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@ T = a Tannakian cat. over a field of char o, equipped with a “weight”
filkration W such that pure objects are semisimple.

{ Thinlk: potariaabte Mixed Hodge structures over Q or a Tannakian 3

\ category of (mixed) motives over a subfield of C
® “Motive” = an object of T

> X € ob(T) WV 1u(X), a submotive of W_ End(X)

Lie algebra of the unipotent radical of the
motivic Gralols group of X

o u(X) <> Extensions in (X)® (Deligne, Bertrand, Brown, EM,
SRS L P Gowncharov, Hain, Hardouin, Jossen,...)

Inkerested i e, w(X) = W_ End(X)

1> When does X have a mh"*x‘ﬁm“i MME‘PQ&QM& raci&&ml? Motivation: Grothendieck Feriocl

con |,

2) Griven semés&myte A, &Lassiﬁfv X with Gr(X) = A and
NAD X . H(X), MP &Q ESOMOTPkﬁSM‘. Iciaativ, nobt a Fmr% of data!
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motivic Gralols group of X
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SRS L P Gowncharov, Hain, Hardouin, Jossen,...)

Inkerested i e, w(X) = W_ End(X)

3

1> When does X have a mh"*x‘ﬁm“i MME‘PQ&QM& raci&&ml? Motivation: Grothendieck Feriocl

2b) Given semisimple A, classify X with Gr(X) ~ A and conj.

max. W(X), up to isomorphism. rumE sl e of data

20) Griven semLsmeLe A, &Lass&{v X with Gr( X))~ A wp to Esomo-rpkismﬁ



A relaked wnobkiown: bokal Mams[ﬂu&&vxg

® Def: An extension (class) & of 1 by Y is totally nonsplit if for every
Y'C Y, the pushforward &/Y’ does not SF’LLE

(So for extensions of 1 bv simple ¥, totally nonsplit = MQMSPLEE)

° M An extension (class) & of X by Y is totally
Ext'(1,Hom(X,Y)) is Eoﬁod.i.:j MOMSPLLE

ALL the all ext'ns
20> W, XIW,X > WXIW,X - W,XIW,X - 0

nownsplit if iks class in

o X has a wax. uni. rad.

\ are Ecwéad,ij Mamspu& o b

Converse is true if X has 2 weights (Bertrand/Hardouin).

Converse is false in general (even for 3 weights).



Recall from Llast tallk: Task 1 for 3 weiqghts

Theorem (E.- K. Murty) Let X be a motive with 3 wks a; < a, < a;. Suppose:

() The extensions of Gr, X by Gr, X and Gr, X by Gr, X coming from X are
totally nonsplit.

(it) Hom (Ham(GrazX, Gr, X), Hom(Gr, X, GrazX)) =0

Then X has a maximal umipoﬁev\& radical.

S ————————— i R e
Ex: Given odd w>l and p, 3IM,, w. Conds (L) and (iL) hold.

(Motive of {(n)) Zn an h&$ a NWAAX, MME«Q T’&Cia

GrM, , ~ Q(n + I)EBQ(I) P 1 Aima GmOt(Mn,p) = 3+1=4,

Alqg. Lv\dep. of

riy™™! Q2a)™¢m) Qaiy " 'x, GPC for M, , <=

P
1ks P@.ﬁ naak.: 0 (27”)—1 (271'1)_110gp {ﬂ’ l()gp, Z"/(n)’ ﬂnap}
0 0 ] Open question: What is 7, 7

(A per. of MTM(Z[1/p]))



Recall from last time: Task 2 for 3 weights
Key tool: Grrobthendieck’s Blended extensions

(Extensions meaﬁkées)

Invented bj Grrothendieck to sﬁu,dj Lilkrations 0 C X, C X, C X; = X with




Recall from last time: Task 2 for 3 weights
Key tool: Grrobthendieck’s Blended extensions

(Extensions pamaﬂkées)

Invented bj Grothendieck to study Lilkrations 0 C X, C X, C X; = X with
X ~ A, X/X =2 A,y XG/X, ~ A,

X
Gr(X) i DA




Fix extensions &£ and N . @ EXTPAN(A , L) := collection
.~ of all bl. exts of # by &
e Ex%pav\(/l/ , L) 1= iso.
. classes of bl. ext’s J by
Z (Commuting maps that
are identity on L and N)

