Using Walnut: Recent results in combinatorics on words and number theory

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

(Joint work with Jeffrey Shallit)

KORK ERKER ADAM ADA

We explore the use of Walnut, a theorem prover for the class of automatic sequences (sequence computed by finite automata), to obtain some results in combinatorics on words and number theory.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We first show how Walnut can be used to obtain congruences for combinatorial sequences like the Catalan numbers

 $1, 1, 2, 5, 14, 42, 132, 429, 1430, \ldots$

which count, among other things, the number of strings of properly nested parentheses of length $2n$, or the number of binary trees on n vertices.

We will be working with base- p expansions. If

$$
n = n_0 + n_1 p + n_2 p^2 + \dots + n_r p^r
$$

we write

$$
(n)_p=n_0n_1n_2\cdots n_r
$$

for the the base- p expansion of n written least-significant-digit first.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Let us start with the binomial coefficients:

Theorem (Lucas 1878)

Let p be prime and let

$$
n = n_0 + n_1 p + n_2 p^2 + \dots + n_r p^r
$$

$$
k = k_0 + k_1 p + k_2 p^2 + \dots + k_r p^r.
$$

Then

$$
\binom{n}{k} \equiv_p \prod_{i=0}^r \binom{n_i}{k_i}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

(By convention $\binom{n}{k}$ $\binom{n}{k} = 0$ if $n < k$.) \blacktriangleright Take $p = 2$. We see that $\binom{n}{k}$ $\binom{n}{k}$ is even exactly when there is some i such that $(k_i, n_i) = (1, 0)$.

 \blacktriangleright e.g.,

$$
293930 = {21 \choose 12} \equiv_2 {1 \choose 0} {0 \choose 0} {1 \choose 1} {0 \choose 0} {1 \choose 0} \equiv_2 0
$$

$$
51895935 = {29 \choose 12} \equiv_2 {1 \choose 0} {0 \choose 0} {1 \choose 1} {1 \choose 1} {1 \choose 0} \equiv_2 1
$$

KO K K Ø K K E K K E K V K K K K K K K K K

 \blacktriangleright This can be checked with a finite automaton.

- \blacktriangleright The machine reads $(k, n)_2$, digit-by-digit, and follows the arcs labeled by each pair of digits read.
- If the machine ends in the state labeled 1, then $\binom{n}{k}$ $\binom{n}{k}$ is odd; otherwise it is even.

KORKARYKERKER POLO

The sequence of Catalan numbers

$$
C_n = \frac{1}{n+1} \binom{2n}{n}
$$

$$
= \binom{2n}{n} - \binom{2n}{n-1}
$$

modulo p can also be computed with a finite automaton: For $p = 2$ we get

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Interpreting the automaton gives the following folklore theorem:

Theorem

$$
C_n
$$
 is odd iff $(n)_2 = 1^k 0^j$; i.e., iff $n = 2^k - 1$.

(Here 1^k means a string of k 1 's and 0^j means a string of j $0's$.)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- ▶ Rowland and Zeilberger and Rowland and Yassawi gave different algorithms to produce automata for the Catalan numbers modulo p, the Motzkin numbers modulo p, the Delannoy numbers modulo p, etc.
- \blacktriangleright Let's now look at the Catalan numbers C_n modulo 3. (Alter and Kubota (1973) studied the general case $C_n \mod p$.

Let
$$
\mathbf{c}_3 = (C_n \mod 3)_{n \geq 0}
$$
.

Theorem (Deutsch and Sagan 2006) The runs of 0's in c_3 begin at positions n where either $(n)_3 = 21^i$ or $(n)_3 = 21^i 0 \{0, 1\}^j$, $i \ge 1$, $j \ge 0$, and have length $(3^{i+2} - 3)/2$.

Theorem cont'd. (Deutsch and Sagan 2006)

The blocks of non-zero values in c_3 are given by the following:

- \blacktriangleright The block 11222 occurs at position 0.
- \blacktriangleright The block 111222 occurs at all positions n where $(n)_3=2^i0w$ for some $i\geq 2$ and some $w\in\{0,1\}^*$ that contains an odd number of 1's.
- \blacktriangleright The block 222111 occurs at all positions n where $(n)_3 = 2^i 0w$ for some $i \geq 2$ and some $w \in \{0,1\}^*$ that contains an even number of 1's.

