
Introduction to Walnut

Narad Rampersad and Manon Stipulanti

Walnut

▶ Walnut is a theorem prover that can prove theorems
about automatic sequences.

▶ For example, it can prove classical results in
combinatorics on words like:
▶ The Thue–Morse word is overlap-free.
▶ The squares in the Thue–Morse word have lengths of

the form 2n or 3 · 2n.
▶ The Fibonacci word contains exactly one palindrome

of length n if n is even and exactly two palindromes
of length n if n is odd.

Walnut book
Most of the material in this course is based on content
from Jeffrey Shallit’s book.

Theoretical basis for Walnut

Walnut is based on the theory of
▶ numeration systems
▶ finite automata and regular languages
▶ automatic sequences
▶ logic (extensions of Presburger arithmetic)

Integer base numeration systems

Let k ≥ 2 be an integer. The base-k numeration system is
based on the following result:

Theorem
Every non-negative integer n can be represented as a
sum

n =
∑

0≤i≤t
at−iki,

where ai ∈ {0, 1, . . . , k − 1} for i = 0, . . . , t and a0 , 0.

We then represent n in base k by the string
(n)k = a0a1 · · · at.

Representing several integers

▶ t-tuples of integers are represented as words over
the alphabet {0, 1, . . . , k − 1}t

▶ representations are padded with leading zeros so
that they all have the same length

▶ For example, we represent the pair (23, 6) in binary
by

[1, 0] [0, 0] [1, 1] [1, 1] [1, 0];

the first component gives the binary representation
10111 of 23 and the second component gives the
(padded) binary representation 00110 of 6.

Fibonacci numeration

▶ In the Fibonacci (or Zeckendorf) numeration system,
the place values are the Fibonacci numbers

1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

▶ Let F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
▶ Then every non-negative integer can be represented

as a sum ∑
0≤i≤t

at−iFi+2 with ai ∈ {0, 1}.

▶ However, the sum may not be unique.

Getting a unique representation

▶ e.g., 10 = 8 + 2, 10 = 5 + 3 + 2.
▶ To get a unique representation (up to leading 0’s),

we forbid ai = ai+1 = 1 for all i.
▶ So, for example, the Fibonacci representation of 12

is (12)F = 10101, since 12 = 8 + 3 + 1.

Counting in base-Fibonacci
Here are the first few numbers written in the Fibonacci
numeration system:

n (n)F n (n)F
0 ϵ 9 10001
1 1 10 10010
2 10 11 10100
3 100 12 10101
4 101 13 100000
5 1000 14 100001
6 1001 15 100010
7 1010 16 100100
8 10000 17 100101

Finite automata

▶ A finite automaton is a computing machine that has
a finite memory (i.e., a finite number of states.)

▶ It takes as input a finite string (word). Input is
processed one symbol at a time, from left to right,
starting from a designated initial state.

▶ The automaton has a transition function, which is a
table that determines the next state based on the
current state and current input symbol.

Acceptance

▶ In the basic model, states are designated final or
non-final: the machine either accepts or rejects its
input depending on whether it ends in a final or
non-final state after reading the entire input.

▶ The language accepted by the automaton is the set
of all strings accepted by the automaton.

▶ The class of all languages that can be accepted by
finite automata is the class of regular languages.

Example of a finite automaton

This automaton accepts any binary string containing 011.

A B C D

1
0 1

0
1

0

0,1

Non-determinism

▶ If the transition function maps the current state and
current input symbol to a single state the
automaton is deterministic.

▶ If it maps the current state and current input symbol
to symbol to a set of states the automaton is
non-deterministic.

Equivalence of the two models

▶ A classical result states that the two models of
automata have the same computing power: they
accept the same class of languages.

▶ However, converting a non-deterministic automaton
to a deterministic one can result in an exponential
blowup in the size (number of states) of the
automaton.

▶ More precisely, given a non-deterministic
automaton with n states, the smallest equivalent
deterministic automaton could have, in the worst
case, 2n states.

Regular expressions

▶ Regular languages can also be described by regular
expressions.

▶ A regular expression describes how to build a
regular language by applications of three basic
operations: union, concatenation, and Kleene
closure.

▶ Represent the empty set by ∅, the language {ϵ} (the
language containing the empty word) by ϵ, and the
language {a} by a.

Regular expressions

▶ Let L1 and L2 be languages.
▶ The union of L1 and L2 is written L1 ∪ L2.
▶ The concatenation of L1 and L2 is the set

{xy : x ∈ L1, y ∈ L2}

and is represented by juxtaposition; i.e., L1L2.
▶ This can be extended in the obvious way to the

concatenation of several languages.

Regular expressions

▶ The concatenation of a language L with itself k times
is written Lk.

▶ The Kleene closure of a language L is the language⋃
k≥0

Lk

and is written L∗.

Examples
▶ The language of all binary strings is

(0 ∪ 1)∗.

▶ The language of binary strings ending with 0’s is

(0 ∪ 1)∗0.

▶ The language of binary strings containing 101 is

(0 ∪ 1)∗101(0 ∪ 1)∗.

▶ The language of binary strings avoiding 11’s is

(ϵ ∪ 1) (0 ∪ 01)∗.

Equivalence of finite automata and regular
expressions

▶ There are standard constructions that, given finite
automata for L1 and L2, produce automata for
L1 ∪ L2, L1L2, and L∗1 .

▶ Similarly, there are algorithms that, given a finite
automaton, can produce a regular expression
defining the language accepted by the automaton.

▶ Therefore the two models of languages are
equivalent.

Finite automata with output

▶ We want to compute sequences over some arbitrary
alphabet, so rather than designating states as
final/non-final we associate an output symbol with
each state.

▶ The output corresponding to a given input is the
output associated with the last state reached after
reading the input.

▶ The resulting model is the deterministic finite
automaton with output (DFAO).

Automatic sequences

▶ Let a = (an)n≥0 be a sequence over a finite alphabet.
▶ To compute a we would like to provide n to a DFAO

and have the DFAO output an.
▶ How do we represent n?
▶ Fix a base k and write n in base k.
▶ If there is a DFAO M that outputs an whenever M is

given the base-k representation of n as input, then a
is a k-automatic sequence.

