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 = a Tannakian cat. over a field of char. 0, equipped with a “weight” 
filtration W such that pure objects are semisimple.
T

Think: polarizable Mixed Hodge structures over  or a Tannakian 
category of (mixed) motives over a subfield of 

ℚ
ℂ

“Motive” = an object of T
  obj( )X ∈ T , a submotive of  𝔲(X) W−1End(X)

Lie algebra of the unipotent radical of the 
motivic Galois group of X 

 <—-> Extensions in    𝔲(X) ⟨X⟩⊗ (Deligne, Bertrand, Brown, EM, 
Goncharov, Hain, Hardouin, Jossen,…)

Interested in:

Motivation: Grothendieck period 
conj.2) Given semisimple A, classify X with  and 

max. , up to isomorphism.  
Gr(X) ≃ A

𝔲(X) Ideally, not a part of data!

1) When does X have a maximal unipotent radical? 

i.e.  𝔲(X) = W−1End(X)



 = a Tannakian cat. over a field of char. 0, equipped with a weight 
filtration W such that pure objects are semisimple.
T

Think: polarizable Mixed Hodge structures over  or a Tannakian 
category of (mixed) motives over a subfield of 

ℚ
ℂ

“Motive” = an object of T
  obj( )X ∈ T , a submotive of  𝔲(X) W−1End(X)

Lie algebra of the unipotent radical of the 
motivic Galois group of X 

 <—-> Extensions in    𝔲(X) ⟨X⟩⊗ (Deligne, Bertrand, Brown, EM, 
Goncharov, Hain, Hardouin, Jossen,…)

Interested in:

Motivation: Grothendieck period 
conj.2b) Given semisimple A, classify X with  and 

max. , up to isomorphism.  
Gr(X) ≃ A

𝔲(X) Ideally, not a part of data!

1) When does X have a maximal unipotent radical? 

i.e.  𝔲(X) = W−1End(X)

2a) Given semisimple A, classify X with  up to isomorphism.Gr(X) ≃ A



Def: An extension (class)  of  by  is totally nonsplit if its class in 
 is totally nonsplit.

ℰ X Y
Ext1(1, Hom(X, Y))

(So for extensions of 1 by simple , totally nonsplit = nonsplit.)Y

0 → WmX/WℓX → WnX/WℓX → WnX/WℓX → 0
(ℓ < m < n)

are totally nonsplit.    

X has a max. uni. rad.

All the all ext’ns

Converse is false in general (even for 3 weights).

Converse is true if X has 2 weights (Bertrand/Hardouin).

A related notion: total nonsplitting

Def: An extension (class)  of  by  is totally nonsplit if for every 
, the pushforward  does not split.  

ℰ 1 Y
Y′￼ ⊊ Y ℰ/Y′￼



(i) The extensions of  by  and  by  coming from X are 
totally nonsplit. 

Gra2
X Gra1

X Gra3
X Gra2

X

(ii) Hom(Hom(Gra2
X, Gra1

X), Hom(Gra3
X, Gra2

X)) = 0.

Then X has a maximal unipotent radical.

Theorem (E.- K. Murty) Let  be a motive with 3 wts Suppose:X a1 < a2 < a3 .

dim  = 3+1=4.Gmot(Mn,p)

 has a max. uni. rad.Mn,p

GPC for  Mn,p ⟺
Alg. indep. of 
{π, log p, ζ(n), πn,p}

Open question: What is ?πn,p
(A per. of MTM( ))ℤ[1/p]

Its per. mat.:

Ex: Given odd n>1 and p,  w.∃!Mn,p

(2πi)−n−1 (2πi)−n−1ζ(n) (2πi)−n−1πn,p

0 (2πi)−1 (2πi)−1log p
0 0 1

GrMn,p ≃ ℚ(n + 1) ⊕ ℚ(1) ⊕ 1

Zn Lp

Cond.’s (i) and (ii) hold. 

