The Grothendieck period conjecture and motives with maximal unipotent radicals - II

Payman Eskandari (University of Winnipeg) Fields Institute, March 2024

 \circ T = a Tannakian cat. over a field of char. \circ , equipped with a "weight" filtration W such that pure objects are semisimple. /Think: polarizable Mixed Hodge structures over Q or a Tannakian (category of (mixed) motives over a subfield of C @ "Molive" = an object of T • $X \in obj(T)$ where $\mathfrak{u}(X)$, a submotive of $W_{-1}End(X)$ Lie algebra of the unipotent radical of the motivic Galois group of X (Deligne, Bertrand, Brown, EM, \otimes $\mathfrak{u}(X) \longleftrightarrow$ Extensions in $\langle X \rangle^{\otimes}$ Goncharov, Hain, Hardouin, Jossen,...) i.e. $\mathfrak{u}(X) = W_{-1}\underline{End}(X)$ Interested in: 1) When does X have a maximal unipotent radical? Motivation: Grothendieck period conj. 2) Given semisimple A, classify X with $Gr(X) \simeq A$ and Ideally, not a part of data! max. u(X), up to isomorphism.

© T = a Tannakian cal. over a field of char. O, equipped with a weight filtration W such that pure objects are semisimple. /Think: polarizable Mixed Hodge structures over Q or a Tannakian (category of (mixed) motives over a subfield of C @ "Molive" = an object of T • $X \in obj(T)$ where $\mathfrak{u}(X)$, a submotive of $W_{-1}End(X)$ Lie algebra of the unipotent radical of the motivic Galois group of X (Deligne, Berbrand, Brown, EM, $\otimes \mathfrak{u}(X) \longleftrightarrow \mathsf{Extensions in } \langle X \rangle^{\otimes}$ Goncharov, Hain, Hardouin, Jossen,...) i.e. $\mathfrak{u}(X) = W_{-1}\underline{End}(X)$ Interested in: 1) When does X have a maximal unipotent radical? conj. 2b) Given semisimple A, classify X with $Gr(X) \simeq A$ and max. u(X), up to isomorphism. Ideally, not a part of data! 2a) Given semisimple A, classify X with $Gr(X) \simeq A$ up to isomorphism.

Motivation: Grothendieck period

A related notion: total nonsplitting

Def: An extension (class) & of 1 by Y is totally nonsplit if for every $Y' \subsetneq Y$, the pushforward \mathscr{C}/Y' does not split. (So for extensions of 1 by simple Y, totally nonsplit = nonsplit.)

 $Ext^{1}(1, \underline{Hom}(X, Y))$ is totally nonsplit.

@ X has a max. uni. rad.

Converse is true if X has 2 weights (Bertrand/Hardouin). Converse is false in general (even for 3 weights).

- © Def: An extension (class) & of X by Y is totally nonsplit if its class in

 - $\longrightarrow \begin{cases} \text{All the all ext'ns} \\ 0 \to W_m X/W_\ell X \to W_n X/W_\ell X \to W_n X/W_\ell X \to 0 \\ \text{are totally nonsplit.} \end{cases}$

Recall from Last talk: Task 1 for 3 weights Theorem (E.- K. Murty) Let X be a motive with 3 with $a_1 < a_2 < a_3$. Suppose:

(i) The extensions of $Gr_{a_2}X$ by $Gr_{a_1}X$ and $Gr_{a_3}X$ by $Gr_{a_2}X$ coming from X are totally nonsplit. (ii) $Hom(\underline{Hom}(Gr_{a_{\gamma}}X, Gr_{a_{1}}X), \underline{Hom}(Gr_{a_{3}}X, Gr_{a_{\gamma}}X)) = 0.$ Then X has a maximal unipotent radical.

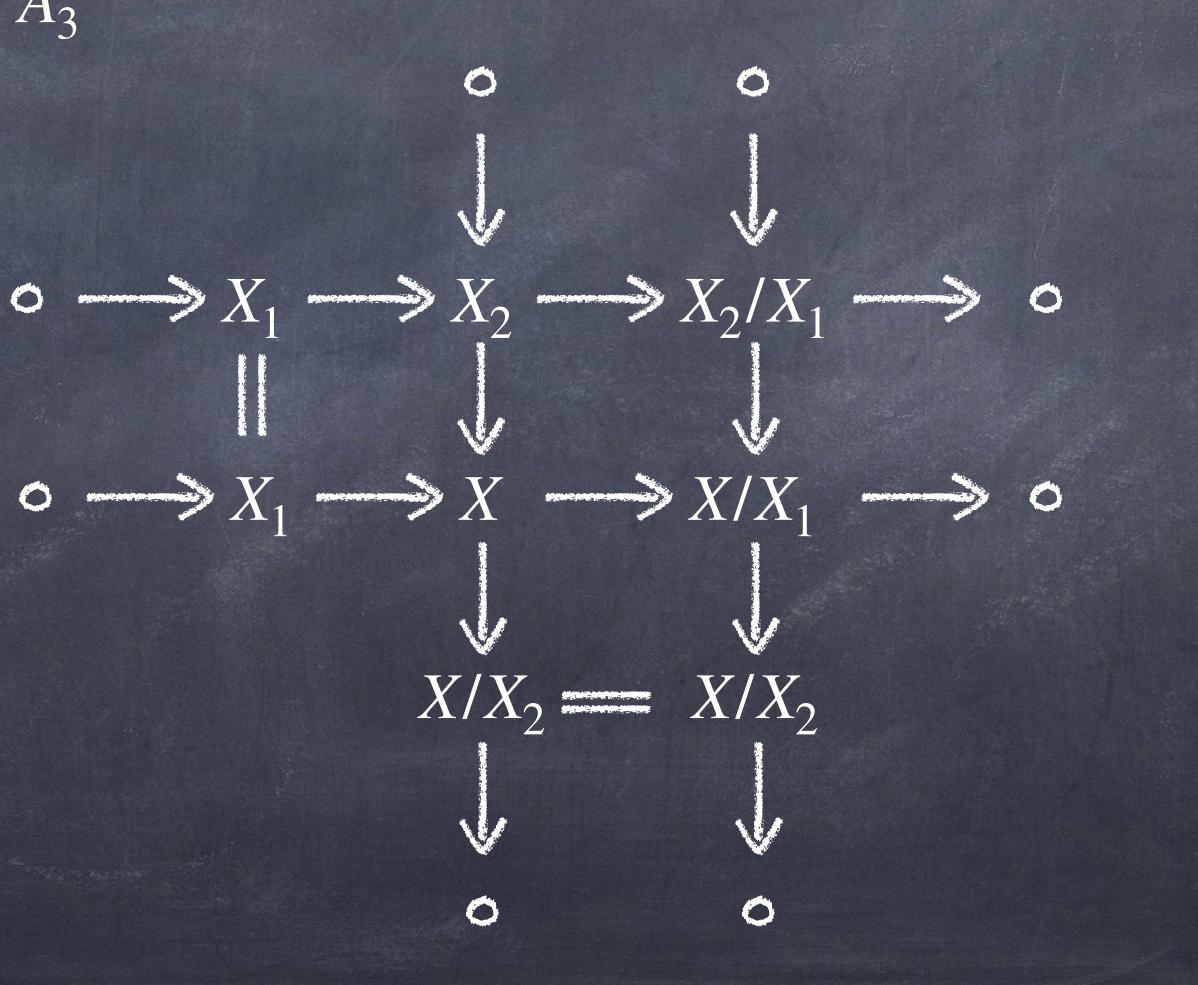
Ex: Given odd n>1 and p, $\exists !M_{n,p}$ w. (Motive of $\zeta(n)$) Z_n L_p (Motive of Log(p)) $GrM_{n,p} \simeq \mathbb{Q}(n+1) \oplus \mathbb{Q}(1) \oplus 1$ Its per mat: $\begin{bmatrix} (2\pi i)^{-n-1} & (2\pi i)^{-n-1}\zeta(n) & (2\pi i)^{-n-1}\pi_{n,p} \\ 0 & (2\pi i)^{-1} & (2\pi i)^{-1}\log p \end{bmatrix}$ 0