The Thue–Morse sequence

A/0 B/1

0

1

1

0

This DFAO computes the Thue–Morse sequence

t = 0110100110010110 · · ·

Parity definition of Thue–Morse

The Thue–Morse sequence

t = 0110100110010110 · · ·

is defined by the simple rule

tn =

0 if binary rep. of n has an even number of 1’s

1 if binary rep. of n has an odd number of 1’s

The paperfolding sequence

▶ another 2-automatic sequence defined by a similar
rule is the paperfolding sequence

f = 001001100011011 · · ·

▶ the rule is: for n ≥ 1, write n = n′2k, where n′ is odd.
Then

fn =

0 if n′ ≡ 1 (mod 4)
1 if n′ ≡ 3 (mod 4).

Uniform morphisms and codings

▶ Let Σ,∆ be finite alphabets.
▶ A morphism is a map h : Σ∗ → ∆∗ (i.e., from the set

of all words over Σ to the set of all words over ∆)
satisfying h(xy) = h(x)h(y) for all x, y ∈ Σ∗.

▶ A morphism is k-uniform if h(a) has length k for all
a ∈ Σ.

▶ It is uniform if it is k-uniform for some k.
▶ A 1-uniform morphism is a coding.

Morphic sequences

▶ If h(a) begins with a, the sequence of iterates

a, h(a), h2(a), h3(a)

has the property that hi(a) is a prefix of hi+1(a).
▶ The limit sequence hω (a) is a fixed point of h.
▶ It is a called a purely morphic sequence.
▶ The image of a purely morphic sequence by a coding

is a morphic sequence.

The Thue–Morse morphism
▶ µ : {0, 1}∗ → {0, 1}∗ defined by

0 → 01

1 → 10,

is 2-uniform.
▶ Iterating on 0

0 → 01 → 0110 → 01101001 → 0110100110010110 → · · ·

gives the Thue–Morse sequence

t = µω (0) = 0110100110010110 · · ·

The characteristic sequence of 2n

▶ Iterate the 2-uniform morphism

a→ ab, b→ bc, c→ cc

to get the infinite sequence

abbcbcccbcccccccbcccccccccccccccbcc · · · .

▶ Now apply the coding a, c→ 0; b→ 1:

01101000100000001000000000000000100 · · · .

▶ We get the characteristic sequence of the powers of
2.

k-automatic sequences and k-uniform
morphisms

Theorem (Cobham)

A sequence a is k-automatic if and only if a = h(gω (a))
for some k-uniform morphism g, some coding h, and
some letter a.

Decidable properties

▶ The Thue–Morse word was introduced by Thue in
1906, who proved that it has many interesting
combinatorial properties.

▶ Are there algorithms to decide if an automatic
sequence
▶ is aperiodic?
▶ is recurrent?
▶ avoids repetitions?
▶ etc.

▶ To answer this question we need a third
characterization of k-automatic sequences.

A logic-based characterization

▶ Another characterization of k-automatic sequences
is based on an an extension of Presburger
arithmetic.

▶ Presburger arithmetic is the first-order theory of the
structure ⟨Î, +⟩; i.e., the first-order theory of the
natural numbers with addition.

Presburger arithmetic

▶ ⟨Î, +⟩ is sometimes written ⟨Î, +, <,0, 1⟩, where the
"less than" predicate is explicitly included, as well
as the constants 0 and 1.

▶ In fact we can define x = 0 by [y, x + y = y, and then
▶ x < y by \t, ¬(t = 0) ∧ x + t = y, and then
▶ y = 1 by (0 < y) ∧ ([z, (z < y) ⇒ z = 0).

Definable sets

▶ A set X ⊆ Î is definable in ⟨Î, +⟩ if there is a
first-order formula ϕ of ⟨Î, +⟩ such that

X = {n ∈ Î : ⟨Î, +⟩ |= ϕ (n)}

▶ The sets definable in Presburger arithmetic are finite
unions of arithmetic progressions.

Extending Presburger arithmetic

▶ Presburger arithmetic is a decidable theory; i.e.,
there is an algorithm, that, given a first-order
formula with no free variables, will decide whether
the formula is TRUE or FALSE.

▶ On the other hand, Presburger arithmetic is a fairly
weak theory.

▶ It is possible to extend Presburger arithmetic as
follows and still have a decidable theory.

▶ Let Vk(x) denote the largest power of k that divides
x.

Extending Presburger arithmetic

▶ (Büchi–Bruyère): A sequence a is k-automatic if it is
definable in the logical structure ⟨Î, +, Vk⟩.

▶ Let a−1(b) denote the set of positions of occurrences
of b in a.

▶ Then there exists a first-order formula ϕb of
⟨Î, +, Vk⟩ such that

a−1(b) = {n ∈ Î : ⟨Î, +, Vk⟩ |= ϕb(n)}.

An automaton for the powers of 2

A/0 B/1 C/0

0

1 1
0 0,1

Defining the powers of 2 using logic

▶ The characteristic sequence a of the powers of 2 has
a simple definition in this formulation:

a−1(1) = {n ∈ Î : ⟨Î, +, Vk⟩ |= (V2(n) = n)}
a−1(0) = {n ∈ Î : ⟨Î, +, Vk⟩ |= ¬(V2(n) = n)}

Decidability

Theorem (Bruyère 1985)

The first order theory of ⟨Î, +, Vk⟩ is decidable.

A consequence of decidability

Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence
x using quantifiers, logical operations, integer variables,
the operations of addition, subtraction, indexing into x,
and comparison of integers or elements of x, then this
property is decidable.