. o0=—>3A —>L —>4—> o

A blended extension of

bv Y is a comm, diagram
of the form, with exact
rows and columins




Fix exbensions &£ and A

A blended extension of N

bj L is a comm, diagram
of the form, with exact
rows and columins

- © EXTPAN(S, Z) := collection

of all blL. ext’s of N bv 7

@ Ex%pav\(/l/ , L) = Lso.

classes of blL. ext’s A by
Z (Commuting maps that
are identity on L and N)

Prop: a) Extpan(/, LY is
- nonempty Ut o
vanishes in Extz(A3,A1)‘



Fix extensions & and J: . @ EXTPAN(, L) := collection
.~ of all bl. exts of # by &
® Ex&pan(/lf , L) = iso.
. classes of bl. ext’s J by
Z (Commuting maps that
are identity on L and N)

A blended extension of N

bj L is a comm, diagram
of the form, with exact

Prop: a) Ex&yam(/lf L) s
rows and columis

nohemply Ut Lo
vanishes i Extz(A3,A1).

b) When nonempty,

- Extpan(t, L) is
canonically a torsor
over Extl(A3,A1).




Back o ocur earlier @.xam?{e:

“ N o— Q1) Lp — ] (F' erame}
Ext’(1,Q(n+ 1)) =0
\ L 0 —30Qn+1)—>Z(1) —> Q(1) ——> 0 (n odd »1)
Y N
There is a unique M, fiktking in

\.,-v—\./

¥
Ext'(1,0n+ 1) =0

(Unique up to blended ext., hence
unique up to iso. of motives.)



Motives with any number wf wks - repor& on a recent worlk

Task 1

Def: We say a motive X with k weights q; <+ < g is graded-independent
(GI) if there are no nownzero morphisms b@.&we@.@\ any two o g

Hom(GraX, Gra,_ X) (1<j<k and @ Ham(Gran, Gr, X)

s i j—i>1
Examtes o Ai.i motives with 2 weights are &1,

o For ma—%w&s with 3 weights, this is just cond. (ii) of previous theorem,

o The condition is guaranteed if the weights are sufficiently “spread out”.
e.q.
Q(9) \}@m b
Q4) '“\)@(3)
Q1) ~
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eﬂgﬂ
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Q(4) '\)@(3:)
Q1) ~
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Motives with any number wf wks - repor& on a recent worlk

Task 1

'D@:f We say a motive X with k weights g; < -+ < g is qraded-independent
(GI) if there are no nownzero morphisms b@.&we@.@\ any two o g

Hom(GraX, Gra,_ X) (1<j<k and @ Ham(Gran, Gr, X)

s i j—i>1
Examtes o Ai.i motives with 2 weights are &1,

o For ma—%w&s with 3 weights, this is just cond. (ii) of previous theorem,

o The condition is guaranteed if the weights are sufficiently “spread out”.

2.9
Q(16) .Q7
)

Qo) e
Q4) ‘\)@(3)
Q1) \)@m



Theorem. Let X be a GI motive with k weights a; < -+ < . Suppose
that each of the extensions

= ] j—2

» Gr an iy O

s tot. Moms[vti& Then X has a maximal umifao&em& radical.

;f Suppose Gy X~QO9OpQLA) Q1)1

1f successive extensions of X are Lp, Z5(1), and Z;(4) then X has a
max. uhii, rad.

/rapm distinet,
\odd, »o

wilh nownsplik successive exbensions Ehen X has a mwax. uni. radical.
P

More generally, f GrX~Qn+m+1)@®Qn+1)@ Q1) S 1




Task 2:

Fix nonzero pure. obje&&s 8, A o{ welghts a; < - < ;. Set A = EBA,,
Sek S(A):= {objects X with Gr(X) ~ Al/iso. , S(A):={(X, GrX éA)}/equ,iv.

X, p) ~ (X, @) 4f

3f: X > X' s.k.
G"x —%> A




Task 2:

Fix nonzero pure. obje&&s 8, A o{ welghts a; < - < ;. Set A = EBA,,
Sek S(A):= {objects X with Gr(X) ~ Al/iso. , S(A):={(X, GrX éA)}/equ,iv.

M%S al < ak
A =W, X

0="X,C X € X C = C X=X

X /X =X

n,m

X, $) ~ (X', ¢") 4
3f: X > X' s.k.
Gr"x —2> A

=
erf\.;& / !
Gr X' ?