Cond's (i) and (ii) hold. $M_{n,p}$ has a max. uni. rad. dim $G^{mot}(M_{n,p}) = 3+1=4$. GPC for $M_{n,p} \iff Alg.$ indep. of $\{\pi, \log p, \zeta(n), \pi_{n,p}\}$ Open question: What is $\pi_{n,p}$? (A per. of MTM(Z[1/p]))

Recall from Last time: Task 2 for 3 weights

Invented by Grothendieck to study filtrations $0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 = X$ with $X_1 \simeq A_1, X_2/X_1 \simeq A_2, X_3/X_2 \simeq A_3$

Key lool: Grothendieck's Blended extensions (Extensions panachées)

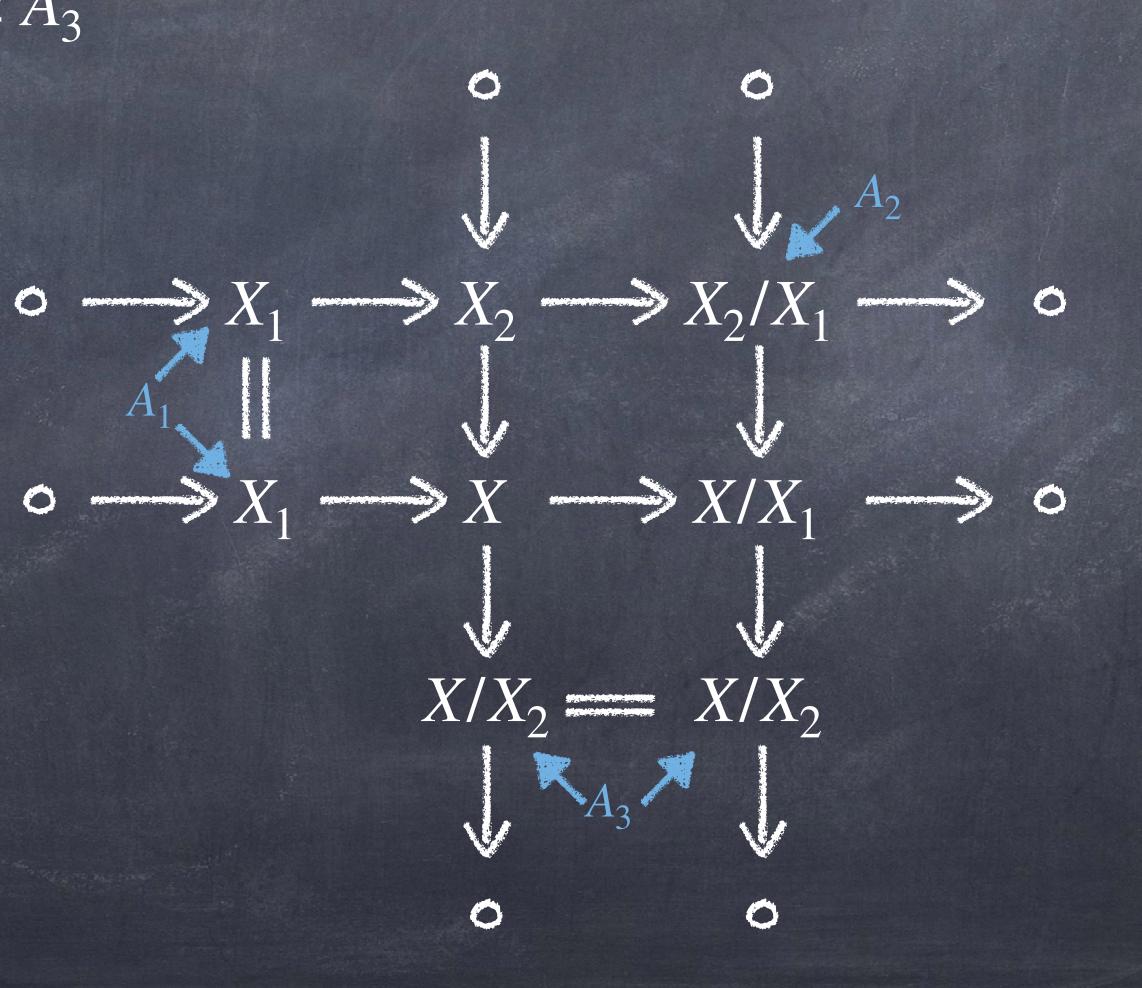


Recall from Last time: Task 2 for 3 weights

Invented by Grothendieck to study filtrations $0 \subsetneq X_1 \subsetneq X_2 \subsetneq X_3 = X$ with $X_1 \simeq A_1, X_2/X_1 \simeq A_2, X_3/X_2 \simeq A_3$

