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Abstract

U. Schmidt proved that any binary pattern of length at le83s hvoided
by either the Thue—Morse word or the Fibonacci word. We giseraewhat
simpler proof of this result.

1 Introduction

In combinatorics on words, the notion of an avoidalhavoidable pattern was
first introduced (independently) by Bean, Ehrenfeucht, &aNulty [1] and
Zimin [14]. Let X andA be alphabets; the alphabgtis the pattern alphabet
A pattern pis a non-empty word ovea. A word w over £ matchesp if there
exists a non-erasing morphigm: A* — X* such thath(p) = w. A patternp

is avoidableif there exists an infinite wora over a finite alphabet such that no
subword ofx matchesp. Otherwise,p is unavoidable Schmidt [10] proved the
following theorem.

Theorem 1. Any binary pattern of length at leadt3 is avoided by either the
Thue—Morse word
t =0110100110010110-

or the Fibonacci word
f =0100101001001010- .

It is easy to check—for instance, by exhaustive search—amabinary word
of length at least 13 contains an occurrence of one of thenastkxx Xyxyx
XYYXyXXy or xyyxxyyx It thus sufices to show that each of these 4 patterns is
avoided by either the Thue—Morse word or the Fibonacci w&idce it is well-
known that the Thue—Morse word avoids the pattexrs and xyxyx[12]—in



fact, Guaiana [4] and Shur [11] completely characterizedstt of binary patterns
avoided by the Thue—Morse word—it is enough to show that therfacci word
avoids the patternsyyxyxxy or Xyyxxyyx

Observe, however, that the pattemg/xyxxyand xyyxxyyxare abelian 4-
powers. Anabelian k-powelis a word of the formw,w; - - - Wy, where eachw;
is a non-empty word, and for all j, w; is a permutation of the symbols of;.
Dekking [3] proved that there exists an infinite binary word

a=011000100010110110110001

containing no abelian 4-powers. Dekking’s word is obtaibgdterating the mor-
phism 0 — 011, 1 —» 0001. Sincea avoids abelian 4-powers, it avoids the
patternsxyyxyxxyandxyyxxyyx It follows that every binary pattern of length at
least 13 is avoided by either the Thue—Morse word or the vaoidekking’s pa-
per was published in 1979; Schmidt's was published in 19&&1 $he been aware
of Dekking’s result, Schmidt might have immediately dedlitteat all binary pat-
terns of length at least 13 are avoidable on the binary agth&levertheless, prov-
ing that the Fibonacci word avoids the pattexggxyxxyandxyyxxyyxallows for
an interesting application of several well-known propstf the Fibonacci word.
We present a somewhat simpler proof of this result below

Note that the bound of 13 in Theorem 1 is not optimal: if oneligspCas-
saigne’s result [2, Theorem 5.2] that the Thue—Morse woldsvthe pattern
XXYXxXy it is possible to replace 13 with 12. Restivo and Salemi f{@pBsition 1]
stated (without proof) that 13 can be replaced by 11.

Subsequent to Schmidt’s work, Roth [8] showed that evergdyipattern of
length at least 6 is avoided by some infinite binary word; hewemore than just
the Thue—Morse and Fibonacci words are needed to withesavthdability of
some of these patterns. Cassaigne [2] completed the worktbftly determining
exactly the set of binary patterns that are avoidable by dafirete binary word.
This classification was also obtained independently byaédnj13] (see [5]). The
survey chapter in Lothaire [6, Chapter 3] gives a good oesvf the main results
concerning avoidable patterns.

2 Preliminaries
We are concerned only with patterns over the alphgbg and words over the al-
phabet0, 1}. We begin with some definitions related to the well-studidmbRacci

word. We define the following sequen®)q-_1 of words:

S1=1 =0 s =S-1%2



Forn > 0, we calls, a standard word The infinite wordf = lim,_.S, IS the
Fibonacci word We also define the sequenag)(-_1, whereqg, = |s,|. Clearly,
forn > 1, we have

On = On-1 + On-2. (1)

Observe that fon > 0, g, = Fy,2, whereF,, denotes tha-th Fibonacci number.
Next, we define the morphisgh by ¢(0) = 01 and¢(1) = 0. Forn > 0, we

see thats, = ¢"(0), so thatf = ¢“(0). We need the following properties of the
Fibonacci word.

e The wordf does not contain the subwords 11, 000, 10101, or 00100100.

e The wordf is recurrent that is, every subword df occurs infinitely often
inf.

e If uis a subword of, then so is its reversal, denota®

e A subwordu of f is left specialif Ou and 1u are both subwords df. The
Fibonacci word has exactly one left special subword of eanpth and this
subword is a prefix of. In particular, the left special subwords are prefixes
of the standard words.

e If uuis a non-empty subword déf thenu is a conjugate of a standard word
(wordsw andz areconjugatesf one can writew = xy andz = yxfor some
wordsx andy).

