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ABSTRACT. We give three proofs of a relation involving classical and quadratic periods of mero-
morphic differentials on a punctured elliptic curve. The first proof is based on an old argument of
Gunning. The second proof considers how quadratic periods vary in the Legendre family of elliptic
curves. The final proof exploits connections to the Hodge theory of the fundamental group and is
suitable for generalization to arbitrary Riemann surfaces. The obstacle for such generalization is a
lack of a simple description of the Hodge filtration on the space of iterated integrals of length ≤ 2 on
a punctured Riemann surface of arbitrary genus in terms of meromorphic differentials.

1. Introduction

This article aims to study the quadratic periods of a punctured Riemann surface. We shall
be interested in the quadratic periods of meromorphic forms. More precisely, let X be a compact
Riemann surface of genus > 0, and fix distinct points∞, e ∈ X. Ideally, our goal is to find explicit
relations involving the classical and quadratic periods of meromorphic forms on X − {∞} with
base point e; the latter are by definition Chen-type iterated integrals of the form

∫
β

αα ′, where

β ∈ π1(X − {∞}, e) and α,α ′ are meromorphic forms on X with only possible pole at ∞. The
interest in quadratic periods of meromorphic forms, as opposed to values of other spanning sets
of the space of closed iterated integrals of length 2 (e.g. those involving harmonic forms- see
Kaenders [14, Theorem 1.4]) is motivated by number theory: IfX,∞, e, α andα ′ are all defined over
a subfield F ⊂ C, the values of

∫
αα ′ are among the periods of the (conjectural) motive attached to

π1(X− {∞}, e).
Before we say more about the contents of the paper let us fix the following notation. For

any pointed manifold (M,a), let Ln(M,a) denote the space of closed (i.e. homotopy functional)
iterated integrals of length ≤ n on M with base point a (see Paragraph 5.3). Chen’s de Rham
theorem asserts that

Ln(M,a) =

(
C[π1(M,a)]

In+1

)∨

,

where I is the augmentation ideal (i.e. the kernel of the map C[π1(M,a)]→ C defined by γ 7→ 1).
Most of this paper focuses on the case of an elliptic curve. We shall call our curve E in this

case, and reserve the symbol X for discussions in which the genus is arbitrary (positive). Let α1, α2
be meromorphic forms with only possible pole at ∞, representing a basis of H1(E). The space
L2(E− {∞}, e) has the following basis (over C):

1,

∫
αi ,

∫
αiαj (i, j ≤ 2).

1
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The subspace generated multiplicatively by L1(E− {∞}, e) is the span of

1,

∫
αi ,

∫
αiαi =

1

2
(

∫
αi)

2 ,

∫
α1

∫
α2 =

∫
α1α2 + α2α1.

This coincides with the subspace L2(E, e) ⊂ L2(E − {∞}, e). The iterated integral
∫
α1α2 − α2α1

however, which is homotopy functional on E − {∞} but not on E, is more mysterious. We shall
prove the following result:

THEOREM 1. Suppose α1 is holomorphic on E, and α2 has a (single) pole of order 2 at∞. Let
β1 and β2 be loops in E − {∞} based at e whose homology classes form a basis of H1(E,Z). Let
PerZ(α1) := Z

∫
β1

α1 + Z
∫
β2

α1. Then

(1)
1∫

β1
α1
∫
β2
α2 −

∫
β2
α1
∫
β1
α2

 ∫
β1

α1

∫
β2

(α1α2 − α2α1) −

∫
β2

α1

∫
β1

(α1α2 − α2α1)

 ≡ 2∞∫
e

α1

mod PerZ(α1).

Note that the integral on the right hand side of (1) is over any path in E from e to∞, and thus
its value is only well-defined mod PerZ(α1).

We shall give three proofs of Theorem 1. We believe these proofs (in particular the second and
the third) are more important than the result itself, as they leave much to be explored. Below we
say a few words about each approach.

First approach (Section 3): The first proof is based on an argument of Gunning in [7], where
he defines quadratic periods of holomorphic differentials on a compact Riemann surface. After
observing the non-abelian nature of these periods (i.e. that they do not give homomorphisms
from the fundamental group) Gunning proves that for hyperelliptic curves, if the base point is a
ramification point, these periods are quadratic expressions in the classical periods. We observe that
his argument also applies to meromorphic differentials with divisor≥ −2∞ and hence deduce (1).

Second approach (Section 4): We consider the quadratic periods in the Legendre family of
elliptic curves {Eλ} with a suitable choice of base point. Much like the calculations that lead to the
classical Picard-Fuchs differential equations, one can see that the quadratic periods of

∫
α1α2−α2α1

with α1 = dx
y and α2 = xdx

y are constant in the family. The result is then obtained as one allows λ
go towards the degeneration points.

This argument points to the direction of a general algebraic theory of Gauss-Manin connec-
tions for iterated integrals on families of pointed varieties, perhaps in the spirit of [15].† To our
knowledge such a theory has not been worked out, though the required technology might already
exist in the literature. The closest fit in the present literature seems to be the articles [12] of Hain
and Zucker and [9] of Hain, where (among other things) they show that the local system of homo-
topy groups associated with a family of pointed smooth complex varieties underlines a variation
of mixed Hodge structures (see Section 4 of [12] for the precise setting and statement). However,
the methods they use are transcendental, and in particular, do not say if the Gauss-Manin connec-
tion on iterated integrals is defined over the field of definition of the pointed family.‡ There are
also some works specifically about that quadratic periods of holomorphic differentials in certain

†As further evidence for existence of such a theory we point out that using similar calculations to the ones carried
out in this paper, we have found explicit Fuchsian differential equations with coefficients in Q(λ) satisfied by the periods
of iterated integrals of length ≤ 3 on the Legendre family.

‡Note that following the ideas of Wojtkowiak [19] one can define an F-lattice (the “de Rham” lattice) inside the space
of closed iterated integrals on a pointed variety defined over a subfield F ⊂ C.
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special families of curves satisfy ordinary differential equations (see [18] and [3]), but the methods
in those are again transcendental and far from algebraic.

Third approach (Section 5): Our last argument explores connections to the Hodge theory of
the fundamental group of a variety. Let us fix some notation before we proceed. With abuse of
notation, for a smooth complex variety Uwe denote the associated complex manifold by the same
symbol. For a pointed smooth complex variety (U,a), (again with abuse of notation) we shall
denote Hain’s mixed Hodge structure on Ln(U,a) also by Ln(U,a).