KORKAR KERKER SAGA

We can obtain this result purely by computer using a program called Walnut (developed by Jeffrey Shallit's student Hamoon Mousavi). Suppose we are given

- \blacktriangleright A finite automaton reading input n in base-k and outputing the n -th term of a sequence s; and,
- A formula φ in first-order-logic involving variables, constants, quantifiers, logical operations, ordering, addition and subtraction of natural numbers, and indexing into s.
- \triangleright We can also multiply by a constant (this is just repeated addition), but we can't multiply two variables.

KID KA KERKER KID KO

- \blacktriangleright If φ has no free variables, Walnut will output either that φ is either TRUE or FALSE.
- \blacktriangleright If φ has free variables, Walnut will produce an automaton that accepts the base- k representations of the values of the free variables that satisfy φ .

Applying the Rowland–Zeilberger method gives the automaton

for c_3

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

which is rather more complicated than the modulo 2 automaton.

The formula

$$
\varphi = \exists i \forall j ((j \ge 0 \land j < 4) \Rightarrow \mathbf{c}_3(i+j) = 1)
$$

asserts that there is a "run" of at least four 1 's in c_3 . In Walnut's language, this is

```
eval run4ones "?lsd_3 Ei Aj ((j>=0 & j<4) =>
CAT3[i+j]=@1)":
```
KORKARYKERKER POLO

and evaluates to "FALSE".

For the runs of 0's we use the Walnut command

eval cat3max0 "?lsd_3 n>=1 & (At t<n => CAT3[i+t]=@0) & CAT3[i+n]!=@0 & (i=0|CAT3[i-1]!=@0)":

which produces the automaton

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Examining the transition labels of the first component of the input gives the claimed representation for the starting positions of the runs of 0's

$$
(i)_3 = 21^k
$$
 or $(i)_3 = 21^k 0 \{0, 1\}^j$

and examining the transition labels of the second component gives the claimed length

$$
(n)_3 = 01^k
$$
; i.e., $n = (3^{k+2} - 3)/2$.

For $p = 5$, the Rowland–Zeilberger method gives the automaton

for

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 $\mathbf{c}_5 := C_n \bmod 5.$

Using Walnut, one can obtain the following automaton for the runs of $0's$ in c_5 :

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

From this automaton we derive:

Theorem

The runs of 0's in c_5 begin at positions n where either

$$
(n)_5 = 32^i
$$
 or $(n)_5 = 32^i \{0, 1\} \{0, 1, 2\}^j$, $i \ge 0$, $j \ge 0$,

and have length $(5^{i+2} - 3)/2$.

We can easily characterize the non-zero blocks in c_5 as well.

- \triangleright We also obtained similar results for the Motzkin numbers modulo 3 and 5 as well.
- \blacktriangleright Walnut can be used on any *k*-automatic sequence; i.e., any sequence whose n -th term can be computed by an automaton reading n in base- k as its input.
- ▶ Let's consider a new automatic sequence.
- \blacktriangleright In the rest of the talk, binary representations will be most-significant-digit first.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Rudin-Shapiro coefficients

$$
(a(n))_{n\geq 0}=(1,1,1,-1,1,1,-1,1,\ldots)
$$

form an infinite sequence of ± 1 defined recursively by the identities

$$
a(2n) = a(n)
$$

$$
a(2n+1) = (-1)^n a(n)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

and the initial condition $a(0) = 1$.

- \blacktriangleright The sequence $a(n)$ was introduced independently by Golay (1949), Rudin (1949), and Shapiro (1952).
- ▶ Rudin's motivation was the study of the absolute value of certain Fourier series; Golay was interested in optics.
- ▶ The function $a(n)$ can also be defined as $a(n) = (-1)^{r_n}$, where r_n counts the number of (possibly overlapping) occurrences of 11 in the binary representation of n .