Recall from last talk: Task 1 for 3 weights

(Motive of )ζ(n) (Motive of log(p))



Recall from last time: Task 2 for 3 weights

Key tool: Grothendieck’s Blended extensions
(Extensions panachées)

Invented by Grothendieck to study filtrations  with 0 ⊊ X1 ⊊ X2 ⊊ X3 = X
X1 ≃ A1, X2/X1 ≃ A2, X3/X2 ≃ A3

 X

0 X1 X2 X2/X1 0

0 X1 X X/X1 0

00

X/X2 X/X2

0 0



Recall from last time: Task 2 for 3 weights

Key tool: Grothendieck’s Blended extensions
(Extensions panachées)

Invented by Grothendieck to study filtrations  with 0 ⊊ X1 ⊊ X2 ⊊ X3 = X
X1 ≃ A1, X2/X1 ≃ A2, X3/X2 ≃ A3

 X

0 X1 X2 X2/X1 0

0 X1 X X/X1 0

00

X/X2 X/X2

0 0

Gr(X) ϕ ⊕ Ar

A2

A1

A3



Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

𝒩, ℒ
𝒩

ℒ

0 A1 L A2 0

Fix extensions  and : ℒ 𝒩

ℒ :

𝒩 :
A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

𝒩
ℒ

0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

0 A2 N A3 0

EXTPAN( ) := collection 
of all bl. ext’s of  by 

𝒩, ℒ
𝒩 ℒ



0 A1 L A2 0

Fix extensions  and : ℒ 𝒩

ℒ :

𝒩 :
Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

𝒩, ℒ
𝒩

ℒ
0 A2 N A3 0

Prop: a) Extpan( ) is 
nonempty iff  
vanishes in . 

𝒩, ℒ
ℒ ∘ 𝒩

Ext2(A3, A1)0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

𝒩
ℒ

EXTPAN( ) := collection 
of all bl. ext’s of  by 

𝒩, ℒ
𝒩 ℒ



EXTPAN( ) := collection 
of all bl. ext’s of  by 

𝒩, ℒ
𝒩 ℒ

Extpan( ) := iso. 
classes of bl. ext’s  by 

 (Commuting maps that 
are identity on L and N)

𝒩, ℒ
𝒩

ℒ

Prop: a) Extpan( ) is 
nonempty iff  
vanishes in . 


b) When nonempty, 
Extpan( ) is 
canonically a torsor 
over . 

𝒩, ℒ
ℒ ∘ 𝒩

Ext2(A3, A1)

𝒩, ℒ

Ext1(A3, A1)

0 A1 L A2 0

Fix extensions  and : ℒ 𝒩

ℒ :

𝒩 :
A blended extension of  
by  is a comm. diagram 
of the form, with exact 
rows and columns

𝒩
ℒ

0 A1 L A2 0

0 A1 X N 0

00

A3

0 0

A3

0 A2 N A3 0



Back to our earlier example:

0 ℚ(n + 1)

Lp

ℚ(1) 0

0 Mn,p

Zn(1)

0

00

1

0 0

1

ℚ(n + 1)

ℒ :

𝒩 : 0 

ℚ(n + 1)

Lpℚ(1) 0

0 Zn(1)

1

0

There is a unique  fitting inMn,p

(p prime)

(n odd >1)
Ext2(1,ℚ(n + 1)) = 0

Ext1(1,ℚ(n + 1)) = 0

ℚ(1)

(Unique up to blended ext., hence 
unique up to iso. of motives.)



1
ℚ(1)

ℚ(4)
ℚ(9)

(1)ℚ

(3)ℚ

(5)ℚ
GI

Motives with any number of wts - report on a recent work

Def: We say a motive X with k weights  is graded-independent 
(GI) if there are no nonzero morphisms between any two of 

a1 < ⋯ < ak

Hom(Graj
X, Graj−1

X) (1 < j ≤ k) and ⨁
j−i>1

Hom(Graj
X, Grai

X)

Examples: 

For motives with 3 weights, this is just cond. (ii) of previous theorem.

The condition is guaranteed if the weights are sufficiently “spread out”.

All motives with 2 weights are GI.

e.g.

Task 1
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(1)ℚ

(3)ℚ

(5)ℚ

ℚ(16) (7)ℚ

GI

Motives with any number of wts - report on a recent work
Task 1

Def: We say a motive X with k weights  is graded-independent 
(GI) if there are no nonzero morphisms between any two of 

a1 < ⋯ < ak

Hom(Graj
X, Graj−1

X) (1 < j ≤ k) and ⨁
j−i>1

Hom(Graj
X, Grai

X)

Examples: 

For motives with 3 weights, this is just cond. (ii) of previous theorem.

The condition is guaranteed if the weights are sufficiently “spread out”.

All motives with 2 weights are GI.

e.g.