Let us go back to the general case of an arbitrary compact Riemann surface X. Writing H1 for
H1(X) = H1(X− {∞}), one has a short exact sequence of mixed Hodge structures

0 −→ L1
L0

(X− {∞}, e)
inclusion−→ L2

L0
(X− {∞}, e) −→ L2

L1
(X− {∞}, e) −→ 0

∼ = ∼ =

H1 (H1)⊗2

(see Section 5 for the details). Denote this by E∞
2 ∈ Ext(H1 ⊗ H1, H1). Let ξ be a Hodge class in

H1 ⊗ H1. Thinking of ξ as a morphism Z(−1) → H1 ⊗ H1, we can pull back E∞
e along ξ and get a

point
ξ−1(E∞

e ) ∈ Ext(Z(−1), H1) ∼= Jac,
where Jac is the Jacobian of X. This point was calculated by Kaenders in [14, Theorem 1.2] for
ξ = ξ∆(X) the H1 ⊗H1 component of the class of the diagonal of X. He showed that†

(2) ξ−1
∆(X)(E

∞
e ) = (−2g)∞+ 2e+ K,

where K is the canonical divisor of X. In the case of an elliptic curve, we give a simple description
of the Hodge filtration on L2(E − {∞}, e) in terms of meromorphic differentials (Lemma 3). Then
(1) follows from (2).

We should point out that en route to prove (2), Kaenders established a relation similar to (1)
for arbitrary X [14, Theorem 1.4], with the quadratic iterated integrals involved being of the form∫
ηη ′, where η and η ′ are harmonic forms on X. His argument however does not seem to directly

give a simple relation (as in (1)) for quadratic periods of meromorphic forms, even in the case of
an elliptic curve.

The last section of the article discusses the possibility of generalizing the third approach to
arbitrary curves. The obstacle is a lack of a simple characterization of the Hodge filtration on
L2(X− {∞}, e) in terms of meromorphic forms.

Acknowledgement. Some of this work was done during my PhD at the University of Toronto.
I would like to express my utmost gratitude to my advisor Professor Kumar Murty for his guidance
and support. I would also like to thank the organizers of GANITA conference, and in particular
Professor Amir Akbary. Finally, I am grateful to the anonymous referee for making helpful com-
ments that enabled us to improve the exposition of the article.

2. Recollections on iterated integrals

In this section we recall the definition of iterated integrals and a few basic facts about them. Let
ω1, . . . ,ωn be (smooth, complex-valued) 1-forms on a connected manifold M and γ : [0, 1] → M
be a path. Chen defines ∫

γ

ω1 · · ·ωn =

∫
0≤t1≤···≤tn≤1

γ∗(ω1)∧ · · ·∧ γ∗(ωn).

†The extension kpq in [14] is −ξ−1∆(X)(E
q
p) in our notation.
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The number n is referred to as the length. By convention, if n = 0 the integral is defined to be 1.
The definition is extended in the obvious way to the expressions of the form

∫
γ

∑
w , where eachw

is a word in 1-forms onM.
Iterated integrals behave in the following way with respect to composition and inverses of

paths. ∫
γ1γ2

ω1 · · ·ωn =

n∑
r=0

∫
γ1

ω1 · · ·ωr ·
∫
γ2

ωr+1 · · ·ωn(3)

∫
γ−1

ω1 · · ·ωn = (−1)n
∫
γ

ωn · · ·ω1(4)

The following formulas have analogues for iterated integrals of arbitrary length, but we shall only
need them for length 2. ∫

γ

ω(df) = f(γ(1))

∫
γ

ω−

∫
γ

fω(5)

∫
γ

(df)ω =

∫
γ

fω− f(γ(0))

∫
γ

ω(6)

The proofs of the formulas (3)-(6) are all straightforward. For instance, the formula (3) is obtained
from the decomposition

{
(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tn ≤ 1

}
=

n⋃
r=0

{
(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tr ≤

1

2
≤ tr+1 ≤ · · · ≤ tn ≤ 1

}
.

The two formulas (5) and (6) are easily proved using integration by parts.
Iterated integrals are functorial: If φ : N→M is a smooth map, theωi are smooth 1-forms on

M and γ is a path on N, ∫
φ∗(γ)

ω1 · · ·ωn =

∫
γ

φ∗(ω1) · · ·φ∗(ωn).

Fix a base point a in the manifoldM. LetΩa be the loop space at a. By the iterated integral
∫∑

w,
where each w is a word in 1-forms onM, we mean the function

γ 7→ ∫
γ

∑
w

on Ωa. We say
∫∑

w has length ≤ n if each w has length ≤ n. Note that as illustrated by (5)
and (6), two iterated integrals that look different might actually be equal (as functions on Ωa). We
call an iterated integral

∫∑
w : Ωa → C closed if it is a homotopy functional, i.e. if its value at

a loop γ ∈ Ωa only depends on the homotopy class of γ. One should keep in mind that even if
all the 1-forms involved in

∫∑
w are closed, the iterated integral may not be closed. One has the

following well-known lemma about closed iterated integrals of length ≤ 2.

LEMMA 1. Let ω1,ω2 be closed 1-forms on M. Suppose there is a 1-form ν on M such that
ω1 ∧ω2 + dν = 0. Then the iterated integral

∫
ω1ω2 + ν is closed (for any choice of base point a).
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PROOF. Let p : M̃ → M be a universal covering space of M. Suppose γ1, γ2 be homotopic
paths in M based at a. Pick a point ã ∈ M̃ above a. Let γ̃1 and γ̃2 be the lifts of γ1 and γ2 starting
at ã. Let b̃ be the common end point of γ̃1 and γ̃2. Let f be a function on M̃ such that df = p∗(ω1),
chosen such that f(ã) = 0. Then by functoriality∫

γi

ω1ω2 + ν =

∫
γ̃i

(p∗(ω1)) · (p∗(ω2)) + p∗(ν)

=

∫
γ̃i

df · (p∗(ω2)) + p∗(ν)

by (6)
=

∫
γ̃i

fp∗(ω2) + p
∗(ν).(7)

Note that
d
(
fp∗(ω2) + p

∗(ν)
)
= p∗

(
ω1 ∧ω2 + dν

)
= 0.

Being a closed 1-form on M̃, the differential form fp∗(ω2) + p
∗(ν) is also exact. The result now

follows from (7) in view of the fact that the γ̃i have the same end points.
�

Thus for instance, ifM is a Riemann surface andω1,ω2 are both holomorphic or anti-holomorphic,∫
ω1ω2 is closed (asω1 ∧ω2 = 0).