KORKAR KERKER SAGA

Brillhart and Morton (1978) studied sums of these coefficients, and defined the two sums

$$
s(n) = \sum_{0 \le i \le n} a(i) \qquad t(n) = \sum_{0 \le i \le n} (-1)^i a(i). \qquad (1)
$$

Table: First few values of $s(n)$ and $t(n)$.

KO K K Ø K K E K K E K V K K K K K K K K K

- ▶ Brillhart and Morton proved many properties of these sums; typically by a tedious induction.
- \triangleright We show how to replace nearly all of these inductions with techniques from logic and automata theory.
- \blacktriangleright The Rudin-Shapiro sequence is 2-automatic and therefore also 4-automatic.

Figure: Base-4 automaton for the Rudin-Shapiro sequence

- ▶ States are labeled state number/output.
- \blacktriangleright The automaton reads the digits of the base-4 representation of n , starting with the most significant digit.

KORKARYKERKER POLO

The main accomplishment of Brillhart and Morton's paper was proving the following inequalities:

Theorem (Brillhart & Morton)

For $n > 1$ we have

$$
\sqrt{3n/5} \le s(n) \le \sqrt{6n}
$$

$$
0 \le t(n) \le \sqrt{3n}.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- \blacktriangleright To establish the inequalities for $s(n)$ and $t(n)$ we first determine automata that accept the pairs $(n, s(n))$ and $(n, t(n)).$
- \blacktriangleright In order for the automata to be able to process n and $s(n)$ in parallel, it turns out that we need to represent n in base-4 and $s(n)$ and $t(n)$ in base-2.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Figure: Synchronized automata for $s(n)$ (top) and $t(n)$ (bottom).

- \blacktriangleright To prove the inequalities we need to compare n to $s(n)$, but these numbers are now represented in different bases.
- ▶ We deal with this by defining a kind of "pseudo-square" function as follows: $m(n) = [(n)_2]_4$.
- \blacktriangleright In other words, m sends n to the integer obtained by interpreting the base-2 expansion of n as a number in base 4.
- \triangleright We do this with the automaton link42: reg link42 msd_4 msd_2 $"([0,0] | [1,1])$ *":
- ▶ It's not hard to show that

$$
(n^2 + 2n)/3 \le m(n) \le n^2.
$$

KID KA KERKER E VOOR

We can now prove:

Lemma

For $n \geq 1$ we have $\frac{3n+7}{5} \leq m(s(n)) \leq 3n+1$, and the upper and lower bounds are tight.

We use the Walnut code

def maps "?msd_4 Ex $f(s,x)$ & $f\{link42(y,x)$ ": eval ms_lowerbnd "?msd_4 An, y (n>=1 & \$maps(n, y)) \Rightarrow y < = 3 * n + 1" : eval ms_upperbnd "?msd_4 An,y (n>=1 & \$maps(n,y)) $=$ $>$ 3*n+7<=5*y":

Tightness can be easily checked with Walnut.

Corollary

For $n \geq 1$ we have

$$
s(n) \ge \sqrt{\frac{3n+7}{5}}.
$$

- ▶ As a consequence, we get one of the claimed lower bounds.
- ▶ We simply put the bounds $m(s(n)) \leq s(n)^2$ and $\frac{3n+7}{5}\leq m(s(n))$ together to get $\frac{3n+7}{5}\leq s(n)^2.$
- \triangleright Note that our lower bound is actually slightly stronger than that of Brillhart-Morton!

- ▶ The upper bound $s(n) \leq \sqrt{n}$ $6n$ is more difficult.
- \blacktriangleright If $m(s(n)) \leq 2n$, then the result follows immediately from the inequality $(n^2+2n)/3\leq m(n).$
- \blacktriangleright We can easily compute the exceptional set of n for which $m(s(n)) > 2n$: the binary representations of these n have the form

$$
\{0,2\}^* \cup \{0,2\}^*1\{1,3\}^*.
$$

KID KA KERKER E VOOR

 \blacktriangleright The analysis of these exceptional values is somewhat technical (but still much easier than the original analysis of Brillhart and Morton!)

Walnut can be downloaded here:

<https://cs.uwaterloo.ca/~shallit/walnut.html>

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

The End

K ロ K K d K K B K K B K X B K Y Q Q Q