Using Walnut: Recent results in combinatorics on words and number theory

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

(Joint work with Jeffrey Shallit)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We explore the use of Walnut, a theorem prover for the class of automatic sequences (sequence computed by finite automata), to obtain some results in combinatorics on words and number theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We first show how Walnut can be used to obtain congruences for combinatorial sequences like the Catalan numbers

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, \ldots$

which count, among other things, the number of strings of properly nested parentheses of length 2n, or the number of binary trees on n vertices.

We will be working with base-p expansions. If

$$n = n_0 + n_1 p + n_2 p^2 + \dots + n_r p^r$$

we write

$$(n)_p = n_0 n_1 n_2 \cdots n_r$$

for the base-p expansion of n written least-significant-digit first.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let us start with the binomial coefficients:

Theorem (Lucas 1878)

Let p be prime and let

$$n = n_0 + n_1 p + n_2 p^2 + \dots + n_r p^r$$

$$k = k_0 + k_1 p + k_2 p^2 + \dots + k_r p^r.$$

Then

$$\binom{n}{k} \equiv_p \prod_{i=0}^r \binom{n_i}{k_i}.$$

(By convention $\binom{n}{k} = 0$ if n < k.)

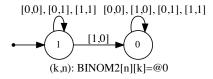
► Take p = 2. We see that ⁿ_k is even exactly when there is some i such that (k_i, n_i) = (1, 0).

▶ e.g.,

$$293930 = \begin{pmatrix} 21\\12 \end{pmatrix} \equiv_2 \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0\\0 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} \equiv_2 0$$
$$51895935 = \begin{pmatrix} 29\\12 \end{pmatrix} \equiv_2 \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0\\0 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} \equiv_2 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This can be checked with a finite automaton.



- The machine reads (k, n)₂, digit-by-digit, and follows the arcs labeled by each pair of digits read.
- If the machine ends in the state labeled 1, then ⁿ_k is odd; otherwise it is even.

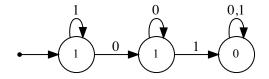
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sequence of Catalan numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
$$= \binom{2n}{n} - \binom{2n}{n-1}$$

modulo $p\ {\rm can}$ also be computed with a finite automaton: For $p=2\ {\rm we\ get}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Interpreting the automaton gives the following folklore theorem:

Theorem

$$C_n$$
 is odd iff $(n)_2 = 1^k 0^j$; i.e., iff $n = 2^k - 1$.

(Here 1^k means a string of k 1's and 0^j means a string of j 0's.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Rowland and Zeilberger and Rowland and Yassawi gave different algorithms to produce automata for the Catalan numbers modulo p, the Motzkin numbers modulo p, the Delannoy numbers modulo p, etc.
- Let's now look at the Catalan numbers C_n modulo 3.
 (Alter and Kubota (1973) studied the general case C_n mod p.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Let
$$\mathbf{c}_3 = (C_n \mod 3)_{n \ge 0}$$
.

Theorem (Deutsch and Sagan 2006) The runs of 0's in c_3 begin at positions n where either $(n)_3 = 21^i$ or $(n)_3 = 21^i 0\{0,1\}^j, i \ge 1, j \ge 0,$ and have length $(3^{i+2} - 3)/2$.

Theorem cont'd. (Deutsch and Sagan 2006)

The blocks of non-zero values in c_3 are given by the following:

- ▶ The block 11222 occurs at position 0.
- ► The block 111222 occurs at all positions n where (n)₃ = 2ⁱ0w for some i ≥ 2 and some w ∈ {0,1}* that contains an odd number of 1's.
- ► The block 222111 occurs at all positions n where (n)₃ = 2ⁱ0w for some i ≥ 2 and some w ∈ {0,1}* that contains an even number of 1's.