We end this section by recalling an important consequence of the formula (3). By linearity one
can evaluate iterated integrals on the group ring C[Ωa]. It follows from (3) that for γi ∈ Ωa ,

(8)
∫

(γ1−1)···(γm−1)

ω1 · · ·ωn =


n∏
i=1

∫
γi

ωi (ifm = n)

0 (ifm > n).

3. An argument of Gunning and the first proof of Theorem 1

Quadratic periods were first defined by Gunning in [7]. After observing the non-abelian na-
ture of these periods, he proves the following result [7, Theorem 1].

THEOREM 2 (Gunning). Let X be a hyperelliptic curve and ω,ω ′ be holomorphic 1-forms on
X. Suppose e is a ramification point of X. Then there exist generators {βj} of π1(X, e) such that∫

βj

ωω ′ =

∫
βj

ω ′ω.

Gunning’s argument makes essential use of the fact that the hyperelliptic involution acts on
the space of holomorphic forms by multiplication by -1. It is easy to see that the same remains valid
if one considers the action of the hyperelliptic involution on meromorphic forms whose divisor is
≥ −2∞, where∞ is a ramification point.

LEMMA 2. Let X be a hyperelliptic (resp. elliptic) curve and∞ be a ramification (resp. arbi-
trary) point of X. Let φ : X → X be the hyperelliptic involution (resp. the involution that fixes∞).
Then φ∗(ω) = −ω for every meromorphic differential with divisor ≥ −2∞.
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PROOF. Note that the space of meromorphic differentials with divisor ≥ −2∞ is invariant
under φ∗. If ω is holomorphic on X, then ω + φ∗(ω) is a holomorphic differential fixed by φ, i.e.
is a holomorphic differential on φ

∖
X ' P1, and hence is zero. This proves the lemma in the case

thatω is holomorphic.
By the Riemann-Roch theorem the space of meromorphic forms with divisor ≥ −2∞ has

dimension g + 1 (g = the genus). Thus to finish the proof of the lemma it is now enough to verify
the assertion on any 1-form with pole divisor 2∞. Let f : X→ P1 be the composition of the natural
map X → φ

∖
X with an isomorphism φ

∖
X ' P1 which sends∞ 7→ ∞ ∈ P1, where∞ is the image

of∞ in φ
∖
X. Then f is a meromorphic function on Xwith a single pole of order 2 at∞. Moreover,

it is clear from the construction that φ∗f = f. Let ω be a holomorphic differential on X that does
not vanish at∞. Then fω has a single pole of order 2 at∞ and φ∗(fω) = −fω. �

Thanks to Lemma 2 we have the following version of Gunning’s theorem.

PROPOSITION 1. Let (X,∞, e) be such that there is an involution φ : X→ X that fixes e and∞,
and the quotient curve is isomorphic to P1. Then there is a set of generators {βj} of π1(X − {∞}, e)
forming a basis of H1(X,Z) such that for every meromorphic formsω,ω ′ with divisor ≥ −2∞,

(9)
∫
βi

ωω ′ =

∫
βi

ω ′ω.

PROOF. With Lemma 2 in hand, the proof is identical to Gunning’s proof of Theorem 2. We
will include it regardless, partly for the sake of completeness, and partly because Gunning does
not use the language of iterated integrals in [7]. Denote the genus of X by g. Call the remaining
fixed points of the involution p1, . . . , p2g. Identify φ

∖
X with P1 via a fixed isomorphism. Denote

the image of a point x ∈ X under the quotient map X → φ
∖
X = P1 by x. Let {τi} be disjoint paths

in P1 − {∞}, with τi from e to pi. For each i, let τ1i and τ2i be the two lifts of τi in X. Then τ1i and
τ2i = φ∗τ

1
i both go from e to pi, and aside from their common end points do not intersect. Let

βi = τ
1
i (τ

2
i )

−1. Then the βi freely generate π1(X− {∞}, e) (see for instance, Section 3 of [7]) and thus
their images in H1(X,Z) form a basis. In view of the properties of iterated integrals,∫

βi

ωω ′ =

∫
τ1i (τ

2
i )

−1

ωω ′

=

∫
τ1i

ωω ′ −

∫
τ1i

ω

∫
τ2i

ω ′ +

∫
τ2i

ω ′ω.

Similarly, ∫
βi

ω ′ω =

∫
τ1i

ω ′ω−

∫
τ1i

ω ′
∫
τ2i

ω+

∫
τ2i

ωω ′.

Putting these together with φ∗(τ1i ) = τ2i and Lemma 2, in view of the functoriality of iterated
integrals we get (9). �

We can now give the first proof of Theorem 1. It is easy to see using (3) that mod PerZ(α1),
the left hand side of (1) is independent of the choice of β1, β2. Also, a straightforward calculation
using (3) and (4) shows that it is enough to prove Theorem 1 for a particular choice of e; the result
for arbitrary base point will then follow. Take e to be a fixed point of the involution φ of E that
fixes∞. Identify φ

∖
E and P1 via a fixed isomorphism. Let β1, β2 be as in Proposition 1 (applied to

(E,∞, e)). Then the left hand side of (1) is zero. Composing E→ φ
∖
E = P1 with an automorphism
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of P1 that sends∞ 7→∞ and e 7→ 0 (where x denotes the image of x under E→ φ
∖
E as before), we

get a meromorphic function on E with divisor 2(e −∞). Thus by Abel’s theorem the right hand
side of (1) belongs to PerZ(α1), establishing Theorem 1.

4. Quadratic periods in the Legendre family and the second proof of Theorem 1

For each λ ∈ C− {0, 1} let Eλ be the elliptic curve defined by the the affine equation

y2 = x(x− 1)(x− λ).

The Eλ are the well-known Legendre family of elliptic curves. We may assume that our curve E is
Eλ0 for some λ0, the point∞ is the point at infinity, the 1-forms α1 and α2 are dx

y and xdx
y , and the

base point e is the point (0, 0) in the affine part. As in our first proof, in order to prove Theorem 1
it is enough to show that there are β1(λ0), β2(λ0) ∈ π1(Eλ0 − {∞}, e) which form a basis of integral
homology and moreover satisfy

(10)
∫

βi(λ0)

α1α2 − α2α1 = 0.