1
ℚ(1)

ℚ(4)
ℚ(9)

(1)ℚ

(3)ℚ

(5)ℚ

ℚ(16) (7)ℚ

ℚ(25)

(9)ℚ Not GI

(9)ℚ

Motives with any number of wts - report on a recent work
Task 1

Def: We say a motive X with k weights  is graded-independent 
(GI) if there are no nonzero morphisms between any two of 

a1 < ⋯ < ak

Hom(Graj
X, Graj−1

X) (1 < j ≤ k) and ⨁
j−i>1

Hom(Graj
X, Grai

X)

Examples: 

For motives with 3 weights, this is just cond. (ii) of previous theorem.

The condition is guaranteed if the weights are sufficiently “spread out”.

All motives with 2 weights are GI.

e.g.



Theorem. Let X be a GI motive with k weights . Suppose 
that each of the extensions

a1 < ⋯ < ak

0 Graj−1
X Graj

XWaj
X/Waj−2

X 0

is tot. nonsplit. Then X has a maximal unipotent radical.

Example. Suppose Gr X ≃ ℚ(9) ⊕ ℚ(4) ⊕ ℚ(1) ⊕ 1

If successive extensions of X are , , and  then X has a 
max. uni. rad.  

Lp Z3(1) Z5(4)

m,n distinct, 
odd, >0Gr X ≃ ℚ(n + m + 1) ⊕ ℚ(n + 1) ⊕ ℚ(1) ⊕ 1More generally, if

with nonsplit successive extensions then X has a max. uni. radical.



Fix nonzero pure objects  of weights . Set   A1, …, Ak a1 < ⋯ < ak A = ⨁Ar

Set S(A):= {objects X with Gr(X)  A}/iso. , S’(A):={ }/equiv. ≃ (X, GrX ϕ A)
 iff 

 s.t.
(X, ϕ) ∼ (X′￼, ϕ′￼)
∃f : X ≃ X′￼

GrW X

GrW X′￼

Aϕ

ϕ′￼GrWf

≃

Task 2:



Fix nonzero pure objects  of weights . Set   A1, …, Ak a1 < ⋯ < ak A = ⨁Ar

X
wts  a1 < ⋯ < ak

Xr := War
X

0 =: X0 ⊊ X1 ⊊ X2 ⊊ ⋯ ⊊ Xk = X
Xn/Xm =: Xn,m

X1,0

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

X2,1

X3,2

Xk−1,k−2

Xk,k−1

Set S(A):= {objects X with Gr(X)  A}/iso. , S’(A):={ }/equiv. ≃ (X, GrX ϕ A)
 iff 

 s.t.
(X, ϕ) ∼ (X′￼, ϕ′￼)
∃f : X ≃ X′￼

GrW X

GrW X′￼

Aϕ

ϕ′￼GrWf

≃

Task 2:



Fix nonzero pure objects  of weights . Set   A1, …, Ak a1 < ⋯ < ak A = ⨁Ar

X1,0

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

X2,1

X3,2

Xk−1,k−2

Xk,k−1

A1

A2

A3

Ak−1

Ak

Set S(A):= {objects X with Gr(X)  A}/iso. , S’(A):={ }/equiv. ≃ (X, GrX ϕ A)
 iff 

 s.t.
(X, ϕ) ∼ (X′￼, ϕ′￼)
∃f : X ≃ X′￼

GrW X

GrW X′￼

Aϕ

ϕ′￼GrWf

≃

GrWX ϕ,≃ A

X
wts  a1 < ⋯ < ak

Xr := War
X

0 =: X0 ⊊ X1 ⊊ X2 ⊊ ⋯ ⊊ Xk = X
Xn/Xm =: Xn,m

Task 2:



Fix nonzero pure objects  of weights . Set   A1, …, Ak a1 < ⋯ < ak A = ⨁Ar

Idea: To get all X, form 
all such diagrams one 
diagonal at a time. Take 
appropriate equiv. rel.’s 
into account.

