Rudin-Shapiro Sums Via Automata Theory
and Logic

Narad Rampersad

Department of Mathematics and Statistics

University of Winnipeg

(Joint work with Jeffrey Shallit)



The Rudin-Shapiro coefficients
(a(n))p>o=(1,1,1,-1,1,1,-1,1,...)

form an infinite sequence of +1 defined recursively by the

identities

a(2n) = a(n)
a(2n+1) = (—1)"a(n)

and the initial condition a(0) = 1.



» The sequence a(n) was introduced independently by
Golay (1949), Rudin (1949), and Shapiro (1952).

» Rudin’s motivation was the study of the absolute value of
certain Fourier series; Golay was interested in optics.

» The function a(n) can also be defined as a(n) = (—1)"",
where 7, counts the number of (possibly overlapping)

occurrences of 11 in the binary representation of n.



Brillhart and Morton (1978) studied sums of these coefficients,

and defined the two sums

s(n) = > a(i) tn)= > (~1a@). (1)

0<i<n 0<i<n
n\012345678910111213
sn)/1 2 3 23 43 456 7 6 5 4
tn)/1 01 2321010 1 2 1 2

Table: First few values of s(n) and ¢(n).



» Brillhart and Morton proved many properties of these

sums; typically by a tedious induction.

» We show how to replace nearly all of these inductions

with techniques from logic and automata theory.

» The Rudin-Shapiro sequence is 2-automatic and therefore

also 4-automatic.



Figure: DFAO computing the Rudin-Shapiro function, in base 4.

» States are labeled state number/output,

» The automaton reads the digits of the base-4

representation of n, starting with the most significant
digit.

» Leading zeros in the inputs are allowed.



Our main tool is Walnut (developed by Jeffrey Shallit's

student Hamoon Mousavi). Suppose we are given

» A finite automaton reading input n in base-k and

outputing the n-th term of a sequence s; and,

» A formula ¢ in first-order-logic involving variables,
constants, quantifiers, logical operations, ordering,
addition and subtraction of natural numbers, and indexing

into s.

» We can also multiply by a constant (this is just repeated

addition), but we can’t multiply two variables.



» If © has no free variables, Walnut will output either that
v is either TRUE or FALSE.

» If © has free variables, Walnut will produce an automaton
that accepts the base-k representations of the values of

the free variables that satisfy ¢.



» To deal with s(n) and ¢(n) we first determine DFAQ's
that accept the relations (n, s(n)) and (n,t(n)).

» To do this, we represent n in base-1 and s(n) and t(n) in
base-2.
» We say that s(n) and ¢(n) are (4, 2)-synchronized

sequences.



» Why use base-4 for n and base-2 for the values of s and
t?

» It turns out that s(n) and t(n) grow like \/n;

» hence, for an automaton to process n and s(n) in parallel,
length considerations show that the base of representation

for n must be the square of that for s(n) and ¢(n).



Figure: Synchronized automata for s(n) (top) and t(n) (bottom).



» The automata are “guessed” using the Myhill-Nerode

Theorem.

» We prove the correctness of each automaton by induction

on n, using Walnut itself to verify the induction step.

» We also use Walnut to verify that the relations computed
by these automata are actually functions and that
t(n) > 0 for all n.



The Walnut commands to verify the correctness of the

automaton rss for s(n) are:

eval testl "?msd_4 An,y ($rss(n,y) & RS4[n+1]=01)
=> $rss(n+l,y+1)":

eval test2 "?msd_4 An,y ($rss(n,y) & RS4[n+1]=@-1)
=> $rss(n+l,y-1)":



Brillhart & Morton begin by proving the following identities:
Theorem (Brillhart & Morton)

We have
s(2n) = s(n) +t(n — 1), (n>1);
s(2n +1) = s(n) +t(n), (n = 0);
t(2n) = s(n) —t(n — 1), (n=1);
t(2n+ 1) = s(n) — t(n), (n > 0).