Implementing the decidability algorithm

Representing values of variables:
▶ alphabet is Σk = {0, 1, . . . , k − 1}
▶ integers are represented by their base-k expansions

(most-significant-digit first)
▶ t-tuples of integers are represented as words over

the alphabet Σtk
▶ representations are padded with leading zeros so

that they all have the same length
▶ digits of the integers in the t-tuple are therefore

read in parallel

Addition

The addition relation x + y = z in base k can be computed
by the automaton below:

A B

{[a, b, c] : a + b = c}

{[a, b, c] : a + b + 1 = c}

{[a, b, c] : a + b = c + k}

{[a, b, c] : a + b + 1 = c + k}

State A corresponds to the case where no carry is
pending; state B corresponds to the case where a carry
is pending.

Arithmetic operations
▶ the equality relation is trivial to check with an

automaton
▶ the less than relation can also be checked with an

automaton
▶ multiplication by a constant can be viewed as

repeated addition, so it is permitted in our logic;
▶ however, it is important to note that multiplication

of variables is not permitted.
▶ Indeed, a classical result of logic states that any

first-order theory of arithmetic in which both
addition and multiplication is definable is
undecidable.

Logical operations

▶ the existential quantifier is implemented using
non-determinism (the resulting non-deterministic
automaton must then be determinized)

▶ the universal quantifier is implemented using
complementation and the existential quantifier

▶ boolean operations (∧,∨,⇒,⇔, etc.): standard
automata constructions for ∩,∪, etc.

Runtime of the algorithm

▶ Each alternation of quantifiers in the logical formula
results in a conversion from a non-deterministic
automaton (NFA) to a deterministic automaton (DFA).

▶ If the NFA has n states, in the worst case, the DFA
could have 2n states.

▶ The final automaton could have a number of states
equal to a tower of exponentials as high as the
number of quantifier alternations in the formula.

▶ In practice, the automata we get are not this big.
▶ However, some formulas may require a large

amount of RAM to hold the intermediate automata.

Fibonacci-automatic sequences

▶ Let a = (an)n≥0 be a sequence.
▶ If there is a DFAO M that outputs an whenever M is

given the Fibonacci representation of n as input,
then a is a Fibonacci-automatic sequence.

▶ Furthermore, inputs with consecutive 1’s are
rejected or not considered.

The Fibonacci word

▶ The most important Fibonacci-automatic sequence
is the Fibonacci word

f = 010010100100101001010010 · · ·

▶ This word is most commonly defined as the fixed
point of the non-uniform morphism

0 → 01, 1 → 0.

▶ It can be equivalently defined as follows: the n-th
term of f is equal to the rightmost bit of the
Fibonacci-representation of n.

The Fibonacci DFAO

This can easily be checked with the following DFAO:

A/0 B/1

0

1

0

Decision algorithm for Fibonacci-automatic

▶ As with k-automatic sequences, we can also decide
the truth of first-order logical statements about
Fibonacci-automatic sequences.

▶ The equivalent of Vk(x) is Vu(x), which is defined to
be the least Fibonacci number that appears in the
Fibonacci base representation of x.

Addition in the Fibonacci numeration

▶ Most of the various relations and logical operations
can be checked with automata in the same way, but
the addition relation is a bit more complicated.

▶ There is a (17 state) automaton that computes the
addition relation x + y = z, so everything described
previously for integer bases can also be done in the
Fibonacci numeration system.

Walnut

▶ This has all been implemented by Hamoon Mousavi
in a Java software package called Walnut.

▶ The user inputs a logical formula describing some
property of a given automatic sequence.

▶ If the formula has no free variables, Walnut will
determine whether the formula is true or false and
output TRUE or FALSE, accordingly.

▶ If the formula has i free variables, Walnut outputs
an automaton accepting the representations (in the
appropriate numeration system) of the i-tuples of
natural numbers that satisfy the formula.

Walnut syntax

The Walnut symbols for the first-order logic symbols are:

▶ E for \
▶ A for [
▶ ~ for logical negation
▶ => for logical implication, & for logical AND, | for

logical OR, and <=> for logical IFF.
▶ Both E and A can be followed by a single variable

name, or a list of variables.

Specifying the numeration system

▶ The numeration system is specified as ?msd_k for
base-k or ?msd_fib for Fibonacci numeration.

▶ msd, of course, refers to most-significant-digit first;
lsd, for least-significant-digit first, is also possible.

▶ If the numeration system is not specified, the
default is msd_2.

Regular expressions for certain properties

An integer n is even if there exists k ∈ Î such that n = 2k.
Walnut:

def iseven "Ek n=2*k":

produces an automaton called iseven that accepts the
even numbers.

The property of being even can also be defined by a
regular expression:
Expansions of even numbers in base 2 end with a 0.
Walnut:

reg evenreg msd_2 "()|0*1(1|0)*0":

We can check the equivalence with

eval evencheck "An $iseven(n) <=> $evenreg(n)":

which returns TRUE.

Morphisms, codings, and fixed points

▶ The twisted Thue–Morse sequence,

ttm = 00100110100101 · · · ,

is defined by counting the number of 0’s, modulo 2,
in base-2 representations.

▶ It is built-in to Walnut (as TTM).
▶ Show that ttm is the image, under the coding

0, 1 ↦→ 0 and 2 ↦→ 1, of the fixed point of the
morphism 0 ↦→ 01, 1 ↦→ 21, and 2 ↦→ 12.

Morphisms, codings, and fixed points

Walnut:

morphism fmorph "0->01 1->21 2->12":
promote TTM1 fmorph:
morphism coding "0->0 1->0 2->1":
image TTM2 coding TTM1:
eval test "An TTM[n]=TTM2[n]":

returns TRUE

Explanation of the Walnut commands

▶ the promote command converts a morphism to a
DFAO

▶ the image command applies a morphism to a DFAO
and produces a new DFAO

Finding positions of symbols

▶ The period-doubling word

pd = 101110101011101110111010 · · ·

is the fixed point of the morphism that maps 0 → 11
and 1 → 10.

▶ It is built-in to Walnut (as PD).
▶ It is obvious from the definition that every even

position contains a 1.
▶ Let’s check this with Walnut.

Logical formula

▶ The formula asserting that every even position of pd
contains a 1 is

[i, iseven(i) ⇒ pd[i] = 1

▶ In Walnut this becomes:

def iseven "Ek n=2*k":
eval PD_even "Ai $iseven(i) => PD[i]=@1":

Walnut outputs TRUE, verifying our claim.