(Note that 2(e −∞) is a principal divisor and thus the right hand side of (1) is in PerZ(α1).) The
function x makes each Eλ a double cover of P1, ramified at the points e = (0, 0), (1, 0), (λ, 0), and∞. Let τ1 and τ2(λ0) be disjoint paths in C from 0 to 1 and λ0. Then with the superscript notation
as in the proof of Proposition 1 for the double cover x : Eλ0 → P1, set β1(λ0) = τ11(τ

2
1)

−1 and
β2(λ0) = τ2(λ0)

1(τ2(λ0)
2)−1. For λ in a small neighborhood U of λ0, let τ2(λ) be a path in C from 0

to λ that varies continuously as λ varies. Set β1(λ) = τ11(τ
2
1)

−1 and β2(λ) = τ2(λ)1(τ2(λ)2)−1, where
the superscripts signify the two lifts for x : Eλ → P1 and the labelling has been done “consistently”
on U (i.e. such that βi(λ) varies continuously in E = ∪Eλ). Define

fi(λ) =

∫
βi(λ)

α1α2 − α2α1.

Then the fi are holomorphic on U and can be analytically continued along paths in C − {0, 1} (by
continuously deforming the paths in C and lifting to Eλ), hence are multi-valued functions on this
space. Since

∫
α1α2 − α2α1 is a homotopy functional on each Eλ − {∞} (∞ the point at infinity),

similar to the case of classical periods one can push differentiation inside the integral and get

(11) f ′i(λ) =
1

2

∫
β ′i(λ)

α1
x− λ

· α2 + α1 ·
α2
x− λ

−
α2
x− λ

· α1 − α2 ·
α1
x− λ

,

where β ′i(λ) is homotopic to βi(λ) in Eλ − {∞}, but does not pass through (λ, 0). As 1-forms on
Eλ − {∞, (λ, 0)} one has

α1
x− λ

=
1

1− λ
α1 −

1

λ(1− λ)
α2 +

2

λ(λ− 1)
d

(
y

x− λ

)
and

α2
x− λ

=
1

1− λ
α1 −

1

1− λ
α2 +

2

1− λ
d

(
y

x− λ

)
.

Substituting these in (11), a straightforward calculation using (5), (6) and y
x−λ(0, 0) = 0 shows that

f ′i(λ) = 0. Thus in fact, the fi are constant (and single-valued) on C − {0, 1}. Letting λ → 0, we see
that f2 ≡ 0. Letting λ → 1 we get f2 → f1. Thus f1 ≡ 0 as well, concluding our second proof of
Theorem 1.
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5. Hodge theory of π1 of a punctured curve

5.1. Extensions in the category of mixed Hodge structures. Let us start with some notation.
Given a mixed Hodge structure A, by AZ (resp. AQ or AC) we mean the underlying Z-module
(resp. rational or complex vector space). As usual, W· and F· denote the weight and Hodge filtra-
tions. For each n, define

Jn(A) :=
AC

FnAC +AZ
.

If A is pure of odd weight 2n− 1, set JA := JnA. We use the notation Hom for internal hom in the
category of mixed Hodge structures. More explicitly, Hom(A,B) is the mixed Hodge structure on
the Z-module HomZ(AZ, BZ), with the weight and Hodge filtrations as follows:

WnHomQ(AQ, BQ) = {f : AQ → BQ : f(WlAQ) ⊂Wn+lBQ for all l}

FpHomC(AC, BC) = {f : AC → BC : f(FlAC) ⊂ Fp+lBC for all l}.

Note that if A and B are pure of weights a and b, then Hom(A,B) is pure of weight b− a.
We shall need a result of Carlson on classifying extensions of mixed Hodge structures. Let

A and B be mixed Hodge structures. By Ext(A,B) we mean the group of extensions of A by B in
the category of mixed Hodge structures. Suppose the highest weight of B is less than the lowest
weight of A. Carlson in [1] gives an isomorphism

Ext(A,B) ∼= J0Hom(A,B) ,

as follows: Given an extension E represented by the short exact sequence

0 B E A 0 ,

the corresponding element in J0Hom(A,B) to E is the class of ρZ◦σF, where σF is a Hodge section of
EC → AC and ρZ is an integral retraction of BC → EC. (By a Hodge section we mean a section that
preserves the Hodge filtrations, and by an integral retraction we mean a retraction that is induced
by a map between the underlying Z-modules.)

In what follows we shall identify Ext(A,B) and J0Hom(A,B) via the isomorphism of Carlson.

5.2. Review of Abel-Jacobi maps. Let Y be a smooth complex projective variety. We denote
by Zi(Y) the group of i-dimensional algebraic cycles on Y. Let CHi(Y) be the Chow group of
i-dimensional algebraic cycles on Y (i.e. Zi(Y) modulo rational equivalence). We denote the homo-
logically trivial subgroups of Zi(Y) and CHi(Y) respectively by Zhom

i (Y) and CHhom
i (Y). Through-

out, with abuse of notation we use the same symbol for an algebraic cycle and its class in the Chow
group. In this paragraph we briefly recall the definition of Griffith’s Abel-Jacobi map

(12) AJ : CHhom
i (Y) −→ (

Fi+1H2i+1(Y)
)∨

H2i+1(Y,Z)
·

We refer the reader to [20] for details and proofs. Let Z be a homologically trivial i-dimensional
algebraic cycle on Y. Then there is a chain C whose boundary is Z. Given an element c ∈
Fi+1H2i+1(Y), one can choose a representative ω ∈ Fi+1E2i+1(Y), where E·(Y) is the complex of
complex-valued smooth differential forms on Y and F· is the Hodge filtration on this complex. Set∫

C

c :=

∫
C

ω.
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This is well-defined as
∫
C

ω does not depend on the choice of the representative ω ∈ Fi+1E2i+1(Y)

of c. Thus we have an element
∫
C

in
(
Fi+1H2i+1(Y)

)∨. It is easy to see that the class of this element

in

(
Fi+1H2i+1(Y)

)∨
H2i+1(Y,Z)

only depends on Z; in fact, one can show that this class only depends on Z

modulo rational equivalence. The Abel-Jacobi map (12) is then defined by

Z 7→ the class of
∫
C

.

Let Z(0) be the unique Hodge structure of weight zero on Z. The restriction map H2i+1C (Y)∨ →(
Fi+1H2i+1(Y)

)∨ induces an isomorphism

JHom(H2i+1(Y),Z(0)) −→ (
Fi+1H2i+1(Y)

)∨
H2i+1(Y,Z)

(given by [f] 7→ [f
∣∣
Fi+1H2i+1(Y)

]). We shall identify the two spaces via this isomorphism. Thus we

may consider the target of the Abel-Jacobi map (12) to be JHom(H2i+1(Y),Z(0)).