We use the following Walnut commands:

eval eq2 "?msd_4 An,x,y,z (n>=1 & $rss(2*n,x) &
$rss(n,y) & $rst(n-1,z)) => 7msd_2 x=y+z":
eval eq3 "?msd_4 An,x,y,z ($rss(2*n+l,x) &
$rss(n,y) & $rst(n,z)) => 7msd_2 x=y+z":
eval eq4 "?msd_4 An,x,y,z (n>=1 & $rst(2*n,x) &
$rss(n,y) & $rst(n-1,z)) => 7msd_2 x+z=y":
eval eqb "?msd_4 An,x,y,z ($rst(2*n+l,x) &
$rss(n,y) & $rst(n,z)) => 7msd_2 x+z=y":

and Walnut returns TRUE for all of them.



The main accomplishment of Brillhart and Morton's paper was

proving the following inequalities:

Theorem (Brillhart & Morton)

For n > 1 we have

V/3n/5 < s(n)

0 <t(n)

IN



» Trying to prove these results by directly translating the

claims into Walnut leads to two difficulties:
» First, automata cannot compute squares or square roots.

» Second, our synchronized automata work with n
expressed in base 4, but s(n) and t(n) are expressed in
base 2, and Walnut cannot directly compare arbitrary

integers expressed in different bases.



First, we define a kind of “pseudo-square” function as
follows: m(n) = [(n)s)4.

In other words, m sends n to the integer obtained by
interpreting the base-2 expansion of n as a number in
base 4.

We do this with the automaton 1ink42:
reg 1link42 msd_4 msd_2 "([0,0]1[1,1])*":

It's not hard to show that

(n® +2n)/3 < m(n) < n’



We can now prove:
Lemma

For n > 1 we have 2251 < n(s(n)) < 3n + 1, and the upper

and lower bounds are tight.



We use the Walnut code

def maps "?msd_4 Ex $rss(n,x) & $1link42(y,x)":

eval ms_upperbnd "?msd_4 An,y (n>=1 & $maps(n,y))
=> y<=3*n+1":

eval ms_lowerbnd "7?msd_4 An,y (n>=1 & $maps(n,y))
=> 3*n+7<=bxy":

Tightness can be easily checked with Walnut



Corollary
For n > 1 we have

3n+7

s(n) >

» As a consequence, we get one of the claimed lower
bounds.

» We simply put the bounds m(s(n)) < s(n)? and
34T < m(s(n)) together to get 2 < 5(n)2.

» Note that our lower bound is actually slightly stronger

than that of Brillhart-Morton!



» To compare, Brillhart and Morton's proof of the lower
bound for s(n) spans three pages.
» They first introduce a new function w(k) which gives the

largest value of n for which s(n) = k.

» They prove several lemmas about this new function by

some non-trivial induction proofs.
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Lemma 5.

(26) w(2n) = 4w(n) +3,  nzl

@7 w@n 1) =do(n+1)+2, n22a+142,r22

Proof: The proof of (26) is not hard. Note first that s(x) and n have opposite
parity, so that w(2n) must be odd. Hence we have either that w(2n) = 4m + 1 or
w(2n) = 4m + 3, for some m = 0. The first case is impossible, because by (11,
s(m + 1) = s(m + 3) = 2n, 50 4m + 1 cannot be the largest argument of s to
give 2n. Thus w(2n) = 4m + 3. Then (11) implies that 2n = s(4m + 3) = 2s(m),
so that s(m) = n. If there were an m, > m with s(m,) = n, then s(4m‘ +3)=2n
and 4m, +3 > 4m + 3 = w(2n) would contradict the definition of w(2n). Thus
w(n) = m, and w(2n) = 4w(n) +

‘The proof of (27) is much tric e how to approach the proof, lets first
note one consequence of the formula. 11 27 s e, them certank ly

s(4w(n +1) +2) =s(w(2n + 1) =20 + 1

How might we prove just this much? Formula (12) gives
s(4w(n + 1) +2) = 2s(w(n + 1)) + (=1)*" a(w(n + 1))

=2n+ 1)+ (-1)"a(w(n + 1)),

and so s@w(n + 1)+ 2) = 2 + 1 if and only if aw(n + D) = (~1)"*" (when

n+ 1 s not a power of 2). This shows that to prove (27) we must consider the

formula

(28) a(e(m) =(=1)", nz3n#2,rz2

Since induction has worked so often before, it is worth trying to prove (28) by

induction as well. This is what we do now. Formula (28) holds for n = 3, since

a(w(3) = a(6) = =1 = (~1)". Assume that (28) has been proved for all the

integers m for which 3 < m < 2n + 1, for some n = 2. We proceed to prove it for

2n+ 1 and 2n + 2. There are two cases to consider, because of the excluded

values in (28).