Now let’s check that pd does not contain 00. We can
probably go straight to the Walnut commands:

eval PD_00 "~(Ei PD[i]=@0 & PD[i+1]=@0)":

Walnut outputs TRUE, verifying our claim.

Next let’s find all the occurrences of 011 in

pd = 101110101011101110111010 · · ·

eval PD_011 "PD[i]=@0 & PD[i+1]=@1 & PD[i+2]=@1":

This formula has a free variable, i, so instead of
outputting TRUE or FALSE, Walnut instead returns an
automaton accepting the binary representations of all i
for which the formula is true.

The result is the automaton

(i): PD[i]=@0 & PD[i+1]=@1 & PD[i+2]=@1

0

0 1
1

2

0, 1

0 31
0, 1

We can see that, for example, this automaton accepts
the string 1001, which is the binary representation of 9,
so there is an occurrence of 011 in pd at position 9.

Periodicity

▶ A sequence a is ultimately periodic if and only if

\p, n (p ≥ 1) ∧ (n ≥ 0) ∧ [i (i ≥ n) ⇒ ai = ai+p

▶ Clearly, the fixed point (starting with 0) of the map
0 → 010, 1 → 101 is periodic. Let us check this with
Walnut.

Periodicity

Walnut:

morphism m "0->010 1->101":
promote M_word m
eval M_per "?msd_3 Ep,n (p>=1) & (Ai (i>=n) =>

M_word[i]=M_word[i+p])":

outputs TRUE. (Notice the ?msd_3!)

Overlaps

▶ Iterated morphism constructions, such as the
Thue–Morse word, are typically used to generate
words with certain combinatorial properties.

▶ We will now look at several of the most common
such combinatorial properties.

▶ An overlap is a word (such as entente) of length
2n + 1 and period n for some n ≥ 1,

▶ A sequence a contains an overlap if and only if

\i, n (n ≥ 1) ∧ [j (j ≤ n) ⇒ ai+j = ai+j+n

Walnut:

eval tm_ofree "?msd_2 Ei,n (n>=1) & (Aj (j<=n) =>
T[i+j]=T[i+j+n])":

outputs FALSE, so the Thue–Morse word is overlap-free.

Squares

▶ Over larger alphabets there are infinite words
avoiding squares.

▶ An square is a non-empty word (such as froufrou)
of the form xx.

▶ Equivalently it is a word of length 2n and period n
for some n ≥ 1.

▶ A sequence a contains a square if and only if

\i, n (n ≥ 1) ∧ [j (j < n) ⇒ ai+j = ai+j+n

A squarefree word

We can construct a 2-automatic squarefree word as
follows: let h be the morphism that maps

0 → 01, 1 → 20, 2 → 23, 3 → 02

and let g be the coding

0 → 0, 1 → 1, 2 → 2, 3 → 1.

Then
g(hω (0)) = 012021012102 · · ·

is squarefree.

Walnut:

morphism h_morph "0->01 1->20 2->23 3->02":
promote H_word h_morph:
morphism g_morph "0->0 1->1 2->2 3->1":
image GH g_morph h_word:
eval GHsq "?msd_2 Ei,n (n>=1) & (Aj (j<n) =>

GH[i+j]=GH[i+j+n])":

outputs FALSE, so the word is square-free.

Cubes

▶ An cube is a non-empty word of the form xxx.
▶ Equivalently it is a word of length 3n and period n

for some n ≥ 1.
▶ A sequence a contains a cube if and only if

\i, n (n ≥ 1) ∧ [j (j < 2n) ⇒ ai+j = ai+j+n

A cubefree word

Let us show that the infinite word

fω (0) = 01001101100100101001 · · ·

obtained by iterating the morphism f that maps

0 → 01001, 1 → 10110

is cubefree.

Walnut:

morphism f_morph "0->01001 1->10110":
promote F_word f_morph:
eval F_word_cube "?msd_5 Ei,n (n>=1) & (Aj (j<2*n)

=> F_word[i+j]=F_word[i+j+n])":

outputs FALSE, so the word is cube-free.

Fractional powers

▶ Squares (xx) and cubes (xxx) are called 2-powers
and 3-powers.

▶ For any integer k ≥ 2, a k-power is defined in the
obvious way.

▶ For a rational number p/q ≥ 1, a (p/q)-power of
period n is a word of length (p/q)n and period n.

▶ A (p/q)+-power of period n is a word of length
> (p/q)n and period n.

Fractional powers

▶ e.g., 1001001 is a 7/3-power of period 3 and a
2+-power of period 3.

▶ A sequence a contains a (p/q)-power if and only if

\i, n (n ≥ 1) ∧ [j (j ≥ i∧ j < i + (p/q− 1)n) ⇒ aj = aj+n.

▶ A sequence a contains a (p/q)+-power if and only if

\i, n (n ≥ 1) ∧ [j (j ≥ i∧ j ≤ i + (p/q− 1)n) ⇒ aj = aj+n.

Fractional powers

We are only allowed to multiply by postive integer
constants in our logical formulas (not rational numbers),
so we have to rewrite the inequality

j < i + (p/q − 1)n

as
qj < qi + (p − q)n.

A word avoiding (8/3)+-powers

The infinite word

fω (0) = 01001101100100101001 · · ·

we constructed previously contains the (8/3)-power
10010010 but we can show that it avoids (8/3)+-powers.
Walnut:

eval F_word_83 "?msd_5 Ei,n (n>=1) &
(Aj (j>=i & 3*j<=3*i+5*n) =>
F_word[j]=F_word[j+n])":

outputs FALSE.

Patterns

▶ Squares (xx) and cubes (xxx) are examples of
patterns with a single variable.

▶ We can also define patterns with several variables
(x, y, z, etc.)

▶ For example, the word 201012 is an instance of the
pattern xyyx.

▶ Let us show that the Thue–Morse word contains no
instance of the pattern xyyxyy.