5.3. Background on Hodge theory of the fundamental group. In this paragraph we briefly
recall certain results of Chen [2] and Hain [10], [8]. Let M be a connected manifold. Choose a
base point a. We denote by Ln(M,a) the space of closed iterated integrals of length ≤ n on the
pointed manifold (M,a); thus an element of Ln(M,a) is a function on the loop space at a of the
form

∫∑
w, where each w is a word of length ≤ n in the 1-forms onM, such that the value

∫
γ

∑
w

only depends on the homotopy class of the loop γ. By extending linearly we consider elements of
Ln(M,a) as functionals on the group ring C[π1(M,a)]. Let I ⊂ C[π1(M,a)] be the augmentation
ideal. By (8) the elements of Ln(M,a) vanish on In+1. A theorem of Chen [2, Theorem 5.3] asserts
that in fact, every functional C[π1(M,a)]→ C) that vanishes on In+1 is given by an iterated integral
of length ≤ n, so that

Ln(M,a) =

(
C[π1(M,a)]

In+1

)∨

.

Let U be a smooth complex variety. We denote the associated complex manifold also by U. Let
a ∈ U. Hain showed that there is a natural mixed Hodge structure on the integral lattice(

Z[π1(U,a)]
In+1

)∨

(π1 the topological fundamental group and I the augmentation ideal). We shall use the same no-
tation for this mixed Hodge structure as its underlying complex vector space, i.e. Ln(U,a). To
describe the weight and Hodge filtrations on Ln(U,a), one realizes U as the complement of a nor-
mal crossing divisor D in a smooth projective variety Y. Let E1(Y logD) be the space of smooth
1-forms on Y with at most logarithmic singularity along D. One can show that every element of
Ln(U,a) can be expressed as an iterated integral of length ≤ n formed solely using differentials in
E1(Y logD). Then the weight and Hodge filtrations on Ln(U,a) are as follows:

- The weight filtration: Wm(Ln) is the space of those closed iterated integrals that can be
expressed as a sum of (not necessarily closed) iterated integrals of the form

∫
ω1 · · ·ωr,



10 PAYMAN ESKANDARI

with r ≤ n and ωi ∈ E1(Y logD), such that at most m − r of the ωi are not smooth along
D. Note that this in particular implies that Wm(Ln) ⊂ Lm and W2n(Ln) = Ln. One can
prove that this filtration is indeed defined over Q.

- The Hodge filtration: Fp(Ln) is the space of those closed iterated integrals that can be
expressed as a sum of (not necessarily closed) iterated integrals of the form

∫
ω1 · · ·ωr,

where r ≤ n andωi ∈ E1(Y logD), such that at least p of theωi are of type (1,0).
The construction of the mixed Hodge structure on Ln and the proofs of the facts listed above can be
found in [10] (see Theorem (5.1) therein and its proof). Alternatively, the reader can refer to [8] (in
particular, Corollary (2.4.4), Theorem (3.2.1), and Lemma (5.6.3) therein) for a different treatment.

5.4. Let X be a compact Riemann surface of arbitrary genus g > 0 and∞, e distinct points in
X. Let I ⊂ Z[π1(X− {∞}, e)] be the augmentation ideal. Consider the short exact sequence

(13) 0 −→ In

In+1
inclusion−→ Z[π1(X− {∞}, e)]

In+1
−→ Z[π1(X− {∞}, e)]

In
−→ 0.

Since π1(X− {∞}, e) is free,

(
I

I2
)⊗n ∼=

In

In+1

via
[γ1 − 1]⊗ · · · ⊗ [γn − 1] 7→ [(γ1 − 1) · · · (γn − 1)].

Combining with
I

I2
∼= H1(X− {∞},Z), we can rewrite (13) as

0 −→ H1(X− {∞},Z)⊗n −→ Z[π1(X− {∞}, e)]

In+1
−→ Z[π1(X− {∞}, e)]

In
−→ 0.

Dualizing we get a short exact sequence

0 −→ (
Z[π1(X− {∞}, e)]

In

)∨
inclusion−→ (

Z[π1(X− {∞}, e)]

In+1

)∨

−→ H1(X− {∞},Z)⊗n −→ 0.

Tensoring with C this gives a short exact sequence

(14) 0 −→ Ln−1(X− {∞}, e)
inclusion−→ Ln(X− {∞}, e)

(∗)−→ H1(X− {∞},C)⊗n −→ 0.

Tracking the procedure we see that the map (∗) sends f ∈ Ln(X− {∞}, e) to(
[γ1]⊗ · · · ⊗ [γn] 7→ f((γ1 − 1) . . . (γn − 1))

)
∈ (H1(X− {∞},C)⊗n)∨ = (H1(X− {∞},C))⊗n.

(Here γi ∈ π1(X− {∞}, e).) Equivalently, (∗) sends the iterated integral

f =

∫
ω1 · · ·ωn + lower length terms,

where theωi are closed smooth 1-forms on X− {∞}, to [ω1]⊗ · · · ⊗ [ωn] ∈ (H1(X− {∞},C))⊗n.
It is well-known that the isomorphism

Ln

Ln−1
(X− {∞}, e) ∼= H1(X− {∞})⊗n

induced by (∗) preserves the weight and Hodge filtrations, and thus is in fact an isomorphism of
(mixed) Hodge structures (see for instance, [10, Proposition (5.3)] and its proof). We shall identify
these two Hodge structures via this isomorphism, and refer to the map (∗) simply as the quotient
map.
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5.5. Let X, ∞ and e be as before. For simplicity in what follows we write H1 for H1(X,C) =
H1(X− {∞},C).

Let E∞
e be the extension of mixed Hodge structures given by the short exact sequence

0 −→ L1
L0

(X− {∞}, e)
inclusion−→ L2

L0
(X− {∞}, e) −→ L2

L1
(X− {∞}, e) −→ 0,

∼ = ∼ =

H1 H1 ⊗H1

considered as an element of

(15) Ext(H1 ⊗H1, H1)
Carlson
∼= JHom(H1 ⊗H1, H1)

Poincaré duality
∼= JHom((H1)⊗2 ⊗H1,Z(0)).