Case 1: Suppose that 2n + 2 # 2, for any r = 3. Since we have already proved
(26), we can use that formula and the defining formulas (1) for a(n) to compute
alw(@n +2)):

a(w(2n +2)) = a(4w(n +1) +3) = —a(2w(n + 1) + 1)
= (1) Va4 1))
(=)= = ()
this computation uses the fact that the parities of w(n + 1) and n + 1 are
opposite, and the induction assumption (n + 1 < 27 + 1and # + 1is not a power
of 2). This proves (28) for 2n + 2. Before considering (28) for 2 + 1, we need a
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formula for w(2n + 1). From what we have just shown it is easy to find a good
candidate for w(2n + 1), since

S(w(2n +2) = 1) = s(w(2n +2)) ~a(w(2n+2) = (2n+2) ~ 1 =2n+1.
Thus we might guess that w(@n + 1) = w(2n +2) ~ 1. If there were an m >
w(2n +2) — 1 for which s(m) = 2n + 1, then because the sequence (s(m), m = 0}
gocs 1o infiity by sips of &1, there would have 10 be n ineger ' >
m') = 2n + 2. But then m’ = m + 1 > w(2n + 2) would give a con-
radition, ence our guess was correct, and w(2n + 1) = w(2n +2) — 1 =
4w(n + 1) + 2. This proves (27), since in this case n + 1 is not equal to a power

of 2.
Now (28) follows for the value 2 + 1, since
a(w(2n + 1)) = a(4o(n + 1) +2) = a(2w(n + 1) + 1)
= (=1 a(w(n + 1))
(1) =
Case 2:1f 2n + 2 = 2/, for some r = 3, then to complete the induction we have

10 prove (28) only for the value 2n + 1 = 2’ — 1. Here we need the fact that
w(2’ = 1) = 2" = 2. To see this, first note that
S = 2) =s(20 7 = 1) — a2 = 1) =2 - 1

by Lemma 4 and the fact that there are 2r — 2 pairs of consecutive I's in the
binary expansion of 2**~' — 1. Furthermore, it can be proved by induction mm
s(m) 2 2 for 2" < m < 2% — 1 (with equality if and only if m = 2% ~ 1 -
LjZ362%*!, where ¢ =0 or 1). This, together with Theorem la (take k z r)
shows that s(m) = 2* when m > 22" ~ 2,and hence that w(2’ — 1) = 2" —
as claimed.

It follows that a(w(2n + 1)) = a(w(2’ = 1)) = aQ@¥"' = 2) = (=) =
(=1""*1, and this completes the proof of (28). With (28) we have also complclcly
proved (27) as well

Looking back over this proof, we see that we were led to (28) by considering
possible consequences of (27), but then proving (28) gave us a complete proof of
(27) as a by-product: formula (27) is implied by (28) at the value 2n + 2. Actually,
if we think of the induction proof as an argument that proceeds step-by-step
through the positive integers, then the two formulas (27) and (28) are really
intertwined, since (28) at 2n + 2 is used to establish (27), which is used in turn to
prove (28) at 2n + 1. It is surprising that such intricate arguments are required to
establish fairly simple recursion formulas.

After we had found the recursion formulas in Lemma 5, it seemed we were no
closer to a proof of (25). However, we started to look for more patterns in the table
by taking differences between consecutive values of w(n), one of the standard
ways of spotting possible formulas. Taking differences of the first 25 terms of the w
sequence gives:

n ||Z]A567HDMHIZ
W D-em|3 3 5 N T 3 m e 15 in
n B s a8 0 u 2 B u
P ) I R TR I R I TR R R aT)
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What strange numbers! For long stretches the difference is 1 at odd integers, and
then it skyrockets. At even integers n, the difference takes on the values 3, 11, 3,43,
except at powers of 2, where it also suddenly increases. Powers of 2! Suddenly we
see that the difference depends only on the power of 2 dividing n, except when n
is 1 less than a power of 2, a wrinkle that fits with the recursion formulas in
Lemma 5. We also see that the values 1, 3,171 satisfy a recursion: each
value is 4 times the preceding value mi en we solve the recursion for
these values and mvcsllgalc the wrmkle more closely, we find the following
remarkable form

Lemma 6. a) If n.=2°Qm + 1), for m20, a2 0, then win + 1)~ w(n) =
2! +1)/3, unless @ = 0 and 2-1Ls2Lb)Ifa=0andn=
s 21, then w(n + 1) = w(n) = 227" + 1.