Equality of factors

First-order formula: x[i..i + n − 1] and x[j..j + n − 1] are
equal iff

FactorEq(i, j, n) := [t < n, x[i + t] = x[j + t]

Walnut: in the Thue–Morse word t

def tmfactoreq "At t<n => T[i+t]=T[j+t]":

Outputs the next 13-state automaton.

(i,j,n): At t<n => T[i+t]=T[j+t]

0

[0,0,0]
1

[1,0,0]

2

[0,1,0]

3

[1,1,0]

4

[0,0,1], [1,1,1]

5

[1,0,1]

6

[0,1,1]

[1,0,0] [1,1,0]

[1,1,1]

7

[0,0,0]

8

[0,1,0]

9

[1,0,1]

10

[0,1,1]

[0,1,0]

[1,1,0]

[1,1,1]

[0,0,0]

[0,1,1]

[1,0,1]

11

[1,0,0]

[0,0,0], [1,1,0]

[0,0,1], [1,1,1]

[1,0,0], [0,1,0]
[0,0,0], [1,1,0], [0,0,1], [1,1,1]

[1,0,0]

[0,1,0]

[0,0,0]

[0,1,0]

[1,0,1], [0,1,1]
[1,0,0]

12

[1,1,0] 13

[1,1,1]

[0,0,0]

[1,0,0]

[1,0,1]

[0,1,0]

[0,0,1]

[1,1,1]

[1,1,0]

[0,0,0]

[1,1,0], [0,0,1]

[1,1,1]

[0,0,0]

[0,0,0]

[0,1,0]

[0,1,1]

[1,0,0]

[1,1,0]

[0,0,1]

[1,1,1]

[1,0,0], [0,1,0]

[1,0,1], [0,1,1]

[0,0,0], [1,1,0]
[1,0,0], [0,1,0]

[1,0,1], [0,1,1]

The Thue–Morse word avoids xyyxyy

Walnut:

def tmfactoreq "?msd_2 At t<n => T[i+t]=T[j+t]":
def xyyxyy "?msd_2 Ei,m,n (m>=1) & (n>=1) &

$tmfactoreq(i,i+m+2*n,m) &
$tmfactoreq(i+m,i+m+n,n) &
$tmfactoreq(i+m,i+2*m+2*n,n) &
$tmfactoreq(i+m,i+2*m+3*n,n)":

outputs FALSE.

Novel factors

An occurrence of a factor is novel if it is the first
occurrence of that factor in x.

First-order formula: x[i..i + n − 1] is a novel factor iff
[j(j < i) ⇒ ¬FactorEq(i, j, n)

What are the positions and lengths of all novel factors of
the Thue–Morse sequence t?

Walnut:

def tmnovelfactor "Aj j<i => ~$tmfactoreq(i,j,n)":

Output:

(i,n): Aj j<i => ~$tmfactoreq(i,j,n)

0

[0,0]

1

[1,0]

2

[0,1]

3
[1,1]

4

[0,0]

5

[0,1]

6

[1,1]

[0,0], [1,0], [0,1], [1,1]

[0,0], [0,1], [1,1]

[1,0]

[0,1]

7

[1,1]

[1,0], [0,1], [1,1]

[0,0]

[1,1][1,0], [0,1]

[0,1], [1,1]
[0,0], [1,0]

Conjugates

Two words are conjugates if one is a rotation of the
other.

First-order logical formula: x[j..j + n − 1] is a conjugate of
x[i..i + n − 1] iff \t ≤ n such that

x[j..j + n − 1] = x[i + t..i + n − 1]x[i..i + t − 1]

which translates into

Conj[i, j, n] := \t(t ≤ n) ∧ FactorEq(j, i + t, n − t)
∧ FactorEq(i, (j + n) − t, t)

A mesosome is a word of the form xx′ where x′ is a
conjugate of x and x , x′.

For which integers n is there a mesosome factor
t[i...i + 2n − 1] of the Thue–Morse word?

Walnut:

def tmconj "Et t<=n & $tmfactoreq(j,i+t,n-t) &
$tmfactoreq(i,(j+n)-t,t)":

def tmmeso "$tmconj(i,i+n,n) &
~$tmfactoreq(i,i+n,n)":

def tmmesolength "Ei $tmmeso(i,n)":

Output:

(n): Ei $tmmeso(i,n)

0

0

1
1

2

0

31

4
0

5

1

6

0

7

1

0

8

0

91

0

10

1

1
11

0

0, 1

1 0

0

1

The automaton accepts and rejects infinitely many n.

Primitivity

A word is primitive if it is nonempty and a non-power.

Theorem
A word w is primitive if and only if no nontrivial rotation
of w equals w.

First-order logical formula: x[i..i + n − 1] is primitive iff

Prim(i, n) :=¬(\j(j > 0) ∧ (j < n)
∧ FactorEq(i, i + j, n − j)
∧ FactorEq(i, (i + n) − j, j))

In the period-doubling word

pd = 101110101011101110111010 · · · ,

what are the lengths of the primitive prefixes?

Walnut:

def pdfactoreq "At t<n => PD[i+t]=PD[j+t]":
def pdprim "~(Ej j>0 & j<n & $pdfactoreq(i,i+j,n-j)

& $pdfactoreq(i,(i+n)-j,j))":
def pdprimlength "n>0 & $pdprim(0,n)":

Output:

(n): n>0 & $pdprim(0,n)

0

0

1
1

0, 1

This automaton accepts the binary representations of all
positive integers, so every prefix of pd is primitive.

Lexicographic order

Let Σ be an alphabet. If it is ordered, then we can extend
this total order from letters to words. We write w <d x if
▶ w is a proper prefix of x; or
▶ there exist words y, z, z′ and letters a < b such that
w = yaz and x = ybz′.

This is called the lexicographic or dictionary order. We
write w ≤ x if either w <d x or w = x.