For every Hodge class ξ ∈ H1 ⊗ H1, let ξ−1 : JHom((H1)⊗3,Z(0)) → JHom(H1,Z(0)) be the map
that sends the class of f : (H1)⊗3 → C to the class of the map α 7→ f(ξ⊗ α). It is easy to see that via
the identifications (15) and

Ext(Z(−1), H1) ∼= JHom(Z(−1), H1)
Poincaré Duality

∼= JHom(H1,Z(0)),
for any extension E ∈ Ext(H1 ⊗ H1, H1), the element ξ−1(E) ∈ Ext(Z(−1), H1) is the pullback of E
along the morphism Z(−1)→ H1 ⊗H1 given by 1 7→ ξ.

Denote the diagonal of X by ∆(X) ∈ CH1(X
2). The following result is due to Kaenders [14,

Theorem 1.2].

THEOREM 3. Let ξ∆(X) be the H1 ⊗H1 component of the class of ∆(X). Then

ξ−1
∆(X)(E

∞
e ) = AJ(−2g∞+ 2e+ K),

where K is the divisor of a meromorphic 1-form on X and AJ is the Abel-Jacobi map CHhom
0 (X) →

JHom(H1,Z(0)) (see Paragraph 5.2).

Darmon, Rotger, and Sols more generally describe ξ−1(E∞
e ) for arbitrary Hodge classes, as

follows. Let h be the composition

(16) CHhom
1 (X3)

Abel-Jacobi−→ JHom(H3(X3),Z(0)) Kunneth−→ JHom((H1)⊗3,Z(0)).
Let

∆e := {(x, x, x) : x ∈ X}− {(e, x, x) : x ∈ X}− {(x, e, x) : x ∈ X}− {(x, x, e) : x ∈ X}(17)

+ {(e, e, x) : x ∈ X}+ {(e, x, e) : x ∈ X}+ {(x, e, e) : x ∈ X} ∈ CHhom
1 (X3)

be the modified diagonal cycle of Gross, Kudla and Schoen in X3, introduced and shown to be
homologically trivial in [6]. Let Z∞

e be the cycle

(18) Z∞
e := {(x, x,∞) : x ∈ X}− {(x, x, e) : x ∈ X} ∈ CHhom

1 (X3).

Darmon, Rotger, and Sols prove the following result in [4, Theorem 2.5].

THEOREM 4. (a) For every Hodge class ξ,

(19) ξ−1(E∞
e ) = ξ−1(h(−∆e + Z

∞
e )).

(b) Suppose X, e,∞ are defined over a subfield F ⊂ C. Denote the Jacobian of X by Jac. If ξ is the
H1⊗H1 Kunneth component of the class of an algebraic cycle on X2 defined over F, then the points

ξ−1(E∞
e ), ξ−1(h(∆e)) ∈ JHom(H1,Z(0))

Abel-Jacobi
∼= Jac(C)

are F-rational.
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REMARK. While we shall not need it in the present paper, the identity (19) is in fact valid
before applying ξ−1 (see [5, Paragraph 3.6.2]).

5.6. In view of Carlson’s theorem (see Paragraph 5.1), to describe the extension E∞
e and prove

results such as Theorems 3 and 4 one needs

(i) a retraction r of the inclusion map H1 → L2
L0

(X− {∞}, e) defined over Z, and

(ii) a section of the quotient map
L2
L0

(X− {∞}, e)→ H1 ⊗H1 compatible with the Hodge fil-

trations.

The former is easy: One simply chooses loops βi ∈ π1(X− {∞}, e) representing a basis of H1(X,Z),
and then defines r = r{βi} by

r([f])([βi]) = f(βi − 1) (f ∈ L2(X− {∞}, e), [f] ∈ L2
L0

(X− {∞}, e)).

Note that one evaluates f at βi− 1 (1 = the constant loop) rather than βi to kill the constant term of
f.

Defining a section as described in (ii) is not as straightforward. Of course, the objective will be
achieved if one defines a section s of the quotient map L2(X−{∞}, e)→ H1⊗H1 compatible with the

Hodge filtrations; then s (mod L0) will be our desired section of the map
L2
L0

(X− {∞}, e)→ H1 ⊗H1.

It is easy to define s on the subspaceH1,0⊗H1,0+H0,1⊗H0,1: Given elements [η1]⊗ [η2] ∈ H1⊗H1,
where η1, η2 are both holomorphic or anti-holomorphic on X, the integral

∫
η1η2 is closed on X, and

one can define the section s on the subspace H1,0 ⊗H1,0 +H0,1 ⊗H0,1 by

[η1]⊗ [η2] 7→ ∫
η1η2 .

Extending this to the kernel K of the cup product H1⊗H1 → H2(X) goes back to B. Harris [13] and
Pulte [17]. The key is that K is the image of

L2(X, e) ⊂ L2(X− {∞}, e)→ H1 ⊗H1,

so that in fact given Ω =
∑

[ηi] ⊗ [η ′i] ∈ K, where ηi and η ′i are harmonic forms, one can lift Ω
to a closed iterated integral on X. More precisely, recall that the space E1(X) of smooth complex-
valued 1-forms on X decomposes as H ⊕ H⊥, where H is the space of harmonic forms on X, and
orthogonality is with respect to the inner product defined using the Hodge ∗ operator. Since Ω =∑

[ηi] ⊗ [η ′i] ∈ K, the 2-form
∑
ηi ∧ η

′
i is exact on X. Since the elements of H are closed, one can

choose ν ∈ H⊥ such that
∑
ηi∧η

′
i+dν = 0. The differential ν is unique modulo exact differentials

(as a closed element ofH⊥ is exact). It follows that the iterated integral∫ (∑
ηiη
′
i

)
+ ν ,

which is closed by Lemma 1, does not depend on the choice of ν. Now one extends s to K by
sending

Ω 7→ ∫ (∑
ηiη
′
i

)
+ ν .
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Note that this is consistent with the earlier assignment on H1,0 ⊗ H1,0 + H0,1 ⊗ H0,1, as for Ω ∈
H1,0 ⊗ H1,0 + H0,1 ⊗ H0,1 one can simply take ν to be zero. Also, it is compatible with the Hodge
filtration as ifΩ is of type (1,1) one can choose ν to be of type (1,0).†

It remains to extend the section s from K to H1 ⊗ H1. Darmon, Rotger and Sols do this in
[4] using the Green function attached to a volume form on a Riemann surface. Indeed, take real
harmonic forms η0 and η ′0 such that [η0] ⊗ [η ′0] /∈ K. It is enough to define s at [η0] ⊗ [η ′0] (since
the dimension of K is one less than the dimension of H1 ⊗H1). Let g∞,η0∧η ′0 be the Green function
attached to the 2-form η0 ∧ η

′
0 and divisor∞; recall that this means g∞,η0∧η ′0 : X − {∞} → R is a

smooth function satisfying the following properties:
(i) In a small neighborhood U of the point∞, with a chart taken so that the point ∞ corre-

sponds to z = 0, the function g∞,η0∧η ′0 is of the form

−(

∫
X

η0 ∧ η
′
0) log zz + a smooth function on U.