Task 2:

Fix nownzero pure objects A, ...,A; of weights a; < - < q;. Set A = @Ar
Sek S(A):= {objects X with Gr(X) ~ Al/iso. , S(A):={(X, GrX é)A)}/@.qu,Lv.

X, ) ~ (X', ") ik
3f: X > X' s.k.
GrVX ¢ s A
X erf\.;i i /7¢/
MES al < vee <K ak Gr" X
A =W, X
0=/, C X{ SR
XX, =
Gr' X ﬁ A




Task 2:

Fix nownzero pure objects A, ...,A; of weights a; < - < q;. Set A = @Ar
Sek S(A):= {objects X with Gr(X) ~ Al/iso. , S(A):={(X, GrX é)A)}/@.quLv.

X, ) ~ (X, §") f
3f: X > X' s.k.
Gr'Vx e A
X erf\.;i /7¢’
W v
MES al < vve <K ak Gr"X
A =W, X
0="XGXEX & X=X
XX, =
Gr'X ﬁ A
Ar_y
Idea: To qeb all X, form
all such diagrams one A
diagonal at a time, Take Ve .
apgaroprmée equiv. rels
ko account,







Example: k=4

Ay
Xo0 Ay
X31 Aj
X0 Ay

Choices =~

| | Ex14,,,.4)

A
X0 Ay
X30X31 Az
Xy A4

Choices for adding
X3 &

EXTPANX; 1,X5 o)

If nonempty, torsor
over EXTiA, AY



Example: k=4

Ay
X0 Ay
X351 Aj
X4y As

Choices =~

H EXT(A,,,A)

Aj
X0 Ay
X30 X311 Aj
Xy1 Xa2 Ay

Cholces =
HEXTPAN( r+2,r r+1r 1)

Eimp&v or Torsor over

| | Ex14,,,.4)



Xz,o A2
X3, Aj
X, Ay

Choices =

| | Ex14,,,.4)

A
X20 Ay

X0 X311 Az
X, X40 A4

Chotces
HEXTPAN( 42,0 Xk 1,r-1)

Emp&y or Torsor over

| | Ex14,,,.4)

Ay

X0 A

X30 X3 Az

Xo0 Xgy Xap Ag

Choices =

EXTPAN(X, 1, X3 )

Ejmp&j or Torsor over

EXT(A,, A))



A, Ay A Ay

Ay b 20 4, — A20) A2 s %20 A2
A, 7 X3, As 7 X30 X311 Az 7 X30 X3, Az
A, X,, Ay X1 X4p Ay X10 X4y X4 Ay
Choices = Choices = Choices =
| | Ex14,,,.4) HEXTPAN( 12 Kkt 1) EXTPAN(X, ;, X3.0)
Emp%y or Torsor over E:m!p&v or Torsor over
H EXT(A, 5, A,) EXT(A4, A))

In each s&@.p, need ko mod out bv agpraprm&e equivalence relations.

To formalize this approach:



Def: A qeneralized extension (of level k-1) of A is the data of an
CUE D) ao—mmu&%g diagram of motives

such khalb each

Ls exack.



Def: A qeneralized extension (of level k-1) of A is the data of an
(abstract) &ommu%ma diagram of motives

such khalb each

Ls exack.



Def: A qeneralized extension (of level k-1) of A is the data of an
CUE D) ao—mmu&%g diagram of motives

such khalb each

Ls exack.



Examples: o k=2 A gen ext of A is just an extension of A, by A,

A gen ext of A is just a blended ext of an element of EXT(A3,A)) by
an element of EXT(A,, A))



*D@f A gen, ext, c;-af level L of A is a similar data as before bub with only L
tagonals | ec:}w A ciaaine 7

A, A A
X>0 A, X0 A, X0 A
k=4 X3, Aj X30 X531 As Fo 4
X40 Ay Xy1 X4 Ay Xa0 X41 Xun Ay
L=1 L=2 L=3

D((A) := collection of all gen. ext!s of level L of A
There are truncation maps D(A) —> Di_1(A).
ﬁ{,(’@ ‘B{_(A)

/ commuting isomorphisms S’L(A) '= /commutling isomorphisms
identity on A

S (A) :

Trune - S(A) —> §(1(A)




*D@f A gen, ext, c;-af level L of A is a similar data as before bub with only L
tagonals | ec:}w A ciaaine 7