First-order logical formula: x[i..i +m − 1] <d x[j..j + n − 1]
iff

LexLess(i, j,m, n) :=Pref(i, j,m, n)
∨ (\t < m, n : x[i..i + t − 1] = x[j..j + t − 1]
∧ x[i + t] = 0

∧ x[j + t] = 1)

where

Pref(i, j,m, n) := (m < n) ∧ FactorEq(i, j,m)

In the Thue–Morse word t, show that

t[i..i + n − 1] <d t[j..j + n − 1] ⇒
t[2i..2i + 2n − 1] <d t[2j..2j + 2n − 1] .

Walnut:
def tmfactoreq "At t<n => T[i+t]=T[j+t]":
def tmpref "m<n & $tmfactoreq(i,j,m)":
def tmlesst "$tmpref(i,j,m,n) |

(Et t<m & t<n & (Al (l<t) => T[i+l]=T[j+l])
& T[i+t]=@0 & T[j+t]=@1)":

def tmtest "Ai,j,n $tmlesst(i,j,n,n) =>
$tmlesst(2*i,2*j,2*n,2*n)":

returns TRUE.

Runs

A run is a nonempty block consisting of repetitions of a
single symbol a. A run is maximal if it cannot be
extended to the left or right.

First-order logical formula: x[i..i + n − 1] is a maximal run
of n a’s iff

IsRun(i, n) := (n ≥ 1) ∧ ([t < n, x[i + t] = a)
∧ x[i + n] , a
∧ (i = 0 ∨ x[i − 1] , a)

First-order logical formula: there is a maximal run of
n ≥ 1 letters a in x iff

\i, IsRun(i, n)

First-order logical formula: there are arbitrarily long
finite maximal runs of letters a in x iff

[m, \i, n, (n > m) ∧ IsRun(i, n)

▶ Are there arbitrarily large maximal runs of symbols
in the Cantor sequence?

▶ The Cantor integers are those integers whose base-3
representation contains no letter 1.

▶ The Cantor sequence ca = 101000101000000000 · · ·
is the corresponding characteristic sequence.

Walnut:

def carun0 "?msd_3 n>=1 & (At t<n => CA[i+t]=@0)
& CA[i+n]!=@0 & (i=0|CA[i-1]!=@0)":

def carun1 "?msd_3 n>=1 & (At t<n => CA[i+t]=@1)
& CA[i+n]!=@1 & (i=0|CA[i-1]!=@1)":

eval cantor0 "?msd_3 Am Ei,n (n>m) & $carun0(i,n)":
eval cantor1 "?msd_3 Am Ei,n (n>m) & $carun1(i,n)":

The first query returns TRUE, while the second returns
FALSE. Hence there are arbitrarily long blocks of 0’s, but
not 1’s, in this sequence.

Palindromes

A length-n word w is a palindrome if w[i] = w[n − 1 − i]
for all i ∈ {0, 1, . . . , n − 1}.

What are the length of the palindromic factors in the
Fibonacci word f?

Palindromes

Walnut:

def fibpal "?msd_fib Ei At t<n =>
F[i+t] = F[(i+n)-(t+1)]":

Output:

(n): ?msd_fib Ei At t<n => F[i+t] = F[(i+n)-(t+1)]

0

0

1
1

0

This automaton accepts every word in the Fibonacci
numeration language, so we see that there is a
palindrome of every length in the Fibonacci word.

Limitations

▶ Now that we have seen many things that Walnut can
do, let’s consider its limitations.

▶ We can consider two questions:
▶ What types of sequences can Walnut be applied to?
▶ What properties of the sequence can be expressed

in our first-order logic?

Types of sequences

▶ Walnut can be used with a wide variety of morphic
sequences.

▶ Recall: k-uniform morphic ⇐⇒ k-automatic
▶ Can also be used with some non-uniformly morphic

sequences.
▶ Crucial requirement: the sequence must have an

underlying numeration system for which addition
can be computed with an automaton.

▶ e.g., Fibonacci, Tribonacci, Pell, etc.

A morphic sequence not suitable for Walnut

Consider the morphism

a→ abcc, b→ bcc, c→ c.

Its fixed point, starting with a,

s = abccbccccbccccccbcccccccc · · ·

encodes, in the position of the b’s, the squares,
1, 4, 9, 16,

A morphic sequence not suitable for Walnut

▶ However, with the squares we can define
multiplication.

▶ Recall: if addition and multiplication are both
definable, the theory is undecidable.

Defining multiplication from the squares

Let S be a predicate for the squares. We can define y = x2

by

S(y) ∧ S(y + 2x + 1) ∧ ¬\z(S(z) ∧ y < z ∧ z < y + 2x + 1)

Then multiplication z = xy can be defined from
(x + y)2 = x2 + 2z + y2.

Which properties are expressible?

▶ Let’s now consider which properties of an infinite
word w can be verified with Walnut.

▶ By property, we simply mean a language L over the
alphabet Σ of w.

▶ We want to determine the pairs (i, n) such that
w[i..i + n − 1] ∈ L.

Examples we already know

We have already seen many properties that can be
tested:
▶ Squares: {xx : x ∈ Σ∗, |x| ≥ 1}
▶ Palindromes: {x ∈ Σ∗ : x = xR}
▶ Primitive words:

{x : there are no y and n ≥ 2 such that x = yn}
▶ etc.

The class FO[+]

The entire class of such languages is called FO[+]. It is a
somewhat mysterious class of languages. It includes
some "complicated" languages, like the ones we have
just mentioned, but provably does not contain the
following languages:
▶ Parity:

{x ∈ {0, 1}∗ : x contains an even number of 1’s}
▶ Dyck: {x ∈ {0, 1}∗ :
x represents a balanced string of parentheses}

▶ Abelian Squares: {xx′ ∈ Σ∗ : x′ is an anagram of x}

Inexpressible properties

These properties (Parity, Dyck, Abelian Squares, etc.)
therefore cannot be directly expressed as a first-order
predicate in Walnut. However, there are some other
tricks that can be used to compute Parity, for example,
for an automatic sequence using Walnut (see Shallit’s
book).

Balanced words

▶ Sometimes one definition of a property is not
expressible, but another equivalent definition is. An
example is balanced words.