(ii) One has ddcg∞,η0∧η ′0 = η0 ∧ η
′
0 on X − {∞}, where dc = 1

4πi(∂ − ∂) with ∂ = ∂
∂zdz and

∂ = ∂
∂zdz the usual operators.

(See Chapter 2 of [16], for instance.) Then ν := − 1
2πi∂g∞,η0∧η ′0 is of type (1,0), has a logarithmic

singularity at∞, and satisfies η0 ∧ η ′0 + dν = 0 on X − {∞}. Now one completes the definition of
our section s by sending

[η0]⊗ [η ′0] 7→ ∫
η0 ∧ η

′
0 + ν.

Kaenders’ approach in [14] to extend the section s from K to H1 ⊗H1 is similar, albeit less explicit.
He uses strictness of the differential of the complex E·(X log∞) of smooth differential forms with
at most logarithmic singularity at∞with respect to the Hodge filtration to conclude existence of a
differential µ ∈ E1(X log∞) of type (1,0) satisfying η0 ∧ η ′0 + dµ = 0 on X− {∞}.

5.7. An alternate Hodge section of
L2
L0

(X− {∞}, e)→ H1 ⊗H1 and the third proof of Theorem

1. In this paragraph we give an alternate section of the natural map
L2
L0
→ H1 ⊗H1 in the case that

X = E is an elliptic curve. Then we deduce Theorem 1 from Kaenders’ formula.

LEMMA 3. Letα1 be a nonzero holomorphic 1-form on E, andα2 be a meromorphic differential
with a single pole of order 2 at∞. Then σ : H1 ⊗H1 → L2(E− {∞}, e) defined by

(20) [αi]⊗ [αj] 7→ ∫ αiαj
is a section of the quotient map L2(E − {∞}, e) → H1 ⊗ H1 that is compatible with the Hodge
filtration.

PROOF. That σ is a section is clear. We must verify compatibility with the Hodge filtration.
This is clear for F0 and F2. Thus it remains to show that for i 6= j,∫

αiαj ∈ F1L2(E− {∞}, e).

†This follows from the following two facts: (1) The operator d in the complex E·(X) of smooth differential forms on
X is strict with respect to the Hodge filtration, and (2) the projection E1(X) → H⊥ preserves Hodge type.
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Let us consider the case i = 1; the other case is similar. Let η2 be a harmonic form on E whose
cohomology class in E − {∞} coincides with that of α2. Write α2 = η2 + df on E − {∞}, where f is
smooth and f(e) = 0. Then by (5), as functions on π1(E− {∞}, e) we have∫

α1α2 =

∫
α1η2 − fα1.

Since the differential of the complex E·(E log∞) of smooth differential forms on E with at most
logarithmic singularity at∞ is strict with respect to the Hodge filtration and α1∧η2 ∈ E2(E log∞)
is exact (of type (1,1)), there is µ ∈ E1(E log∞) of type (1,0) satisfying α1 ∧ η2 + dµ = 0. Then∫
α1η2 + µ ∈ F1L2(E− {∞}, e). Thus it is enough to have∫

µ+ fα1 ∈ F1L1(E− {∞}, e).

Since α2 has a pole of order only 2 at∞, the differential fα1 has a logarithmic singularity at∞. The
1-form µ+ fα1 is a smooth differential form of type (1,0) with at most logarithmic singularity at∞.
The result follows. �

Let σ : H1 ⊗H1 → L2
L0

(E− {∞}, e) be the composition of σ (defined in Lemma 3) and the quo-

tient map L2(E− {∞}, e)→ L2
L0

(E− {∞}, e). Then σ is a section of the quotient map
L2
L0

(E− {∞}, e)→ H1 ⊗H1

compatible with the Hodge filtrations. Using the retraction r of the inclusion H1 → L2
L0

(E− {∞}, e)

described in Paragraph 5.6 and the section σ of the quotient map
L2
L0

(E− {∞}, e)→ H1 ⊗H1, the

extension E∞
e ∈ JHom((H1)⊗3,Z(0)) is represented by the map

ψ : (H1)⊗3 −→ C [αi]⊗ [αj]⊗ PD([βk]) 7→ ∫
βk

αiαj,

where PD denotes the Poincaré dual: PD([β]) for a loop β is [ω] if
∫
β

− =

∫
E

ω∧− on closed forms.

We may assume
∫
E

PD(β1)∧ PD(β2) = 1. Then

[α1] = (−

∫
β2

α1) · PD(β1) + (

∫
β1

α1) · PD(β2).

Writing ξ∆(E) =
∑
cij[αi]⊗ [αj], the element

ξ−1
∆(E)(E

∞
e ) ∈ JHom(H1,Z(0)) ∼=

(F1H1)∨

H1(E,Z)

(the identification via [f] 7→ [f
∣∣
F1H1

], see Paragraph 5.2) is represented by the map F1H1 → C which
sends

(21) [α1] 7→ ψ(ξ∆(E) ⊗ [α1]) =
∑

cij

−

∫
β2

α1

∫
β1

αiαj +

∫
β1

α1

∫
β2

αiαj

 .
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On the other hand, the element AJ(−2∞+ 2e) ∈ (F1H1)∨

H1(E,Z)
is represented by the map F1H1 → C

defined by

(22) [α1] 7→ −2

∞∫
e

α1

(where the integral is over any path from e to∞). By Theorem 3, the two maps (21) and (22) defer
by an element of H1(E,Z) (note that the canonical divisor K is zero, since our curve is elliptic).
Thus ∑

cij

−

∫
β2

α1

∫
β1

αiαj +

∫
β1

α1

∫
β2

αiαj

 ≡ −2

∞∫
e

α1 (mod PerZ(α1)).

A straightforward calculation (see [5, Lemma 5.3.1]) shows

c21 = −c12 =
1∫

β1

α1
∫
β2

α2 −
∫
β2

α1
∫
β1

α2

c11 = c22 = 0,

and one gets the relation given in Theorem 1.

