
Rudin-Shapiro Sums Via Automata Theory

and Logic

Narad Rampersad

Department of Mathematics and Statistics

University of Winnipeg

(Joint work with Jeffrey Shallit)

The Rudin-Shapiro coefficients

(a(n))n≥0 = (1, 1, 1,−1, 1, 1,−1, 1, . . .)

form an infinite sequence of ±1 defined recursively by the

identities

a(2n) = a(n)

a(2n+ 1) = (−1)na(n)

and the initial condition a(0) = 1.

▶ The sequence a(n) was introduced independently by

Golay (1949), Rudin (1949), and Shapiro (1952).

▶ Rudin’s motivation was the study of the absolute value of

certain Fourier series; Golay was interested in optics.

▶ The function a(n) can also be defined as a(n) = (−1)rn ,

where rn counts the number of (possibly overlapping)

occurrences of 11 in the binary representation of n.

Brillhart and Morton (1978) studied sums of these coefficients,

and defined the two sums

s(n) =
∑

0≤i≤n

a(i) t(n) =
∑

0≤i≤n

(−1)ia(i). (1)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

s(n) 1 2 3 2 3 4 3 4 5 6 7 6 5 4

t(n) 1 0 1 2 3 2 1 0 1 0 1 2 1 2

Table: First few values of s(n) and t(n).

▶ Brillhart and Morton proved many properties of these

sums; typically by a tedious induction.

▶ We show how to replace nearly all of these inductions

with techniques from logic and automata theory.

▶ The Rudin-Shapiro sequence is 2-automatic and therefore

also 4-automatic.

0/+1

0, 2 1/+11

2/–13
0

1, 3

3/–12

2

1, 3
03 1

0, 2

Figure: DFAO computing the Rudin-Shapiro function, in base 4.

▶ States are labeled state number/output.

▶ The automaton reads the digits of the base-4

representation of n, starting with the most significant

digit.

▶ Leading zeros in the inputs are allowed.

Our main tool is Walnut (developed by Jeffrey Shallit’s

student Hamoon Mousavi). Suppose we are given

▶ A finite automaton reading input n in base-k and

outputing the n-th term of a sequence s; and,

▶ A formula φ in first-order-logic involving variables,

constants, quantifiers, logical operations, ordering,

addition and subtraction of natural numbers, and indexing

into s.

▶ We can also multiply by a constant (this is just repeated

addition), but we can’t multiply two variables.

▶ If φ has no free variables, Walnut will output either that

φ is either TRUE or FALSE.

▶ If φ has free variables, Walnut will produce an automaton

that accepts the base-k representations of the values of

the free variables that satisfy φ.

▶ To deal with s(n) and t(n) we first determine DFAO’s

that accept the relations (n, s(n)) and (n, t(n)).

▶ To do this, we represent n in base-4 and s(n) and t(n) in

base-2.

▶ We say that s(n) and t(n) are (4, 2)-synchronized

sequences.

▶ Why use base-4 for n and base-2 for the values of s and

t?

▶ It turns out that s(n) and t(n) grow like
√
n;

▶ hence, for an automaton to process n and s(n) in parallel,

length considerations show that the base of representation

for n must be the square of that for s(n) and t(n).

0

[0,0] 1[0,1]
2

[1,1]

[2,0]

[2,1]

3[1,0]

4[3,0]

[0,0]

[0,1]

[1,1], [3,1]

5

[2,0]

6

[2,1]

[1,0], [3,0]

[2,0]

[2,1]

[1,0], [3,0]

[0,0]

[0,1]

[3,1]

[2,0]

[2,1]

[3,0][1,0]

[0,0]

[0,1]

0

[0,0], [2,0]

1[1,0]

2

[3,0]

3

[0,1], [2,1]

4

[1,1]

5

[3,1]

[3,0]
[3,1]

6

[2,1]
[1,0]

[1,1]

[0,1]

[3,0]

[0,0]

[1,0] [0,1]

[1,1]

7

[2,0]

[2,0]

[3,0]

[1,0], [2,1]

[3,1]

[0,0]

[3,0]
[1,0]

[3,1]

[1,1]

[0,1], [2,1]

[1,0]

[0,0], [2,0]

Figure: Synchronized automata for s(n) (top) and t(n) (bottom).

▶ The automata are “guessed” using the Myhill–Nerode

Theorem.

▶ We prove the correctness of each automaton by induction

on n, using Walnut itself to verify the induction step.

▶ We also use Walnut to verify that the relations computed

by these automata are actually functions and that

t(n) ≥ 0 for all n.

The Walnut commands to verify the correctness of the

automaton rss for s(n) are:

eval test1 "?msd_4 An,y ($rss(n,y) & RS4[n+1]=@1)

=> $rss(n+1,y+1)":

eval test2 "?msd_4 An,y ($rss(n,y) & RS4[n+1]=@-1)

=> $rss(n+1,y-1)":

Brillhart & Morton begin by proving the following identities:

Theorem (Brillhart & Morton)

We have

s(2n) = s(n) + t(n− 1), (n ≥ 1); (2)

s(2n+ 1) = s(n) + t(n), (n ≥ 0); (3)

t(2n) = s(n)− t(n− 1), (n ≥ 1); (4)

t(2n+ 1) = s(n)− t(n), (n ≥ 0). (5)

We use the following Walnut commands:

eval eq2 "?msd_4 An,x,y,z (n>=1 & $rss(2*n,x) &

$rss(n,y) & $rst(n-1,z)) => ?msd_2 x=y+z":

eval eq3 "?msd_4 An,x,y,z ($rss(2*n+1,x) &

$rss(n,y) & $rst(n,z)) => ?msd_2 x=y+z":

eval eq4 "?msd_4 An,x,y,z (n>=1 & $rst(2*n,x) &

$rss(n,y) & $rst(n-1,z)) => ?msd_2 x+z=y":

eval eq5 "?msd_4 An,x,y,z ($rst(2*n+1,x) &

$rss(n,y) & $rst(n,z)) => ?msd_2 x+z=y":

and Walnut returns TRUE for all of them.