 $Gr(X) \xrightarrow{\phi} \bigoplus A_r$

Key lool: Grothendieck's Blended extensions (Extensions panachées)



Fix extensions \mathcal{L} and \mathcal{N} : $\mathcal{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathcal{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathcal{N} by \mathcal{L} is a comm. diagram of the form, with exact rows and columns \mathcal{L}

0

 $\circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$

 $\circ \longrightarrow A_1 \longrightarrow X \longrightarrow N \longrightarrow \circ$

 $A_3 \quad A_3$

EXTPAN(N, L) := collection of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Fix extensions \mathcal{L} and \mathcal{N} : $\mathcal{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathcal{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathcal{N} by \mathcal{L} is a comm. diagram of the form, with exact rows and columns

0

 $\circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$

 $\circ \longrightarrow A_1 \longrightarrow X \longrightarrow N \longrightarrow \circ$

 $A_3 \quad A_3$

EXTPAN(N, L) := collection of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Prop: a) $Extpan(\mathcal{N}, \mathcal{L})$ is nonempty iff $\mathcal{L} \circ \mathcal{N}$ vanishes in $Ext^2(A_3, A_1)$.

Fix extensions \mathscr{L} and \mathscr{N} : $\mathscr{L}: \circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$ $\mathscr{N}: \circ \longrightarrow A_2 \longrightarrow N \longrightarrow A_3 \longrightarrow \circ$ A blended extension of \mathscr{N} by \mathscr{L} is a comm. diagram of the form, with exact rows and columns

0

 $\circ \longrightarrow A_1 \longrightarrow L \longrightarrow A_2 \longrightarrow \circ$

 $\circ \longrightarrow A_1 \longrightarrow X \longrightarrow \land \circ$

 $A_3 \quad A_3$

0

EXTPAN(N, L) := collection of all bl. ext's of N by L
Extpan(N, L) := iso. classes of bl. ext's N by L (Commuting maps that are identity on L and N)

Prop: a) $Extpan(N, \mathcal{L})$ is nonempty iff $\mathcal{L} \circ \mathcal{N}$ vanishes in $Ext^2(A_3, A_1)$.

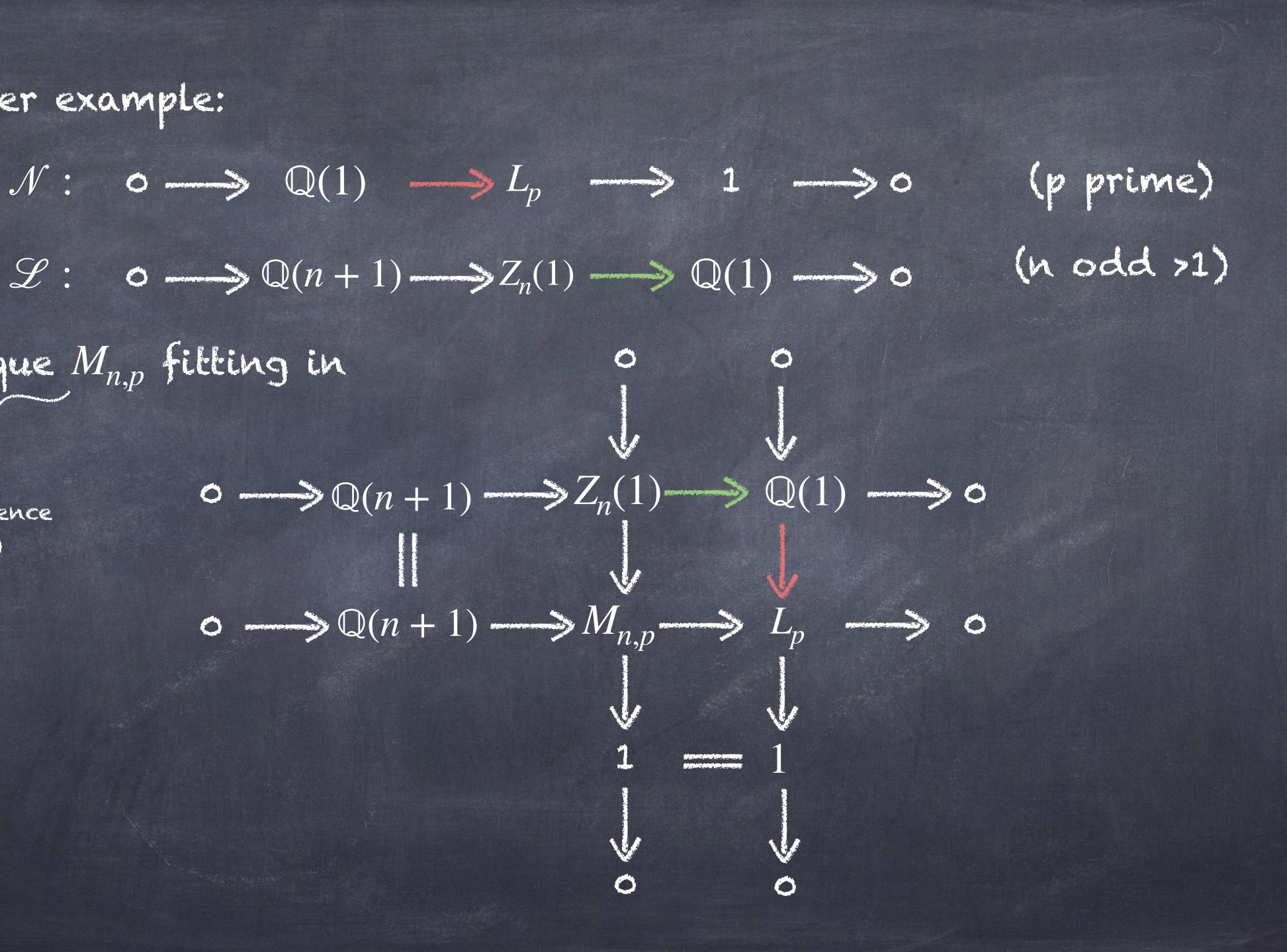
b) When nonempty, Extpan(N, \mathcal{L}) is canonically a torsor over $Ext^{1}(A_{3}, A_{1})$.