All of the preceding properties df except perhaps the last, are well-known and
can be found, for example, in Lothaire [6, Chapter 2]. Thaati@rization of the
squares of the Fibonacci word seems to have first been prgv8ddbold [9].

3 TheFibonacci word avoids xyyxyxxy and XyyxxyyX
Proposition 2. The Fibonacci word avoids the pattern xyyxyxxy.

Proof. Suppose to the contrary thlatontains a subword/ = uvvuvuuwvof mini-
mal length. Sincev contains the squaress, vv, andvuvu the wordsy, v, andvu
are each conjugates of a standard word. We thus ave g, for somen > 2.
Further, eithequ] = g,.; and|v| = gn_2, Or vice-versa. In = 2, then either
(u,v) = (0,01) or (u,v) = (0L 0). In either case, we see thatcontains 000, a
contradiction. We suppose then timat 2.

Case 1:u andv end with diferent letters. Then andv are left special, and
hence are both standard words (since the left special sulsveoe the prefixes of



the standard words). Letting = ¢~1(u) andv’ = ¢~1(v), it follows thatg=1(w) =
uvVvuvuuyv is a subword of, contradicting the minimality oiv.

Case 2u andv begin with diferent letters. Then, since the set of subwords of
f is closed under reversal, we may apply the argument of Casef tb derive a
contradiction.

Case 3uandv both begin and end with 1. Thencontains 11, a contradiction.

Case 4:u andv both begin with 0 and end with 1. Then letting = ¢~(u)
andv’ = ¢~1(v), it follows thatg~1(w) = UVVUVU UV is a subword of, contra-
dicting the minimality ofw.

Case 5:u andv both begin with 1 and end with 0. Then we may apply the
argument of Case 4 toR to derive a contradiction.

Case 6:u andv both begin and end with 0. Note that since 000 is not a
subword ofw, u0~! andv0! both end with 1. Suppose that@s a subword of.
Then, lettingy’ = ¢~1(0u0!) andv' = ¢~1(0v0™Y), it follows thatg=1(Ow0™?) =
uvVvuvuu'yv is a subword of, contradicting the minimality ofv. Similarly, if
wO0 is a subword of, we may apply the preceding argument ”o derive a
contradiction.

It remains to consider the case thatllis a subword of. If u = 010 or
v = 010, thenvuuvor uvvy respectively, contains the subword 00100100, a con-
tradiction. Otherwise, sincé does not contain any occurrence of 11, 000, or
10101, one easily checks thamust begin with 0100 and must end with 0010.
But thenvu contains the subword 00100100, a contradiction.

In all cases we have derived a contradiction. We concludefthsoids the
patternxyyxyxxy as required. O

Proposition 3. The Fibonacci word avoids the pattern xyyxxyyx.

Proof. Suppose to the contrary thlatontains a subword = uvvuuvvywhereu
andv are non-empty. Sino& contains the squaresi, vv, and (ivvu?, the words
u, v, anduvvuare each conjugates of a standard word. Thus g, |V = q;,
andjuvvy = gk = 2(qg; + q;), wherei, ] < k. We first show that the equatiap =
2(gi + ;) has only the solution given by = 2(d + go) = 2(3+ 1) = 8. Observe
firstthati andj cannot be consecutive integers. Suppose without loss efgkty
thati > j. Recall that by Zeckendorf’s theorem,/2 can be represented uniquely
as the sum of non-consecutive Fibonacci numbers, and hiiesentation is given
by the greedy algorithm. Sinog/2 = g + g; must therefore be the unique
Zeckendorf expansion aijx/2, we see from applying the greedy algorithm that
we must have = k- 2 andj < k- 4. However, one easily proves by induction
onk that

Ok-2 + Ok-5 < Ok/2 < Ok-2 + Ok-4
for all k > 5. Thus we must have = 4,1 = 2, andj = 0, as noted earlier. Then
eitherv = 0 andu is a conjugate of 010, or vice-versa. In either case we have



000 as a subword of, a contradiction. We conclude thavoidsxyyxxyyx as
required. O

Theorem 1 now follows.
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