The main accomplishment of Brillhart and Morton’s paper was

proving the following inequalities:

Theorem (Brillhart & Morton)

For n ≥ 1 we have √
3n/5 ≤ s(n) ≤

√
6n

0 ≤ t(n) ≤
√
3n.

▶ Trying to prove these results by directly translating the

claims into Walnut leads to two difficulties:

▶ First, automata cannot compute squares or square roots.

▶ Second, our synchronized automata work with n

expressed in base 4, but s(n) and t(n) are expressed in

base 2, and Walnut cannot directly compare arbitrary

integers expressed in different bases.

▶ First, we define a kind of “pseudo-square” function as

follows: m(n) = [(n)2]4.

▶ In other words, m sends n to the integer obtained by

interpreting the base-2 expansion of n as a number in

base 4.

▶ We do this with the automaton link42:

reg link42 msd_4 msd_2 "([0,0]|[1,1])*":

▶ It’s not hard to show that

(n2 + 2n)/3 ≤ m(n) ≤ n2.

We can now prove:

Lemma

For n ≥ 1 we have 3n+7
5

≤ m(s(n)) ≤ 3n+ 1, and the upper

and lower bounds are tight.

We use the Walnut code

def maps "?msd_4 Ex $rss(n,x) & $link42(y,x)":

eval ms_upperbnd "?msd_4 An,y (n>=1 & $maps(n,y))

=> y<=3*n+1":

eval ms_lowerbnd "?msd_4 An,y (n>=1 & $maps(n,y))

=> 3*n+7<=5*y":

Tightness can be easily checked with Walnut.

Corollary

For n ≥ 1 we have

s(n) ≥
√

3n+ 7

5
.

▶ As a consequence, we get one of the claimed lower

bounds.

▶ We simply put the bounds m(s(n)) ≤ s(n)2 and
3n+7

5
≤ m(s(n)) together to get 3n+7

5
≤ s(n)2.

▶ Note that our lower bound is actually slightly stronger

than that of Brillhart-Morton!

▶ To compare, Brillhart and Morton’s proof of the lower

bound for s(n) spans three pages.

▶ They first introduce a new function ω(k) which gives the

largest value of n for which s(n) = k.

▶ They prove several lemmas about this new function by

some non-trivial induction proofs.

▶ The upper bound s(n) ≤
√
6n is more difficult.

▶ If m(s(n)) ≤ 2n, then the result follows immediately

from the inequality (n2 + 2n)/3 ≤ m(n).

▶ We can easily compute the exceptional set of n for which

m(s(n)) > 2n: the binary representations of these n have

the form

{0, 2}∗ ∪ {0, 2}∗1{1, 3}∗.

▶ The analysis of these exceptional values is a little more

technical (the details are in the paper), but still much

easier than the complication induction of Brillhart and

Morton.

One of the most fun properties of the Rudin-Shapiro

summation function s(n) is:

Theorem (Brillhart & Morton 1978, Satz 22)

There are exactly n values of k for which s(k) = n.

▶ Walnut can create base-b linear representations for values

of synchronized sequences.

▶ By a base-b linear representation for a function f(n) we

mean vectors v, w, and a matrix-valued morphism γ such

that f(n) = vγ(x)w for all strings x representing n in

base b.

▶ (The dimension of v is called the rank of the

representation.)

eval satz22 n "$rss(?msd_4 k,n)":

gives us a base-2 linear representation of rank 7 computing the

function f(n) that counts the number of times the function s

takes the value n.

eval gfunc n "i<n":

gives us a base-2 linear representation for the function

g(n) = n:

▶ To conclude, we compute a base-2 linear representation

for f(n)− g(n), and minimize it using an algorithm of

Schützenberger (Section 2.3 of Berstel & Reutenauer

(2011)).

▶ When we do so, we get the representation for the 0

function, so f(n) = n.

The same method allows us to prove a new result:

Theorem

(a) For n ∈ [0, 4m/2), 0 appears as a value of t(n) exactly

2m−1 times, and k appears exactly 2m − k times for

1 ≤ k < 2m.

(b) For n ∈ [0, 4m), 0 appears as a value of t(n) exactly

2m − 1 times, 2m appears exactly once, and k appears

exactly 2(2m − k) times for 1 ≤ k < 2m.

▶ We have shown how to obtain much simpler proofs of

Brillhart and Morton’s many results on the partial sums of

the Rudin-Shapiro sequence, and have obtained some new

results.

▶ We can apply the same techniques to other sequences.

▶ For example, if we define a sequence a′(n) that is +1 or

−1 accordingly as the number of 00’s in the binary

expansion of n is even or odd, we can prove the analogue

of the Brillhart–Morton results for this sequence as well.

The End