Back to our earlier example:

 $Ext^{2}(1,\mathbb{Q}(n+1)) = 0$ $\mathscr{L}: \circ \longrightarrow \mathbb{Q}(n+1)$ There is a unique $M_{n,p}$ filting in

 $Ext^{1}(1, \mathbb{Q}(n+1)) = 0$

(Unique up to blended ext., hence unique up to iso. of motives.)



Motives with any number of wts - report on a recent work Task 1

Def: We say a motive X with k weights $a_1 < \cdots < a_k$ is graded-independent (GI) if there are no nonzero morphisms between any two of $\underline{Hom}(Gr_{a_j}X, Gr_{a_{j-1}}X) \quad (1 < j \le k)$ and $\underbrace{Hom}(Gr_{a_j}X, Gr_{a_j}X, Gr_{a_j}X)$

Examples:

All motives with 2 weights are GI.

For motives with 3 weights, this is just cond. (ii) of previous theorem.
The condition is guaranteed if the weights are sufficiently "spread out".
e.g.

and $\bigoplus_{j-i>1} \underline{Hom}(Gr_{a_j}X, Gr_{a_i}X)$ hts are GI.

Co I

9)
$$Q(5)$$

 $Q(4) Q(3)$
 $Q(1) C$

Motives with any number of wts - report on a recent work Task 1

Def: We say a motive X with k weights $a_1 < \cdots < a_k$ is graded-independent (GI) if there are no nonzero morphisms between any two of $\underline{Hom}(Gr_{a_j}X, Gr_{a_{j-1}}X) \quad (1 < j \le k)$ and $\underbrace{Hom}(Gr_{a_j}X, Gr_{a_i}X, Gr_{a_i}X)$

Examples:

All motives with 2 weights are GI.

For motives with 3 weights, this is just cond. (ii) of previous theorem.
The condition is guaranteed if the weights are sufficiently "spread out".
e.g.

 $\mathbb{Q}(16)$

 $\mathbb{Q}($

and $\bigoplus_{j-i>1} Hom(Gr_{a_j}X, Gr_{a_i}X)$ ats are GI.

CT.

$$Q(7)$$

 $Q(5)$
 $Q(4)$ $Q(3)$
 $Q(1)$ $Q(1)$

Motives with any number of wts - report on a recent work Task 1

Def: We say a motive X with k weights $a_1 < \cdots < a_k$ is graded-independent (GI) if there are no nonzero morphisms between any two of $\underline{Hom}(Gr_{a_j}X, Gr_{a_{j-1}}X)$ $(1 < j \le k)$ and $\underbrace{Hom}(Gr_{a_j}X, Gr_{a_j}X, Gr_{a_j}X)$

Examples:

All motives with 2 weights are GI.

For motives with 3 weights, this is just cond. (ii) of previous theorem.
The condition is guaranteed if the weights are sufficiently "spread out".
e.g.

Q(16) Q(7)

and $\bigoplus_{j-i>1} Hom(Gr_{a_j}X, Gr_{a_i}X)$ hts are GI.

Not GI

$$Q(7)$$

 $Q(5)$
 $Q(4)$ $Q(3)$
 $Q(1)$ $Q(1)$

Theorem. Let X be a GI motive with k weights $a_1 < \cdots < a_k$. Suppose that each of the extensions

$$\circ \longrightarrow Gr_{a_{j-1}}X \longrightarrow V$$

is tot. nonsplit. Then X has a maximal unipotent radical.

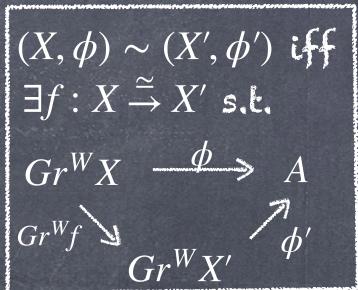
Example. Suppose Gr $X \simeq \mathbb{Q}(9) \oplus \mathbb{Q}(4) \oplus \mathbb{Q}(1) \oplus 1$ If successive extensions of X are L_p , $Z_3(1)$, and $Z_5(4)$ then X has a max. uni. rad. (m,n distinct,) lodd, >0 More generally, if Gr X $\simeq \mathbb{Q}(n + m + 1) \oplus \mathbb{Q}(n + 1) \oplus \mathbb{Q}(1) \oplus 1$

with nonsplit successive extensions then X has a max. uni. radical.

 $W_{a_i}X/W_{a_{i-2}}X \longrightarrow Gr_{a_i}X \longrightarrow o$

Fix nonzero pure objects A_1, \ldots, A_k of weights $a_1 < \cdots < a_k$. Set $A = \bigoplus A_r$

Set $S(A) := \{ objects X with Gr(X) \simeq A \}/iso., S'(A) := \{ (X, GrX \xrightarrow{\phi} A) \}/equiv. \}$



$$X$$
where $a_1 < \dots < a_k$

$$X_r := W_{a_r} X$$

$$0 =: X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \dots \subsetneq X_k = X$$

$$X_n / X_m =: X_{n,m}$$

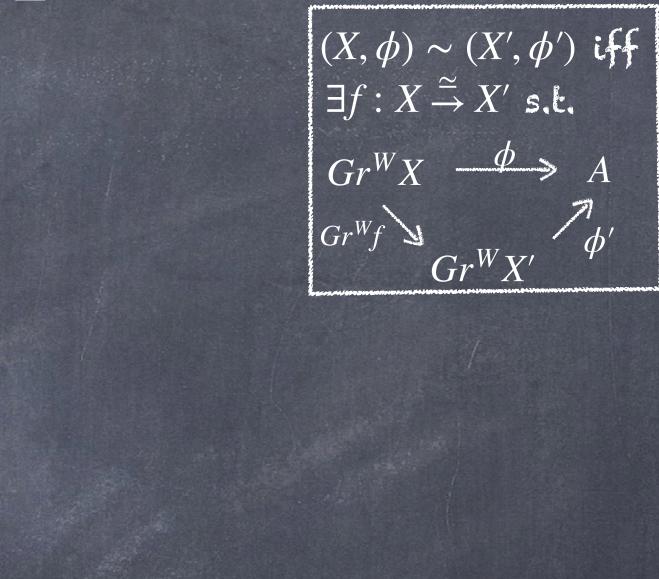
Fix nonzero pure objects A_1, \ldots, A_k of weights $a_1 < \cdots < a_k$. Set $A = \bigoplus A_r$ Set $S(A) := \{ objects X with Gr(X) \simeq A \}/iso., S'(A) := \{ (X, GrX \xrightarrow{\phi} A) \}/equiv. \}$