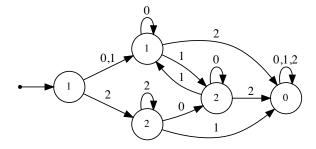
We can obtain this result purely by computer using a program called Walnut (developed by Jeffrey Shallit's student Hamoon Mousavi). Suppose we are given

- A finite automaton reading input n in base-k and outputing the n-th term of a sequence s; and,
- A formula φ in first-order-logic involving variables, constants, quantifiers, logical operations, ordering, addition and subtraction of natural numbers, and indexing into s.
- We can also multiply by a constant (this is just repeated addition), but we can't multiply two variables.

- If φ has no free variables, Walnut will output either that φ is either TRUE or FALSE.
- If φ has free variables, Walnut will produce an automaton that accepts the base-k representations of the values of the free variables that satisfy φ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applying the Rowland-Zeilberger method gives the automaton



for \mathbf{c}_3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The formula

$$\varphi = \exists i \forall j ((j \ge 0 \land j < 4) \Rightarrow \mathbf{c}_3(i+j) = 1)$$

asserts that there is a "run" of at least four 1's in c_3 . In Walnut's language, this is

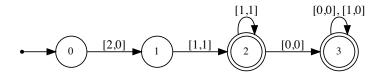
```
eval run4ones "?lsd_3 Ei Aj ((j>=0 & j<4) =>
CAT3[i+j]=@1)":
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

and evaluates to "FALSE".

For the runs of 0's we use the Walnut command

which produces the automaton



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Examining the transition labels of the first component of the input gives the claimed representation for the starting positions of the runs of 0's

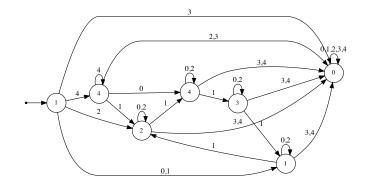
$$(i)_3 = 21^k \text{ or } (i)_3 = 21^k 0\{0,1\}^j$$

and examining the transition labels of the second component gives the claimed length

$$(n)_3 = 01^k$$
; i.e., $n = (3^{k+2} - 3)/2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For p = 5, the Rowland–Zeilberger method gives the automaton



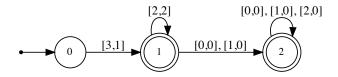
for

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\mathbf{c}_5 := C_n \bmod 5.$

Using Walnut, one can obtain the following automaton for the runs of 0's in c_5 :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



From this automaton we derive:

Theorem

The runs of 0's in c_5 begin at positions n where either

$$(n)_5 = 32^i$$
 or $(n)_5 = 32^i \{0, 1\} \{0, 1, 2\}^j, \ i \ge 0, \ j \ge 0$

and have length $(5^{i+2} - 3)/2$.

We can easily characterize the non-zero blocks in c_5 as well.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ We also obtained similar results for the Motzkin numbers modulo 3 and 5 as well.
- Walnut can be used on any k-automatic sequence; i.e., any sequence whose n-th term can be computed by an automaton reading n in base-k as its input.
- Let's consider a new automatic sequence.
- In the rest of the talk, binary representations will be most-significant-digit first.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Rudin-Shapiro coefficients

$$(a(n))_{n\geq 0} = (1, 1, 1, -1, 1, 1, -1, 1, \ldots)$$

form an infinite sequence of ± 1 defined recursively by the identities

$$a(2n) = a(n)$$
$$a(2n+1) = (-1)^n a(n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

and the initial condition a(0) = 1.

- The sequence a(n) was introduced independently by Golay (1949), Rudin (1949), and Shapiro (1952).
- Rudin's motivation was the study of the absolute value of certain Fourier series; Golay was interested in optics.
- ► The function a(n) can also be defined as a(n) = (-1)^{r_n}, where r_n counts the number of (possibly overlapping) occurrences of 11 in the binary representation of n.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Brillhart and Morton (1978) studied sums of these coefficients, and defined the two sums