▶ A word x is called balanced if the inequality
| |y |a − |z|a | ≤ 1 holds for all identical-length factors
y, z of x and all letters a of the alphabet

▶ (Here |y |a denotes the number of occurrences of the
letter a in the word y.)

Balanced words

▶ This definition appears (much like Parity or Abelian
Squares) to not be expressible, since it involves
counting occurrences of letters.

▶ However, Coven and Hedlund gave a
characterization in the case of the binary alphabet
that is expressible.

▶ A binary word w is balanced if and only if there
exists a word v such that both 0v0 and 1v1 are
factors of w.

▶ In the exercises you will show that every factor of
the Fibonacci word is balanced.

Enumeration

▶ Walnut can also be used to solve certain
enumeration problems.

▶ A typical example is finding the subword complexity
of an automatic sequence: i.e., the number of
distinct subwords (factors) of length n.

▶ The enumeration is given in terms of a linear
representation.

Linear representations

Let f : Î → Î. A (binary) linear representation for f (i) is:
▶ an integer row vector v,
▶ an integer column vector w, and
▶ a pair of integer matrices M0 and M1, such that

f (i) = vMiℓ−1Miℓ−2 · · ·Mi0w,

where iℓ−1iℓ−2 · · · i0 is the binary representation of i.

For example,

v = [1, 0, 0, 0] , wT = [0, 0, 1, 1]

and

M0 =

1 0 0 0
0 2 0 1
0 0 2 0
0 0 0 4

, M1 =

1 1 1 0
0 2 0 1
0 0 2 2
0 0 0 4

is a linear representation for the function
f (n) = n(n + 1)/2. We can compute, for example, that
vM1M0M0w = 10 and f (4) = 4(5)/2 = 10.

Linear representations in Walnut

▶ Walnut can compute linear representations to count
certain things.

▶ Given a formula with free variables i1, i2, . . . , ir and n,
Walnut can compute a linear representation for the
function of n that counts the number of values of
(i1, i2, . . . , ir) that satisfy the formula.

Linear representations in Walnut

For example, it is easy to see that the number of pairs
(i, j) that satisfy i < j and j ≤ n is n(n + 1)/2. The Walnut
command

eval pairmat n "i<j & j<=n":

therefore produces the linear representation (in Maple
format) we previously gave for f (n) = n(n + 1)/2.

Counting 1’s in a prefix of length n

Walnut has the characteristic sequence of powers of 2

01101000100000001000000000000000100 · · ·

built in as word P2. Let’s count the number of 1’s in a
prefix of length n. The Walnut command

eval P2ones n "i<n & P2[i]=@1":

produces a linear representation for this number as a
function of n.
(For technical reasons, the v vector returned by Walnut has to
be replaced with vMℓ

0, where ℓ is the dimension of v.)

The linear representation

The linear representation we get is

v = [1, 0, 0, 0] , wT = [0, 0, 0, 1]

and

M0 =

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

, M1

0 1 1 0
0 1 0 1
0 0 0 1
0 0 0 1

We can compute, for example, that vM1M0M0M1w = 4 and
there are 4 1’s in the prefix of P2 of length 9.

k-synchronized functions

▶ A function f (n) is k-synchronized if the set of base-k
representations of the pairs (n, f (n)) is accepted by
a finite automaton.

▶ As always, we read the pairs of base-k digits of n
and f (n) in parallel.

Squares of period n in t

As an example, let f (n) be the position of the first
occurrence of a square of period n in the Thue–Morse
word t. An automaton accepting the pairs (f (n), n) can
easily be computed with the following Walnut code:

def tmfactoreq "At t<n => T[i+t]=T[j+t]":
def tmsquare "$tmfactoreq(i,i+n,n)":
eval tmfirstsquare "$tmsquare(i,n) & (Aj j<i =>

~$tmsquare(j,n))":

The result is the automaton

(i,n): $tmsquare(i,n) & (Aj j<i => ~$tmsquare(j,n))

0

[0,0]
1[1,0]

2[1,1]

3[0,0] [0,0]
4[1,1]

[1,1]

This automaton accepts (ignoring leading [0,0]’s)

[1, 1] [0,0]∗ and [1,0] [0,0] [1, 1] [1, 1] [0,0]∗

From this we deduce that the first occurrence of a square
of period 2k is at position 2k and the first occurrence of a
square of period 3 · 2k is at position 11 · 2k.

Abelian properties

▶ Abelian properties of words are based on the
abelian equivalence relations: x ∼ y if x and y are
anagrams of each other.

▶ Equivalently, for every alphabet symbol a, the words
x and y contains exactly the same number of a’s.

▶ An abelian square, for example, is a word xy where
x ∼ y.

▶ Abelian properties of words are generally not
testable with Walnut, but in some cases this can
done.

Abelian complexity

The abelian complexity of an infinite sequence x counts
the number of distinct subwords, up to abelian
equivalence of factors.

For example, the abelian complexity of the Thue–Morse
sequence t at n = 2 is 3, because among the four factors
00, 01, 10, and 11, the factors 01 and 10 are (abelian)
equivalent.

Implement a procedure to check whether two factors of
the Thue–Morse sequence t are abelian equivalent.

Step 1

Show that the function n ↦→ |t[0..n − 1] |0 counting the
number of 0’s in a length-n prefix of t is synchronized.

To do so, observe that if n is even, then the length-n
prefix of t has exactly n

2 letters 0. If n is odd, then this
prefix has n−1

2 letters 0, plus one more if tn−1 = 0.

Walnut:

def tmpref0 "Er,t n=2*t+r & r<2 & (r=0 => s=t)
& ((r=1 & T[n-1]=@1) => s=t)
& ((r=1 & T[n-1]=@0) => s=t+1)":

Output:

(n,s): Er,t n=2*t+r & r<2 & (r=0 => s=t) & ((r=1 & T[n-1]=@1) => s=t) & ((r=1 & T[n-1]=@0) => s=t+1)

0

[0,0]

1

[1,0]

2

[1,1]

3
[0,1]

4[1,1]

5 [1,0]

[0,0]

[1,0]

[1,1]

[0,1]

[1,1]

[1,0]

Step 2

From this synchronized function, obtain a similar one for
arbitrary factors: (i, n) ↦→ |t[i..i + n − 1] |0, and also one
that counts letters 1: (i, n) ↦→ |t[i..i + n − 1] |1.

