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The Thue–Morse word

t = 01101001100101101001011001101001 · · ·

I Let ti denote the i-th symbol of t.

I ti is the number of 1’s mod 2 in the binary expansion of i.

I Studied by Thue in 1906, Morse in 1921, and many

others later.



Combinatorial properties of the T–M word

I t contains no overlap (Thue 1912).

I An overlap is a factor of the form xxx (like shshsh) or

xyxyx (like entente).

I t is the lexicographically largest infinite binary word

starting with 0 that avoids overlaps (Berstel 1994).



Patterns

I xxx and xyxyx are patterns (Bean, Ehrenfeucht,

McNulty; Zimin 1979).

I x, y, etc., are variables.

I Which patterns are avoidable?

I How many symbols are required to avoid a pattern?

I xx can be avoided using 3 symbols (Thue 1906).



Avoiding a specified set of words

I We apply a special case of a result of Golod and

Shafarevich (1964).

I Let S be a set of words over an d-letter alphabet, each of

length at least 2.

I Suppose S has at most ri words of length i for i ≥ 2.



A power series criterion

Theorem

If the power series expansion of

G(z) :=

(
1− dz +

∑
i≥2

riz
i

)−1

has non-negative coefficients, then there are least [zn]G(z)

words of length n over a d-letter alphabet that contain no

word of S as a factor.



Avoiding the pattern xx

Proposition

For n ≥ 0 there are at least 5n words of length n over an

alphabet of size 7 that avoid the pattern xx.

I Let S be the set of squares over an alphabet of size 7.

I For n ≥ 1 the set S contains 7n squares of length 2n.



Applying the power series criterion

I Define

G(z) :=

(
1− 7z +

∑
i≥1

7iz2i

)−1

=

(
1− 7z +

7z2

1− 7z2

)−1

= 1 + 7z + 42z2 + 245z3 + 1372z4 + 7546z5 + · · · .

I It is easy to show that [zn]G(z) ≥ 5n for n ≥ 0.



Avoiding long patterns

Theorem (Bell and Goh 2007; R. 2009)

Let p be a pattern containing k distinct variables.

(a) If p has length at least 2k then p is 4-avoidable.

(b) If p has length at least 3k then p is 3-avoidable.

(c) If p has length at least 4k then p is 2-avoidable.

I k-avoidable: there is an infinite word over a k-letter

alphabet that avoids the pattern.



Avoiding a finite set of words

I Let S be a set of words of length n.

I We want an infinite word that contains no element of S

as a factor.

I If S contains very few words (as a function of n), this is

probably easy.

I We would like to show that even when S is quite large,

this is still possible.



The probabilistic method

I Let A1, . . . , An be events in a probability space.

I A graph G = (V,E) is a dependency graph if

V = {1, . . . , n} and for all i, Ai is mutually independent

of all the Aj’s for which there is no edge {i, j} ∈ E.



The Lovász Local Lemma

Lovász Local Lemma (symmetric version)

Let G = (V,E) be a dependency graph for events A1, . . . , An.

Suppose that the maximum degree of G is d and that there is

a real number p for which Pr[Ai] ≤ p for all i = 1, . . . , n. If

4pd ≤ 1, then

Pr[∩Ai] ≥ (1− 2p)n > 0.



Looking at a random word

I Fix an alphabet with k symbols.

I We consider a random word and use the local lemma to

show that with positive probability the word avoids S.

I Let t be an arbitrary positive integer and let w be a

random word of length t.



Calculating probabilities

I For i = 1, . . . , t, Ai is the event that w contains an

occurrence of a word from S at position i.

I Then Pr[Ai] = |S|/kn.

I We may take d = 2n− 1: there are at most 2n− 1

overlapping pairs of occurrences of factors of length n in

w.



Applying the local lemma

I For

|S| ≤ kn

4(2n− 1)
,

we have

4(|S|/kn)(2n− 1) ≤ 1.

I By the local lemma, with positive probability w contains

no occurrence of any word of S.



The result summarized

Theorem

Fix an alphabet A of size k ≥ 2. Let S be a set of words of

length n ≥ 1 over A. If

|S| ≤ kn

4(2n− 1)
,

then there is an infinite word over A that avoids S.

I We pass from finite to infinite words by a standard

compactness argument.

I One can obtain a stronger result using other methods.



A highly non-repetitive word

Theorem (Beck 1981)

For any ε > 0, there is some Nε and an infinite binary word

such that any two identical factors of length n > Nε are at

distance > (2− ε)n.

I One of the first uses of the local lemma in combinatorics

on words.

I No constructive proof known.



Nonrepetitive colourings of the real line

Theorem (Rote, see Grytczuk and Śliwa 2003)

There exists a colouring f of R, f : R→ {0, 1}, such that no

two line segments are coloured alike with respect to

translations. Formally, for every ε > 0 and every pair of real

numbers x < y, there exists 0 ≤ t < ε such that

f(x+ t) 6= f(y + t).



We specify the colouring

I Define f(x) = 0 if log |x| is rational and f(x) = 1

otherwise.

I Consider two points 0 ≤ x < y.

I If f(x) = f(y), then let x+ t1 = eq1 , where 0 ≤ t1 < ε

and q1 is rational.

I Now f(x+ t1) = 0.

I If f(x+ t1) = f(y + t1) = 0, then y + t1 = eq2 for some

rational number q2 6= q1.



We derive a contradiction

I Let x+ t2 = eq3 , where t1 < t2 < ε and q3 is rational.

I If again f(y+ t2) = 0, then y+ t2 = eq4 for some rational

number q4.

I Now x− y = eq1 − eq2 = eq3 − eq4 , where the qi’s are all

distinct rational integers.

I Algebraic powers of e are linearly independent over the

algebraic numbers (Lindemann–Weierstrass 1885)!



Measurable colourings of the real line

Theorem (Alon, Grytczuk, Lasoń, Micha lek 2009)

There is a 5-coloring of the real line such that no pair of

intervals (not necessarily adjacent) has the same measure of

every color.

I Proof uses topological methods

I Is 5 optimal?



The End