-1

We omit the details of the proof, and note only that part a) s2n be proved by
induction on , using (26), (27), and the special values w(2* 2and

prenca 2043

Once we have a formula for the difference w(n + 1) — w(n), we are close to
finding a formula for w(k), since L= }{w(n + 1) — w(n)) = w(k) — w(1) = w(k).
Summing up the expressions in Lemma 6 leads to the following explicit formula.

Theorem 4. If 2" <k <27 = 1,7 2 0, then

w(k) =k -1+ —(2"" -2)+ 2}: [—2,.. 2%,

e leave the somewhat technical details of the proof to the reader. This
formula follows directly from Lemma 6, but may also be proved by a straightfor-
ward induction proof (on k) using only Lemma 5 and the fact that w(2’ = 1) =

= 2,72 0. (See [3, Satz 1])

Will this formula give us the lower bound we want?

Theorem 5. Fork = 1, k/ Jw(k) > y3/5

Proof: Assume that 2’ < k < 2"*' = 1, r 2 0. By the formula for w(k) we have

3w(k)-3k—3+2z"'—z+ﬁ):[
=

-1
S -3420 —243(k-1) L2
=
=3k =3+2¥ —2+3(k-1)(2" - 1)
<3k =3+2k =24+ 3(k — 1)k = 5k* — 5 < 5K
and the inequality of the theorem follows immediately. It worked!
Corollary. Forn > 1, s(n)/ Vn > y3/5.

‘To summarize, we may combine Theorems 2, 3, and § in the following explicit
result.
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» The upper bound s(n) < v/6n is more difficult.

» If m(s(n)) < 2n, then the result follows immediately

from the inequality (n? + 2n)/3 < m(n).
We can easily compute the exceptional set of n for which

m(s(n)) > 2n: the binary representations of these n have

the form
{0,2}* U {0,2}714{1, 3}".

The analysis of these exceptional values is a little more
technical (the details are in the paper), but still much
easier than the complication induction of Brillhart and

Morton.



One of the most fun properties of the Rudin-Shapiro

summation function s(n) is:

Theorem (Brillhart & Morton 1978, Satz 22)

There are exactly n values of k for which s(k) = n.



» Walnut can create base-b linear representations for values

of synchronized sequences.

» By a base-b linear representation for a function f(n) we
mean vectors v, w, and a matrix-valued morphism ~ such
that f(n) = vy(x)w for all strings x representing n in
base b.

» (The dimension of v is called the rank of the

representation.)



eval satz22 n "$rss(?msd_4 k,n)":

gives us a base-2 linear representation of rank 7 computing the
function f(n) that counts the number of times the function s

takes the value n.
eval gfunc n "i<n":

gives us a base-2 linear representation for the function

g(n) =n:



» To conclude, we compute a base-2 linear representation
for f(n) — g(n), and minimize it using an algorithm of
Schiitzenberger (Section 2.3 of Berstel & Reutenauer
(2011)).

» When we do so, we get the representation for the 0

function, so f(n) = n.



The same method allows us to prove a new result:

Theorem

(a) For n € [0,4™/2), 0 appears as a value of ¢(n) exactly
2m=1 times, and k appears exactly 2 — k times for
1<k<2m

(b) For n € [0,4™), 0 appears as a value of t(n) exactly
2™ — 1 times, 2™ appears exactly once, and k appears

exactly 2(2™ — k) times for 1 < k < 2.



» We have shown how to obtain much simpler proofs of
Brillhart and Morton's many results on the partial sums of
the Rudin-Shapiro sequence, and have obtained some new
results.

» We can apply the same techniques to other sequences.

» For example, if we define a sequence a’(n) that is +1 or
—1 accordingly as the number of 00's in the binary
expansion of n is even or odd, we can prove the analogue

of the Brillhart—Morton results for this sequence as well.



The End



