p}$? (A per. of $MTM(\mathbb{Z}[1/p])$)