$$s(n) = \sum_{0 \le i \le n} a(i) \qquad t(n) = \sum_{0 \le i \le n} (-1)^i a(i).$$
(1)

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
s(n)	1	2	3	2	3	4	3	4	5	6	7	6	5	4
$ \begin{array}{c} s(n) \\ t(n) \end{array} $	1	0	1	2	3	2	1	0	1	0	1	2	1	2

Table: First few values of s(n) and t(n).

- Brillhart and Morton proved many properties of these sums; typically by a tedious induction.
- We show how to replace nearly all of these inductions with techniques from logic and automata theory.
- The Rudin-Shapiro sequence is 2-automatic and therefore also 4-automatic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

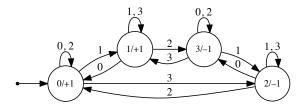
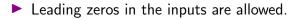


Figure: Base-4 automaton for the Rudin-Shapiro sequence

- States are labeled state number/output.
- The automaton reads the digits of the base-4 representation of n, starting with the most significant digit.



The main accomplishment of Brillhart and Morton's paper was proving the following inequalities:

Theorem (Brillhart & Morton)

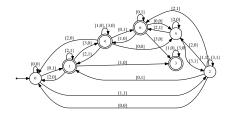
For $n\geq 1$ we have

$$\sqrt{3n/5} \le s(n) \le \sqrt{6n}$$
$$0 \le t(n) \le \sqrt{3n}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► To establish the inequalities for s(n) and t(n) we first determine automata that accept the pairs (n, s(n)) and (n, t(n)).
- In order for the automata to be able to process n and s(n) in parallel, it turns out that we need to represent n in base-4 and s(n) and t(n) in base-2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



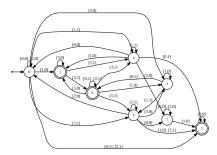


Figure: Synchronized automata for s(n) (top) and t(n) (bottom).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

- To prove the inequalities we need to compare n to s(n), but these numbers are now represented in different bases.
- ► We deal with this by defining a kind of "pseudo-square" function as follows: m(n) = [(n)₂]₄.
- In other words, m sends n to the integer obtained by interpreting the base-2 expansion of n as a number in base 4.
- We do this with the automaton link42: reg link42 msd_4 msd_2 "([0,0] | [1,1])*":
- It's not hard to show that

$$(n^2 + 2n)/3 \le m(n) \le n^2.$$

We can now prove:

Lemma

For $n \ge 1$ we have $\frac{3n+7}{5} \le m(s(n)) \le 3n+1$, and the upper and lower bounds are tight.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We use the Walnut code

def maps "?msd_4 Ex \$rss(n,x) & \$link42(y,x)":
eval ms_lowerbnd "?msd_4 An,y (n>=1 & \$maps(n,y))
=> y<=3*n+1":
eval ms_upperbnd "?msd_4 An,y (n>=1 & \$maps(n,y))
=> 3*n+7<=5*y":</pre>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tightness can be easily checked with Walnut.

Corollary

For $n \ge 1$ we have

$$s(n) \ge \sqrt{\frac{3n+7}{5}}.$$

- As a consequence, we get one of the claimed lower bounds.
- We simply put the bounds $m(s(n)) \le s(n)^2$ and $\frac{3n+7}{5} \le m(s(n))$ together to get $\frac{3n+7}{5} \le s(n)^2$.
- Note that our lower bound is actually slightly stronger than that of Brillhart-Morton!

- The upper bound $s(n) \leq \sqrt{6n}$ is more difficult.
- If m(s(n)) ≤ 2n, then the result follows immediately from the inequality (n² + 2n)/3 ≤ m(n).
- We can easily compute the exceptional set of n for which m(s(n)) > 2n: the binary representations of these n have the form

$$\{0,2\}^* \cup \{0,2\}^* 1\{1,3\}^*.$$

The analysis of these exceptional values is somewhat technical (but still much easier than the original analysis of Brillhart and Morton!) Walnut can be downloaded here:

https://cs.uwaterloo.ca/~shallit/walnut.html

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

The End

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●