X1,0

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

X2,1

X3,2

Xk−1,k−2

Xk,k−1

A1

A2

A3

Ak−1

Ak

Set S(A):= {objects X with Gr(X)  A}/iso. , S’(A):={ }/equiv. ≃ (X, GrX ϕ A)
 iff 

 s.t.
(X, ϕ) ∼ (X′￼, ϕ′￼)
∃f : X ≃ X′￼

GrW X

GrW X′￼

Aϕ

ϕ′￼GrWf

≃

GrWX ϕ,≃ A

X
wts  a1 < ⋯ < ak

Xr := War
X

0 =: X0 ⊊ X1 ⊊ X2 ⊊ ⋯ ⊊ Xk = X
Xn/Xm =: Xn,m

Task 2:



Example: k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

Choices ≅

∏
r

EXT(Ar+1, Ar)



Example: k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

Choices for adding 
 X3,0 ≅

EXTPAN( , )X3,1 X2,0

If nonempty, torsor 
over EXT(A3, A1)

Choices ≅

∏
r

EXT(Ar+1, Ar)



Example: k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

Choices ≅

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1

Choices ≅

∏
r

EXTPAN(Xr+2,r, Xr+1,r−1)

Empty or Torsor over

∏
r

EXT(Ar+1, Ar)

∏
r

EXT(Ar+2, Ar)



Example: k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

Choices ≅

∏
r

EXT(Ar+1, Ar)

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1X4,0

Choices ≅
EXTPAN(X4,1, X3,0)

Empty or Torsor over

EXT(A4, A1)

Choices ≅

∏
r

EXTPAN(Xr+2,r, Xr+1,r−1)

Empty or Torsor over

∏
r

EXT(Ar+2, Ar)



In each step, need to mod out by appropriate equivalence relations.

Example: k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

Choices ≅

∏
r

EXT(Ar+1, Ar)

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1X4,0

Choices ≅
EXTPAN(X4,1, X3,0)

Empty or Torsor over

EXT(A4, A1)

Choices ≅

∏
r

EXTPAN(Xr+2,r, Xr+1,r−1)

Empty or Torsor over

∏
r

EXT(Ar+2, Ar)

To formalize this approach:



A1

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

A2

A3

Ak−1

Ak
such that each  

0 Am 0Xn,mXn,m−1
is exact.

Def: A generalized extension (of level k-1) of A is the data of an 
(abstract) commuting diagram of motives



A1

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

A2

A3

Ak−1

Ak
such that each  

0 Am 0Xn,mXn,m−1
is exact.

Def: A generalized extension (of level k-1) of A is the data of an 
(abstract) commuting diagram of motives



A1

X2,0

Xk−1,0

Xk,0

X3,1X3,0

Xk,k−2

Xk−1,1

Xk,1

A2

A3

Ak−1

Ak
such that each  

0 Am 0Xn,mXn,m−1
is exact.

Def: A generalized extension (of level k-1) of A is the data of an 
(abstract) commuting diagram of motives

Automatically exact



Examples: k=2 A gen ext of A is just an extension of  by A2 A1

k=3

A gen ext of A is just a blended ext of an element of EXT( ) by 
an element of EXT( )

A3, A2
A2, A1

A1

X2,0

X3,1X3,0

A2

A3

X2,0

X3,1X3,0

A2

A3 A3

A1

A1

exact

exact

exact

exact



Def: A gen. ext. of level l of A is a similar data as before but with only l 
diagonals below A.

k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1X4,0

l=1 l=2 l=3

D (A) := collection of all gen. ext.’s of level l of Al

D (A)l D (A).l-1There are truncation maps

D (A) l commuting isomorphismsS (A) :=l
D (A) l commuting isomorphisms 

identity on A
S’ (A) :=l

S’ (A)l S’ (A)l-1

S (A)l S (A).l-1

Trunc.



k=4

A1

A2

A3

A4

X2,0

X3,1

X4,2

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1

A1

A2

A3

A4

X2,0

X3,1

X4,2

X3,0

X4,1X4,0

l=1 l=2 l=3

D (A) := collection of all gen. ext.’s of level l of Al

D (A)l D (A).l-1There are truncation maps

D (A) l commuting isomorphismsS (A) :=l
D (A) l commuting isomorphisms 

identity on A
S’ (A) :=l

S’ (A)l S’ (A)l-1

S (A)l S (A).l-1

Trunc.

Recall:
S(A)={X with }/isoGr(X) ≃ A
S’(A)={ }/equiv(X, Gr(X) ≃ A)

Def: A gen. ext. of level l of A is a similar data as before but with only l 
diagonals below A.