A, A A
X>0 A, X0 A, X0 A
k=4 X3, Aj X30 X531 As Fo 4
X40 Ay Xy1 X4 Ay Xa0 X4 X42 Ay
l=1 L=2 =3

D((A) := collection of all gen. ext!s of level L of A
There are truncation maps D(A) —> Di_1(A).
ﬁ{,(’@ ‘B{_(A)

/ commuting isomorphisms S’L(A) '= /commutling isomorphisms
:,ciév\h&v on A

S (A) :

Trune - S(A) —> §(1(A)

| Mo S'(A)={(X, Gr(X) 5 A)} fequiv

S(A),{x wikh Gr(X) ~ Al/iso



Task 2a

(o) We have

S(AY = ' i(A) =

S" (A =D+ =D 5 (A) —> 5 (A ==HEXf (A4 A)

s.t. the fiber of §', —>5',_| is either emply or canonically a torsor over

Eth(Ar f’Ar)‘ (1>
(P) This descends to 1:1 .

SCAY = 5, [(A) =25, ,(A) 2 —25(A) — Si(A) =

5.4 the ffi;b@.rs are... i F’“"&m“m‘”; the ffibers above kot. V\QMSF‘ etemem&g
remain unchanged,

(€) §',—>5',_, is surjective f Ext*(A,,,,A,)=0 for each r.

HExtl(A,,H, A)
: Aub( A)




Task 2a

(o) We have

S(AY = ' i(A) =

S () =D+ =D 57(A) = §4(A) =[[ A, 4)

s.t. the fiber of §', —>5',_| is either emply or canonically a torsor over

Eth(Ar f’Ar)“ (1)
(b) This descends to 1:1 .

S(AY = 5, (A) =D 5, 5(A) —> - =D 5(A) —> S(A) =

s.t. the fibers are... In particular, the fibers above tot. nonsp. elements
remain unchanged,

(€) §',—>5',_, is surjective f Ext*(A,,,,A,)=0 for each r.

| [Exi'@A,,..A)
: Aub( A)

* (d) Suppose A is GI. Let S*(A) C S(A) be the sek of iso. classes with
mox. uni. rad’s. Then maps of (P) restrict to maps

S(A) = S5 [(A) =55 (A) —D----—D>ST(A) —25;(A) = ok, honsp. orbils

s.b. each nonemply fiber of ST —3$7 | is a torsor over (1).
i % et



Similar picture for

GrX=Qu+m+1)BQn+ 1S Q) S 1

Example, Mixed Tate motives with maximal undi.

rads and Gr~> QO P Q4 Q1) P 1

for any mun distinet, odd, »0

Q(9) Q(9) Q)
7 Z Z : c
B s = e Qmi)— Qri)7(5) QCri)7zs53 \2m) AX)
Z, Q) 2 T 75 00 0 . Ra)7een) )| Co)tn,
0 0 Qri)'  2zi) oga
La 1 La 1 X M3,a Ld 1 2 0 0 0 |
0 .
e Ext'A,,,,A) =0 => {Lifts to ST} a torsor
i = “/?:50‘ uhique Lift in ‘S; over Ext'(1,Q(9)) per. mak, 0f X
Gen, bj Zyg

Max. of uni. rad. =» dim G™ =7 | Questlons about A(X):
=> Assuming &¥C, @ Evaluation (X is a motive in MTM{Z[1/a]))
{ﬂ-a Z.:(S)a 5(3)9 log a, 25,39 71-3,619 /I(X)} ’.

' @ Iks depemdemae on ((9) as X varies in the {amitv
is alg. independent.



Theorem, Let X be a &I motive with weights g; < -+ < g, and max. uni.
radical. Then BT T 5 et

Ext (G X, Gr,X) = i j-irl.

Back to the previous example, for every X in the nfo\mdj,
Ext<1X>(1,@(9)) =)

> Zy is not in (X).

Assuming &PC,
{r,£(5),(3),loga, z5 5, w3 ,, A(X), {(9)}

is alg. independent.



Theorem, Let X be a &I motive with weights g; < -+ < g, and max. uni.
radical. Then BT T 5 et

Ext (G X, Gr,X) = i j-irl.

Back to the previous example, for every X in the nfo\mdj,
Ext<1X>(1,@(9)) =)

> Zy is not in (X).

Assuming &PC,
{r,£(5),(3),loga, z5 5, w3 ,, A(X), {(9)}

is alg. independent.

Thawnle vau!