6. Generalization to arbitrary curves

In view of Theorem 4 the last method can be applied to produce explicit relations involving
periods and quadratic periods of meromorphic differentials on an arbitrary punctured Riemann
surface X−{∞}, as long as one has an explicit description of the Hodge filtration on L2(X−{∞}, e) in
terms of such forms, analogous to the one given by Lemma 3 in g = 1 case. To make this precise, let
us give a definition: A good set of differential forms for the triple (X,∞, e) is a set of meromorphic
1-forms {αi}i≤2g on X such that

(i) α1, . . . , αg are holomorphic on X,
(ii) αg+1, . . . , α2g have poles only at∞,

(iii) the αi represent a basis of H1(X− {∞}) = H1(X), and
(iv) the iterated integrals ∫

αiαj

belong to F1L2(X− {∞}, e) if either i or j is ≤ g.

For instance, when g = 1 if α1 is any nonzero holomorphic form, and α2 is meromorphic with a
single pole of order 2 at∞, then α1, α2 form a good set of differentials. Note that the requirements
are asking for a description of the Hodge filtration on L2(X − {∞}, e) in terms of meromorphic
forms, much like the classical description of the Hodge filtration on H1(X) in terms of such forms.
Unfortunately, if g > 1we do not know if a good set of differentials exists.

Recall that h denotes the composition map (16) and∆e is the modified diagonal cycle of Gross,
Kudla, and Schoen in X3 (defined in (17)).

PROPOSITION 2. Suppose {αi}i≤2g is a good set of differentials for the triple (X,∞, e). Let
{βk}k≤2g be a set of generators of π1(X − {∞}, e) whose homology classes form a basis of H1(X,Z).



16 PAYMAN ESKANDARI

Write [αl] =
∑
k

plkPD([βk]). Let ξ =
∑
cij[αi] ⊗ [αj] be a Hodge class. Then ξ−1(h(∆e)) (resp.

ξ−1(E∞
e ) ) is a torsion point if and only if∑

k

plk

∫
βk

∑
i,j

cijαiαj


l≤g

≡
∫

∆(X)

ξ

∞∫
e

αl


l≤g

(resp. ≡ 0) mod the Q-span of {(
∫
βk
αl)l≤g : k ≤ 2g} in Cg.

PROOF. The mapαi⊗αj 7→ ∫αiαj (mod L0) is a section of the quotient map
L2
L0

(X−∞, e)→ H1 ⊗H1

that is compatible with the Hodge filtrations. Thus the extension E∞
e ∈ JHom((H1)⊗3,Z(0)) is rep-

resented by

[αi]⊗ [αj]⊗ PD([βk]) 7→ ∫
βk

αiαj,

and the point ξ−1(E∞
e ) ∈ (F1H1)∨

H1(X,Z)
is represented by

[αl] 7→∑
k

plk

∫
βk

∑
i,j

cijαiαj (l ≤ g).

Take a path γ∞e in X from e to∞. Then Z∞
e (defined in (18)) is the boundary of ∆(X) × γ∞e . Thus

AJ(Z∞
e ) ∈ JHom((H3(X3),Z(0)) is represented by any map φ : H3(X3) → C whose restriction to

F2H3(X3) is
∫

∆(X)×γ∞e
(see Paragraph 5.2). The element h(Z∞

e ) ∈ JHom((H1)⊗3,Z(0)) is represented

by the restriction of φ to the subspace (H1)⊗3 ⊂ H3(X3) (the inclusion via Kunneth). It follows that

ξ−1(h(Z∞
e )) ∈ (F1H1)∨

H1(X,Z)
is represented by the map

[αl] 7→ φ(ξ⊗ [αl])
(∗)
=

∫
∆(X)×γ∞e

ξ⊗ [αl] =

∫
∆(X)

ξ

∫
γ∞e
αl (l ≤ g)

(for (∗) note that ξ⊗ [αl] ∈ F2H3(X3)).
The assertions now follow from Theorem 4 in view of the descriptions of ξ−1(E∞

e ) and ξ−1(h(Z∞
e ))

given above. �

Note that in the following situations ξ−1(h(∆e)) is guaranteed to be torsion: (i) if X is hyper-
elliptic and e is a ramification point (as then 6∆e = 0 in the Chow group [6, Proposition 4.8]), and
(ii) if X, e and ξ are defined over a subfield F ⊂ C and Jac(F) is finite (see Theorem 4(b)).

We end the article with a few remarks.

REMARKS. (1) In the case of an elliptic curve (with or without complex multiplication), taking
ξ to be the Hodge class of a nonzero endomorphism gives (1) again. (In particular, the procedure
does not give a new relation in the CM case.)

(2) In [5] we generalize Theorem 4 as follows. Let E∞
n,e be the extension

0 −→ Ln−1
Ln−2

(X− {∞}, e)
inclusion−→ Ln

Ln−2
(X− {∞}, e) −→ Ln

Ln−1
(X− {∞}, e) −→ 0

∼ = ∼ =

(H1)⊗n−1 (H1)⊗n
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of mixed Hodge structures. We show that E∞
n,e , considered as an element of

Ext((H1)⊗n, (H1)⊗n−1) ∼= JHom((H1)⊗n, (H1)⊗n−1)
Poincaré duality

∼= JHom((H1)⊗n ⊗ (H1)⊗n−1,Z(0)),

is the Abel-Jacobi image of a homologically trivial algebraic cycle (see [5, Theorem 3.5.1]). This
algebraic cycle is defined over F ⊂ C if X, e and ∞ are defined over F. As a result, if X, e,∞ are
defined over F, pullback by Hodge classes in (H1)⊗2n−2 that are defined over F gives F-rational
points in the Jacobian of X (see [5, Theorem 4.1.1]). Similar to above, if there is a good set of
differentials, the point ξ−1(E∞

n,e) is torsion if and only if certain relations between classical and
quadratic periods hold. We also explicitly find the relations that may arise from this procedure for
the diagonal of X2 (ξ ∈ (H1)⊗4, n = 3), and show that when g = 2 already one would get new
relations that are not seen by the diagonal of X and the extension E∞2,e considered in this article (see
[5, Proposition 5.3.3]).

(3) Hain has also previously asked for a description of the Hodge filtration on the space of
iterated integrals on a punctured curve in terms of meromorphic differentials (see Subsection 13.1
of [11]).
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