 $X_{1,0}$

 $X_{2,0} \longrightarrow X_{2,1}$

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow X_{3,2}$

 $X_{k-1,0} \longrightarrow X_{k-1,1} \longrightarrow$



 $X_{k-1,k-2}$ ----

 $X_{k,0} \longrightarrow X_{k,1} \longrightarrow \dots \longrightarrow X_{k,k-2} \longrightarrow X_{k,k-1}$

wes $a_1 < \cdots < a_k$ $X_r := W_{a_r} X$ $0 =: \overline{X_0} \subsetneq X_1 \subsetneq \overline{X_2} \subsetneq \cdots \subsetneq X_k = X$ $X_n/X_m =: X_{n,m}$ $Gr^W X \xrightarrow{\phi,\simeq} A$

Fix nonzero pure objects A_1, \ldots, A_k of weights $a_1 < \cdots < a_k$. Set $A = \bigoplus A_r$ Set $S(A) := \{ objects X with Gr(X) \simeq A \}/iso., S'(A) := \{ (X, GrX \xrightarrow{\phi} A) \}/equiv. \}$

 $X_{k,0} \longrightarrow X_{k,1} \longrightarrow \dots \longrightarrow X_{k,k-2} \longrightarrow X_{k,k-1}$

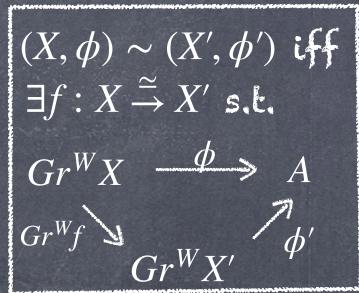
 $X_{k-1,k-2}$

 $X_{1 0}$

 $X_{2,0} \longrightarrow X_{2,1}$

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow X_{3,2}$

 $X_{k-1,0} \longrightarrow X_{k-1,1} \longrightarrow$



wes $a_1 < \cdots < a_k$ $X_r := W_{a_r} X$ $0 =: \overline{X_0} \subsetneq X_1 \subsetneq \overline{X_2} \subsetneq \cdots \subsetneq X_k = X$ $X_n/X_m =: X_{n,m}$ $Gr^W X \xrightarrow{\phi,\simeq} A$

Idea: To get all X, form all such diagrams one diagonal at a time. Take appropriate equiv. rel.'s into account.

Fix nonzero pure objects A_1, \ldots, A_k of weights $a_1 < \cdots < a_k$. Set $A = \bigoplus A_r$ Set $S(A) := \{ objects X with Gr(X) \simeq A \}/iso., S'(A) := \{ (X, GrX \xrightarrow{\phi} A) \}/equiv. \}$

 $X_{k,0} \longrightarrow X_{k,1} \longrightarrow \dots \longrightarrow X_{k,k-2} \longrightarrow X_{k,k-1}$