Theorem. (a) We have

S’(A) ≅ S’ (A)k−1 S’ (A)k−2 S’ (A)2 S’ (A) =1 ∏
r

Ext1(Ar+1, Ar)

s.t. the fiber of S’ℓ S’  is either empty or canonically a torsor overℓ−1

.∏
r

Ext1(Ar+ℓ, Ar)
(b) This descends to

S(A) ≅ S (A)k−1 S (A)k−2 S (A)2 S (A) =1 Aut(A)
∏

r

Ext1(Ar+1, Ar)

(c) S’     S’  is surjective if =0 for each r.ℓ ℓ−1 Ext2(Ar+ℓ, Ar)

(1)

s.t. the fibers are… In particular, the fibers above tot. nonsp. elements 
remain unchanged.

Ta
sk

 2
a



Theorem. (a) We have

S’(A) ≅ S’ (A)k−1 S’ (A)k−2 S’ (A)2 S’ (A) =1 ∏
r

Ext1(Ar+1, Ar)

s.t. the fiber of S’ℓ S’  is either empty or canonically a torsor overℓ−1

.∏
r

Ext1(Ar+ℓ, Ar)

* (d) Suppose A is GI. Let S (A)  S(A) be the set of iso. classes with 
max. uni. rad’s. Then maps of (b) restrict to maps

* ⊂

S (A) * ≅ S (A)*
k−1 S (A)*

k−2 S (A)*
2 S (A) = tot. nonsp. orbits*

1

s.t. each nonempty fiber of S      S  is a torsor over (1).*
ℓ

*
ℓ−1

(1)
(b) This descends to

S(A) ≅ S (A)k−1 S (A)k−2 S (A)2 S (A) =1 Aut(A)
∏

r

Ext1(Ar+1, Ar)

(c) S’     S’  is surjective if =0 for each r.ℓ ℓ−1 Ext2(Ar+ℓ, Ar)

s.t. the fibers are… In particular, the fibers above tot. nonsp. elements 
remain unchanged.

Ta
sk

 2
a



Example. Mixed Tate motives with maximal uni. 
rad’s and Gr ≃ ℚ(9) ⊕ ℚ(4) ⊕ ℚ(1) ⊕ 1

Similar picture for 

for any m,n distinct, odd, >0

Gr X ≃ ℚ(n + m + 1) ⊕ ℚ(n + 1) ⊕ ℚ(1) ⊕ 1

1

ℚ(1)

ℚ(4)

ℚ(9)

La

Z3

Z5

S  *1 ≅ iso.
{La}

∈

 => 
unique lift in S
Ext1(Ar+2, Ar) = 0

*
2

1

ℚ(1)

ℚ(4)

ℚ(9)

La

Z3

Z5

M3,a

Z5,3

{Lifts to S } a torsor 
over 

*

Ext1(1,ℚ(9))

Gen. by Z9

1

ℚ(1)

ℚ(4)

ℚ(9)

La

Z3

Z5

M3,a

Z5,3

X

(2πi)−9 (2πi)−9ζ(5) (2πi)−9z5,3 (2πi)−9λ(X)

0 (2πi)−4 (2πi)−4ζ(3) (2πi)−4π3,a

0 0 (2πi)−1 (2πi)−1log a
0 0 0 1

per. mat. Of X

Max. of uni. rad. =>  
=> Assuming GPC,

  
is alg. independent.

dim Gmot = 7

{π, ζ(5), ζ(3), log a, z5,3, π3,a, λ(X)}

Questions about :λ(X)
Evaluation (X is a motive in MTM( ).)ℤ[1/a]
Its dependence on  as X varies in the family ζ(9)



Theorem. Let X be a GI motive with weights  and max. uni. 
radical. Then   

a1 < ⋯ < ak

Ext1
⟨X⟩(Graj

X, Grai
X) = 0 if j-i>1.

Back to the previous example, for every X in the family,

.Ext1
⟨X⟩(1,ℚ(9)) = 0

Assuming GPC, 
{π, ζ(5), ζ(3), log a, z5,3, π3,a, λ(X), ζ(9)}

is alg. independent.

 is not in .Z9 ⟨X⟩



Theorem. Let X be a GI motive with weights  and max. uni. 
radical. Then   

a1 < ⋯ < ak

if j-i>1.

Back to the previous example, for every X in the family,

.Ext1
⟨X⟩(1,ℚ(9)) = 0

Assuming GPC, 
{π, ζ(5), ζ(3), log a, z5,3, π3,a, λ(X), ζ(9)}

is alg. independent.

 is not in .Z9 ⟨X⟩

Thank you!
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X) = 0