Walnut:

def tmfac0 "Et,u $tmpref0(i+n,t)
& $tmpref0(i,u) & s+u=t":

def tmfac1 "Er $tmfac0(i,n,r) & n=r+s":

Output:

(i,n,s): Et,u $tmpref0(i+n,t) & $tmpref0(i,u) & s+u=t

0

[0,0,0]

1
[1,0,0]

2

[0,1,0]

3

[1,1,0]

4

[0,1,1]

5

[1,1,1]

[1,0,0]

6

[0,0,0]

7

[0,1,0]

8

[1,1,0]

9

[0,1,1]

10

[1,1,1]

[1,1,1]
11

[0,0,0]

12
[1,0,0]

13

[0,0,1]

14

[1,0,1]

15 [0,1,1]

[0,0,1]

16

[1,0,1]

17

[0,1,1]

18

[1,1,1]

[1,1,0]

19

[0,1,0]

20

[0,1,0]

21

[1,1,0]

[0,0,0]

[1,0,0]

[0,1,0]

[1,1,0]

[0,1,1]

[1,1,1]

[1,1,1]

[1,0,0]

22

[0,0,0]

23

[0,0,1]

24

[1,0,1]

25

[0,1,1]

[1,1,1]

[0,0,0]

[1,0,0]

[0,0,1]

26

[1,0,1]

27

[0,1,1]

[1,1,0]

28

[1,0,0]

29

[0,1,0]

[1,1,0]

30

[0,1,0]

[0,0,1]

[1,0,1]

[1,0,1]

[0,0,1]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]

[0,1,1]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]

[1,0,1]

[0,1,1]

[0,0,1]

[1,0,1]

[0,1,1]

[1,1,1]

[0,0,0]

[1,0,0]

[1,1,0]

[0,1,0]

[1,1,1]

[0,1,1]

[1,0,0]

[1,1,1]

[0,0,0]

[0,0,1]

31

[1,0,1]

32

[0,1,1]

[0,0,1]

[1,0,1]

[0,1,1]

[1,1,1]

[0,1,0]
[1,1,0]

[1,1,0]
[1,0,0]

33

[0,1,0]

[0,1,0]

[1,1,0]

[1,0,1]

[0,0,1]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]

[1,0,1]

[0,1,1]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]

[0,1,1]

[1,0,1]

[0,0,1]

[0,1,1]

[1,1,1]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,1]

[1,0,0]

[0,1,0]

[0,1,1]

[0,0,1]

[1,0,1]

[1,1,1]

[0,1,1]

[0,1,0]

[1,1,0]

[1,1,0]

[0,1,0]

[1,1,0]

[1,1,1]

[0,0,0]

[1,0,0]

[0,1,0]
[0,1,1]

[0,0,1]

[1,0,1]

[0,1,1]

[1,1,1]

[0,1,0]

[1,1,0]

Step 3

From the DFA tmfac0, construct a DFA that on input i, j, n
tests whether t[i..i + n − 1] and t[j..j + n − 1] are abelian
equivalent.
Note that, since t is a binary word, it suffices to check
that |t[i..i + n − 1] |0 = |t[j..j + n − 1] |0.

Walnut:

def tmabelfaceq "Es $tmfac0(i,n,s)
& $tmfac0(j,n,s)":

Output is too crazy to show!

Fibonacci-synchronized functions

We can define synchronized functions for the Fibonacci
numeration system in the same way we defined them for
integer bases. Two useful Fibonacci-synchronized
functions are

n→ ⌊ϕn⌋ and n→ ⌊ϕ2n⌋,

where ϕ = (1 +
√
(5))/2.

We obtain automata for the pairs (n, ⌊ϕn⌋) and
(n, ⌊ϕ2n⌋) using the following facts: if (n)F is the
Fibonacci-base representation of n, then
▶ (n)F0 is the Fibonacci-base representation of

⌊ϕ (n + 1)⌋ − 1, and
▶ (n)F00 is the Fibonacci-base representation of

⌊ϕ2(n + 1)⌋ − 2.

Automata for (n, ⌊ϕn⌋) and (n, ⌊ϕ2n⌋)

Using these identities, we compute automata for the two
functions with the Walnut commands

reg shift {0,1} {0,1} "([0,0]|[0,1][1,1]*[1,0])*":
def phin "?msd_fib (s=0 & n=0) |

Ex $shift(n-1,x) & s=x+1":
def phi2n "?msd_fib (s=0 & n=0) |

Ex,y $shift(n-1,x) & $shift(x,y) & s=y+2":

Wythoff sequences

We can also obtain automata for the lower Wythoff set

L = {⌊ϕn⌋ : n ≥ 1}
= {1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, . . .}

and the upper Wythoff set

U = {⌊ϕ2n⌋ : n ≥ 1}
= {2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, . . .}.

def lower "?msd_fib En n>=1 & $phin(n,s)":
def upper "?msd_fib En n>=1 & $phi2n(n,s)":

(s): ?msd_fib En n>=1 & $phin(n,s)

0

0

11
20

1 3

0

1
0

(s): ?msd_fib En n>=1 & $phi2n(n,s)

0

0

11
20

1 3

0

1
0

We can then easily prove the following recent result of
Kawsumarng, Khemaratchatakumthorn, Noppakaew, and
Pongsriiam (2021):

Theorem
Every non-negative integer, except 0, 1, 3, can be written
as a sum of two lower Wythoff numbers.

def lplusl "?msd_fib Ea,b n=a+b & $lower(a) &
$lower(b)":

def lpluslcheck "?msd_fib An $lplusl(n) <=>
(n>=4 | n=2)":

Related work

Pecan is another software package that also implements
a similar decision procedure for logical predicates but
extends what Walnut can do by including the theory of
Sturmian words. It was implemented by Reed Oei, who,
sadly, passed away in 2022 at the age of 23.

The End