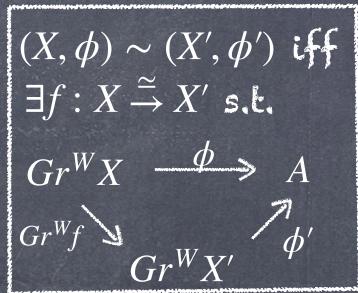
 $X_{k-1,k-2}$

 $X_{1 0}$

 $X_{2,0} \longrightarrow X_{2,1}$

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow X_{3,2}$

 $X_{k-1,0} \longrightarrow X_{k-1,1} \longrightarrow$

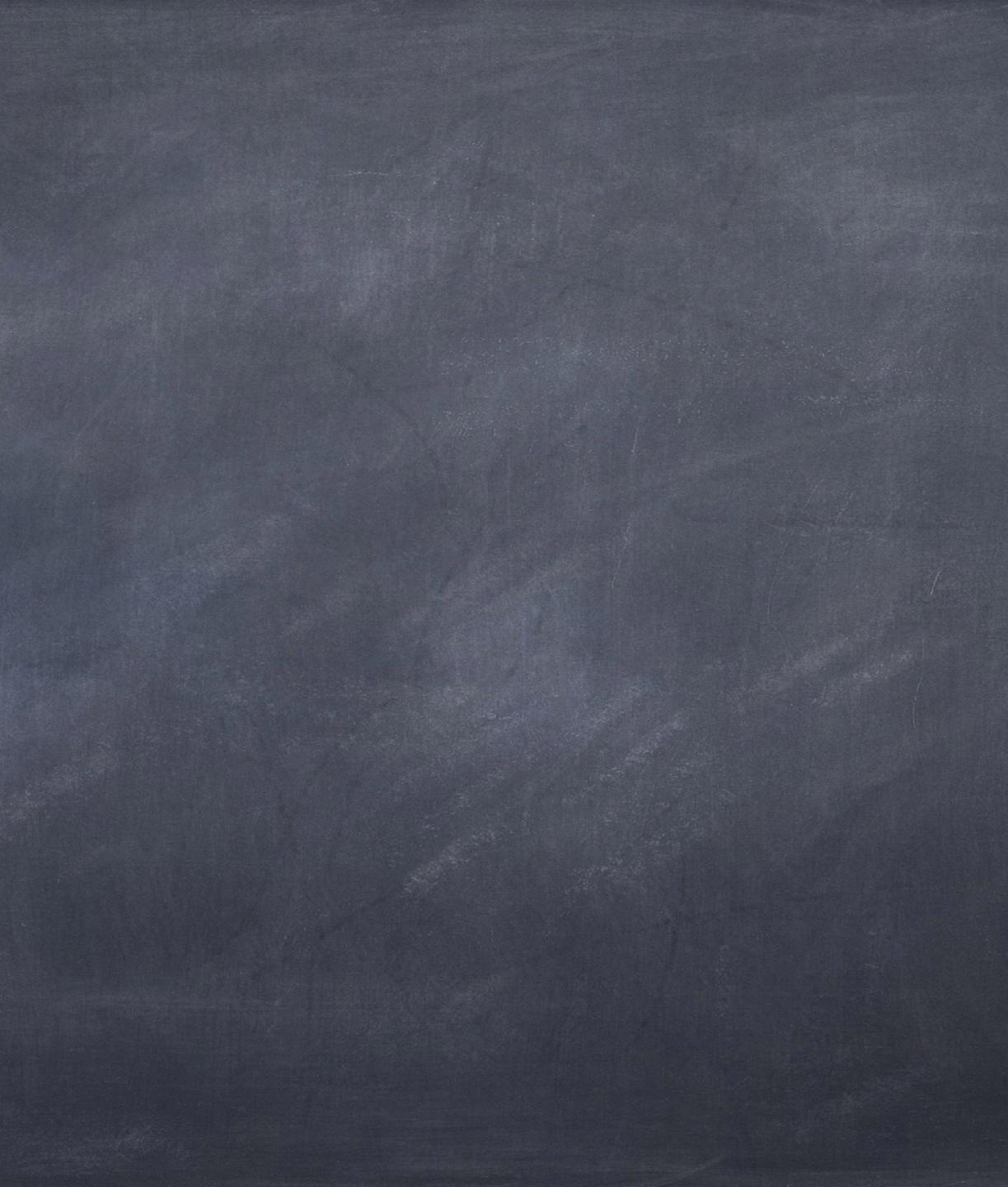


 A_3

 A_4

 A_1

 A_{1} $X_{2,0} A_{2}$ $X_{3,1} A_{3}$ $X_{4,2} A_{4}$ $Choices \cong$ $\prod_{r} EXT(A_{r+1}, A_{r})$



 A_3

 A_4

 A_1

 $|A_1|$ $X_{2,0} A_2$ $X_{3,1} A_3$ $X_{4,2} A_4$ Choices \cong $EXT(A_{r+1}, A_r)$

 A_{1} $X_{2,0} A_{2}$ $X_{3,0} X_{3,1} A_{3}$ $X_{4,2} A_{4}$ Choices for adding $X_{3,0} \cong$ EXTPAN($X_{3,1}, X_{2,0}$)
If nonempty, torsor
over $EXT(A_{3}, A_{1})$

 A_3

 A_4

 A_1

 A_{1} $X_{2,0} A_{2}$ $X_{3,1} A_{3}$ $X_{4,2} A_{4}$ Choices \cong $\prod EXT(A_{r+1}, A_{r})$

 A_1 $X_{2,0} A_2$ $X_{3,0} X_{3,1} A_3$ $X_{4,1} \quad X_{4,2} \quad A_4$ Choices \cong $\sum EXTPAN(X_{r+2,r}, X_{r+1,r-1})$ Empty or Torsor over $EXT(A_{r+2}, A_r)$ r

 A_3

 A_4

 A_1

 A_{1} $X_{2,0} A_{2}$ $X_{3,1} A_{3}$ $X_{4,2} A_{4}$ Choices \cong $\prod EXT(A_{r+1}, A_{r})$

$$\begin{array}{c} A_{1} \\ X_{2,0} \\ X_{2,0} \\ X_{3,0} \\ X_{3,1} \\ X_{3,1} \\ X_{4,1} \\ X_{4,2} \\ A_{4} \end{array}$$

Choices \cong $\prod_{r} EXTPAN(X_{r+2,r}, X_{r+1,r-1})$ Find the second state of the seco

 A_1 $X_{2,0} A_2$ $X_{3,0} X_{3,1} A_3$ $X_{4,0} X_{4,1} X_{4,2} A_4$ Choices \cong $EXTPAN(X_{4,1}, X_{3,0})$ Empty or Torsor over $EXT(A_4, A_1)$

 A_3

 A_4

 A_1

 A_{1} $X_{2,0} A_{2}$ $X_{3,1} A_{3}$ $X_{4,2} A_{4}$ $Choices \cong$ $\prod EXT(A_{r+1}, A_{r})$

In each step, need to mod out by appropriate equivalence relations. To formalize this approach:

$$\begin{array}{c|c} A_1 \\ X_{2,0} \\ X_{2,0} \\ X_{3,0} \\ X_{3,1} \\ X_{3,1} \\ X_{4,1} \\ X_{4,2} \\ A_4 \end{array}$$

 A_1 $X_{2,0} A_2$ $X_{3,0} X_{3,1} A_3$ $X_{4,0} X_{4,1} X_{4,2} A_4$ $EXTPAN(X_{4,1}, X_{3,0})$ Empty or Torsor over

Def: A generalized extension (of level k-1) of A is the data of an (abstract) commuting diagram of motives

 $X_{2,0} \longrightarrow A_2$

 $X_{k,0} \longrightarrow X_{k,1}$

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow A_3$

such that each

is exact.

 $\circ \longrightarrow A_m \longrightarrow X_{n,m-1} \longrightarrow X_{n,m} \longrightarrow \circ$

Def: A generalized extension (of level k-1) of A is the data of an (abstract) commuting diagram of motives

 $X_{2,0} \longrightarrow A_2$

 $X_{k,0} \longrightarrow X_{k,1}$

 \diamond A_m

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow A_3$

such that each

is exact.

$$\Rightarrow X_{n,m-1} \longrightarrow X_{n,m} \longrightarrow c$$

Def: A generalized extension (of level k-1) of A is the data of an (abstract) commuting diagram of motives

 $X_{2,0} \longrightarrow A_2$

 $X_{3,0} \longrightarrow X_{3,1} \longrightarrow A_3$

 $X_{k-1,0} \longrightarrow X_{k-1,1} \longrightarrow$

 $X_{k,0} \longrightarrow X_{k,1} \longrightarrow$

such that each

is exact.

Automatically exact

 $\circ \longrightarrow A_m \longrightarrow X_{n,m-1} \longrightarrow X_{n,m} \longrightarrow \circ$

