Non-constructive methods in combinatorics on words

Narad Rampersad

Department of Mathematics University of Liège

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\mathbf{t} = 011010011001011010010110011001001\cdots$

- Let t_i denote the *i*-th symbol of **t**.
- t_i is the number of 1's mod 2 in the binary expansion of i.

 Studied by Thue in 1906, Morse in 1921, and many others later.

Combinatorial properties of the T-M word

- ▶ t contains no overlap (Thue 1912).
- An overlap is a factor of the form xxx (like shshsh) or xyxyx (like entente).

 t is the lexicographically largest infinite binary word starting with 0 that avoids overlaps (Berstel 1994).

- xxx and xyxyx are patterns (Bean, Ehrenfeucht, McNulty; Zimin 1979).
- \blacktriangleright x, y, etc., are variables.
- Which patterns are avoidable?
- How many symbols are required to avoid a pattern?

> xx can be avoided using 3 symbols (Thue 1906).

Avoiding a specified set of words

- We apply a special case of a result of Golod and Shafarevich (1964).
- ▶ Let S be a set of words over an d-letter alphabet, each of length at least 2.

Suppose S has at most r_i words of length i for $i \ge 2$.

Theorem

If the power series expansion of

$$G(z) := \left(1 - dz + \sum_{i \ge 2} r_i z^i\right)^{-1}$$

has non-negative coefficients, then there are least $[z^n]G(z)$ words of length n over a d-letter alphabet that contain no word of S as a factor.

Proposition

For $n \ge 0$ there are at least 5^n words of length n over an alphabet of size 7 that avoid the pattern xx.

- ▶ Let S be the set of squares over an alphabet of size 7.
- For $n \ge 1$ the set S contains 7^n squares of length 2n.

Applying the power series criterion

Define

$$G(z) := \left(1 - 7z + \sum_{i \ge 1} 7^i z^{2i}\right)^{-1}$$

= $\left(1 - 7z + \frac{7z^2}{1 - 7z^2}\right)^{-1}$
= $1 + 7z + 42z^2 + 245z^3 + 1372z^4 + 7546z^5 + \cdots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• It is easy to show that $[z^n]G(z) \ge 5^n$ for $n \ge 0$.

Theorem (Bell and Goh 2007; R. 2009)

Let p be a pattern containing k distinct variables.
(a) If p has length at least 2^k then p is 4-avoidable.
(b) If p has length at least 3^k then p is 3-avoidable.
(c) If p has length at least 4^k then p is 2-avoidable.

k-avoidable: there is an infinite word over a k-letter alphabet that avoids the pattern.

Avoiding a finite set of words

- Let S be a set of words of length n.
- We want an infinite word that contains no element of S as a factor.
- If S contains very few words (as a function of n), this is probably easy.
- ► We would like to show that even when S is quite large, this is still possible.

- Let A_1, \ldots, A_n be events in a probability space.
- A graph G = (V, E) is a dependency graph if
 V = {1,...,n} and for all i, A_i is mutually independent of all the A_i's for which there is no edge {i, j} ∈ E.

Lovász Local Lemma (symmetric version)

Let G = (V, E) be a dependency graph for events A_1, \ldots, A_n . Suppose that the maximum degree of G is d and that there is a real number p for which $\Pr[A_i] \leq p$ for all $i = 1, \ldots, n$. If $4pd \leq 1$, then

$$\Pr[\cap \overline{A_i}] \ge (1 - 2p)^n > 0.$$

- ▶ Fix an alphabet with *k* symbols.
- ► We consider a random word and use the local lemma to show that with positive probability the word avoids S.

► Let t be an arbitrary positive integer and let w be a random word of length t.

- ▶ For i = 1,...,t, A_i is the event that w contains an occurrence of a word from S at position i.
- Then $\Pr[A_i] = |S|/k^n$.
- We may take d = 2n − 1: there are at most 2n − 1 overlapping pairs of occurrences of factors of length n in w.

Applying the local lemma

For

$$S| \le \frac{k^n}{4(2n-1)},$$

we have

$$4(|S|/k^n)(2n-1) \le 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ By the local lemma, with positive probability w contains no occurrence of any word of S.

The result summarized

Theorem

Fix an alphabet A of size $k \ge 2$. Let S be a set of words of length $n \ge 1$ over A. If

$$|S| \le \frac{k^n}{4(2n-1)},$$

then there is an infinite word over A that avoids S.

- We pass from finite to infinite words by a standard compactness argument.
- One can obtain a stronger result using other methods.

Theorem (Beck 1981)

For any $\epsilon > 0$, there is some N_{ϵ} and an infinite binary word such that any two identical factors of length $n > N_{\epsilon}$ are at distance $> (2 - \epsilon)^n$.

 One of the first uses of the local lemma in combinatorics on words.

No constructive proof known.

Nonrepetitive colourings of the real line

Theorem (Rote, see Grytczuk and Śliwa 2003)

There exists a colouring f of \mathbb{R} , $f : \mathbb{R} \to \{0, 1\}$, such that no two line segments are coloured alike with respect to translations. Formally, for every $\epsilon > 0$ and every pair of real numbers x < y, there exists $0 \le t < \epsilon$ such that $f(x+t) \ne f(y+t)$.

We specify the colouring

- ▶ Define f(x) = 0 if log |x| is rational and f(x) = 1 otherwise.
- Consider two points $0 \le x < y$.
- If f(x) = f(y), then let $x + t_1 = e^{q_1}$, where $0 \le t_1 < \epsilon$ and q_1 is rational.
- Now $f(x + t_1) = 0$.
- If f(x + t₁) = f(y + t₁) = 0, then y + t₁ = e^{q₂} for some rational number q₂ ≠ q₁.

- Let $x + t_2 = e^{q_3}$, where $t_1 < t_2 < \epsilon$ and q_3 is rational.
- If again f(y+t₂) = 0, then y + t₂ = e^{q₄} for some rational number q₄.
- Now x − y = e^{q1} − e^{q2} = e^{q3} − e^{q4}, where the q_i's are all distinct rational integers.
- Algebraic powers of e are linearly independent over the algebraic numbers (Lindemann–Weierstrass 1885)!

Theorem (Alon, Grytczuk, Lasoń, Michałek 2009)

There is a 5-coloring of the real line such that no pair of intervals (not necessarily adjacent) has the same measure of every color.

- Proof uses topological methods
- ► Is 5 optimal?

The End