 $X_{k,k-2} \xrightarrow{} A_k$

 A_{k-1}

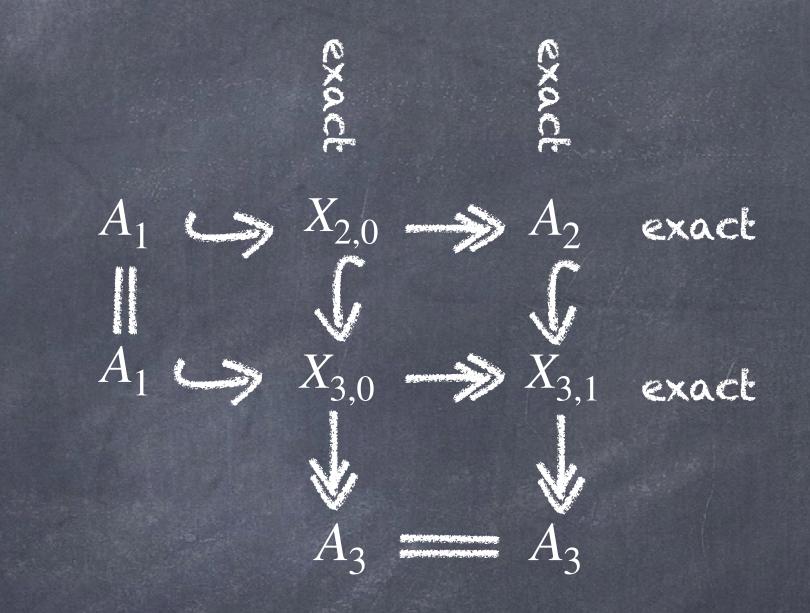
Examples: @ k=2

0 K=3

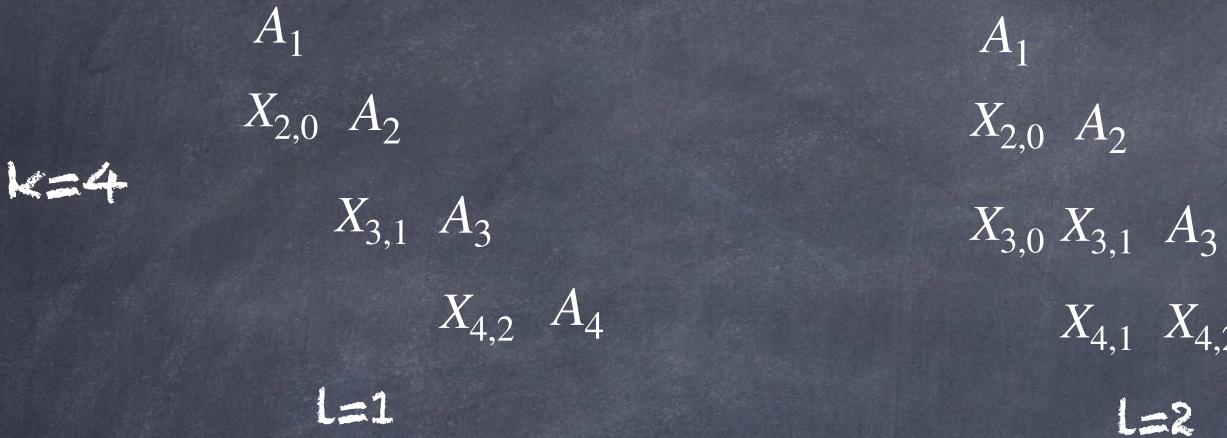
 $X_{2,0} \longrightarrow A_2$ $X_{3,0} \longrightarrow X_{3,1} \longrightarrow A_3$

A gen ext of A is just a blended ext of an element of $EXT(A_3, A_2)$ by an element of $EXT(A_2, A_1)$

A gen ext of A is just an extension of A_2 by A_1



Def: A gen. ext. of level L of A is a similar data as before but with only L diagonals below A.



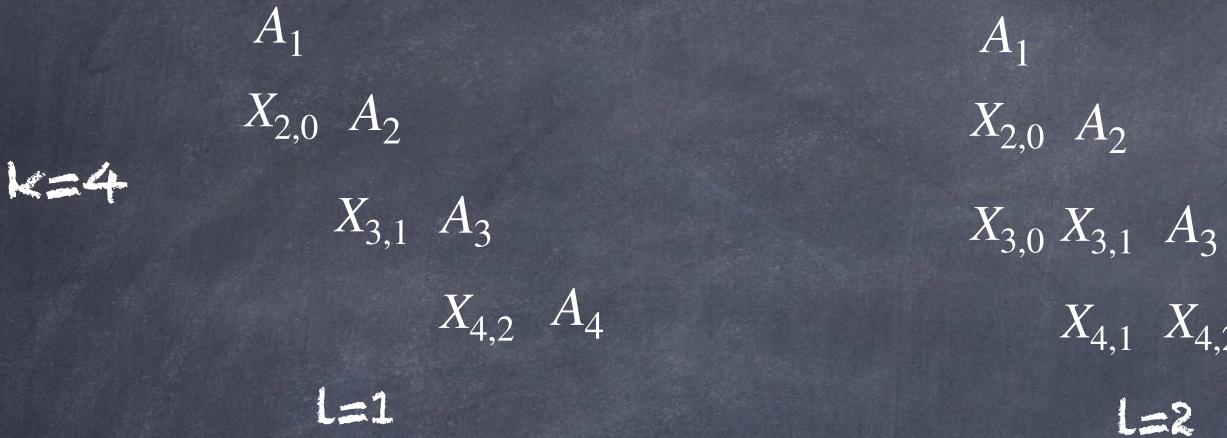
D(A) := collection of all gen. ext's of level 1 of A There are truncation maps $D_{L}(A) \longrightarrow D_{L-1}(A)$. $S_{L}(A) := \frac{D_{L}(A)}{commuting isomorphisms}$ $S'_{L}(A) := \frac{D_{L}(A)}{commuting isomorphisms}$ identity on A

 $S'_{L}(A) \longrightarrow S'_{L-1}(A)$ $S_{L}(A) \longrightarrow S_{L-1}(A).$ Trunc.

 $X_{4,1} \quad X_{4,2} \quad A_4$ 1=2

 A_1 $X_{2,0} A_2$ $X_{3,0} X_{3,1} A_3$ $X_{4,0} X_{4,1} X_{4,2} A_4$ L=3

Def: A gen. ext. of level L of A is a similar data as before but with only L diagonals below A.



D(A) := collection of all gen. ext's of level 1 of A There are truncation maps $D_{L}(A) \longrightarrow D_{L-1}(A)$. $S_{L}(A) := \frac{D_{L}(A)}{commuting isomorphisms}$ $S'_{L}(A) := \frac{D_{L}(A)}{commuting isomorphisms}$ identity on A

 $S'_{L}(A) \longrightarrow S'_{L-1}(A)$ $S_{L}(A) \longrightarrow S_{L-1}(A).$ Trunc.

 $X_{4,1} \quad X_{4,2} \quad A_4$ 1=2

 A_1 $X_{2,0} A_2$ $X_{3,0} X_{3,1} A_3$ $X_{4,0} X_{4,1} X_{4,2} A_4$ L=3

Recall: $S(A) = \{X \text{ with } Gr(X) \simeq A\}/\text{iso}$ $S'(A) = \{(X, Gr(X) \xrightarrow{\simeq} A)\}/\text{equiv}$

Theorem. (a) We have $s'(A) \cong s'_{k-1}(A) \longrightarrow s'_{k-2}(A) \longrightarrow \cdots \longrightarrow s'_{2}(A) \longrightarrow s'_{1}(A) = \begin{bmatrix} Ext^{1}(A_{r+1}, A_{r}) \\ Ext^{1}(A_{r+1}, A_{r}) \end{bmatrix}$ s.t. the fiber of $s'_{\ell} \rightarrow s'_{\ell-1}$ is either empty or canonically a torsor over $Ext^{1}(A_{r+\ell}, A_{r}). \qquad (1)$ $S(A) \cong S_{k-1}(A) \longrightarrow S_{k-2}(A) \longrightarrow \cdots \longrightarrow S_2(A) \longrightarrow S_1(A) = \prod_r Ext^1(A_{r+1}, A_r)$ s.t. the fibers are... In particular, the fibers above tot. nonsp. elements remain unchanged. (c) $S'_{\ell} \rightarrow S'_{\ell-1}$ is surjective if $Ext^2(A_{r+\ell}, A_r) = 0$ for each r.

Theorem. (a) We have $\mathbf{s}'(\mathbf{A}) \cong \mathbf{s}'_{k-1}(\mathbf{A}) \longrightarrow \mathbf{s}'_{k-2}(\mathbf{A}) \longrightarrow \cdots \longrightarrow \mathbf{s}'_{2}(\mathbf{A}) \longrightarrow \mathbf{s}'_{1}(\mathbf{A}) = \prod Ext^{1}(A_{r+1}, A_{r})$ s.t. the fiber of $S'_{\ell} \rightarrow S'_{\ell-1}$ is either empty or canonically a torsor over $Ext^{1}(A_{r+\ell}, A_{r}). \qquad (1)$ $S(A) \cong S_{k-1}(A) \longrightarrow S_{k-2}(A) \longrightarrow \cdots \longrightarrow S_2(A) \longrightarrow S_1(A) = \prod_r Ext^1(A_{r+1}, A_r)$ s.t. the fibers are... In particular, the fibers above tot, nonsp. elements remain unchanged. (c) $S'_{\ell} \rightarrow S'_{\ell-1}$ is surjective if $Ext^2(A_{r+\ell}, A_r) = 0$ for each r. * (d) Suppose A is GI. Let $S^*(A) \subset S(A)$ be the set of iso. classes with max. uni. rad's. Then maps of (b) restrict to maps $s^*(A) \cong s^*_{k-1}(A) \longrightarrow s^*_{k-2}(A) \longrightarrow \cdots \longrightarrow s^*_2(A) \longrightarrow s^*_1(A) = tot.$ nonsp. orbits s.t. each nonempty fiber of $s_{\ell}^* \rightarrow s_{\ell-1}^*$ is a torsor over (1).

Example. Mixed Take mokives with maximal uni. rad's and $\operatorname{Gr} \simeq \mathbb{Q}(9) \oplus \mathbb{Q}(4) \oplus \mathbb{Q}(1) \oplus 1$

$\mathbb{Q}(9)$	$\mathbb{Q}(9)$	$\mathbb{Q}(\mathbf{x})$
$Z_5 \mathbb{Q}(4)$	$Z_5 \mathbb{Q}(4)$	Z_5
$Z_3 \mathbb{Q}(1)$	$Z_{5,3}$ Z_3 $Q(1)$	Z _{5,3}
L_a 1	$M_{3,a}$ L_a 1	X
$\bigcap_{1}^{*} \cong \{L_a\}$	$Ext^{1}(A_{r+2}, A_{r}) = 0 \Longrightarrow$ unique lift in s_{2}^{*}	{Lif ove

Max. of uni. rad. => $\dim G^{mot} = 7$ => Assuming GPC, $\{\pi, \zeta(5), \zeta(3), \log a, z_{5,3}, \pi_{3,a}, \lambda(X)\}$ is alg. independent.

similar picture for Gr $X \simeq \mathbb{Q}(n+m+1) \oplus \mathbb{Q}(n+1) \oplus \mathbb{Q}(1) \oplus 1$ for any m,n distinct, odd, >0

 $\mathbb{Q}(4)$

 $Z_3 \quad \mathbb{Q}(1)$

 $M_{3,a}$ L_a

fts to s*? a torsor $er Ext^{1}(1, Q(9))$ Gen. by Zg

 $(2\pi i)^{-9}\lambda(X)$ $(2\pi i)^{-9}$ $(2\pi i)^{-9}\zeta(5)$ $(2\pi i)^{-9}z_{5,3}$ $(2\pi i)^{-4}$ $(2\pi i)^{-4}\zeta(3)$ $(2\pi i)^{-4}\pi_{3,a}$ 0 0 $(2\pi i)^{-1}$ $(2\pi i)^{-1}\log a$

per. mat. Of X

Questions about $\lambda(X)$: \circ Evaluation (X is a motive in MTM($\mathbb{Z}[1/a]$).) Its dependence on $\zeta(9)$ as X varies in the family

Theorem. Let X be a GI motive with weights $a_1 < \cdots < a_k$ and max. uni. radical. Then

 $Ext_{\langle X \rangle}^{1}(Gr_{a_{i}}X, Gr_{a_{i}}X) = 0$

Back to the previous example, for every X in the family, $Ext^{1}_{\langle X \rangle}(1,\mathbb{Q}(9)) = 0.$

 Z_9 is not in $\langle X \rangle$. Assuming GPC,

is alg. independent.

if j-i>1.

 $\{\pi, \zeta(5), \zeta(3), \log a, z_{5,3}, \pi_{3,a}, \lambda(X), \zeta(9)\}$

Theorem. Let X be a GI motive with weights $a_1 < \cdots < a_k$ and max. uni. radical. Then

 $Ext^{1}_{\langle X\rangle}(Gr_{a_{i}}X,Gr_{a_{i}}X)=0$

Back to the previous example, for every X in the family, $Ext^{1}_{\langle X \rangle}(1,\mathbb{Q}(9)) = 0.$

 Z_9 is not in $\langle X \rangle$. Assuming GPC, $\{\pi, \zeta(5), \zeta(3), \log a, z_{5,3}, \pi_{3,a}, \lambda(X), \zeta(9)\}$

is alg. independent.

if j-i>1.

