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Abstract

U. Schmidt proved that any binary pattern of length at least 13 is avoided
by either the Thue–Morse word or the Fibonacci word. We give asomewhat
simpler proof of this result.

1 Introduction

In combinatorics on words, the notion of an avoidable/unavoidable pattern was
first introduced (independently) by Bean, Ehrenfeucht, andMcNulty [1] and
Zimin [14]. Let Σ and∆ be alphabets; the alphabet∆ is thepattern alphabet.
A pattern pis a non-empty word over∆. A word w over Σ matchesp if there
exists a non-erasing morphismh : ∆∗ → Σ∗ such thath(p) = w. A patternp
is avoidableif there exists an infinite wordx over a finite alphabet such that no
subword ofx matchesp. Otherwise,p is unavoidable. Schmidt [10] proved the
following theorem.

Theorem 1. Any binary pattern of length at least13 is avoided by either the
Thue–Morse word

t = 0110100110010110· · ·

or the Fibonacci word

f = 0100101001001010· · · .

It is easy to check—for instance, by exhaustive search—thatany binary word
of length at least 13 contains an occurrence of one of the patternsxxx, xyxyx,
xyyxyxxy, or xyyxxyyx. It thus suffices to show that each of these 4 patterns is
avoided by either the Thue–Morse word or the Fibonacci word.Since it is well-
known that the Thue–Morse word avoids the patternsxxx and xyxyx [12]—in



fact, Guaiana [4] and Shur [11] completely characterized the set of binary patterns
avoided by the Thue–Morse word—it is enough to show that the Fibonacci word
avoids the patternsxyyxyxxy, or xyyxxyyx.

Observe, however, that the patternsxyyxyxxyand xyyxxyyxare abelian 4-
powers. Anabelian k-poweris a word of the formw1w2 · · ·wk, where eachwi

is a non-empty word, and for alli, j, wi is a permutation of the symbols ofwj.
Dekking [3] proved that there exists an infinite binary word

a = 011000100010110110110001· · ·

containing no abelian 4-powers. Dekking’s word is obtainedby iterating the mor-
phism 0→ 011, 1 → 0001. Sincea avoids abelian 4-powers, it avoids the
patternsxyyxyxxyandxyyxxyyx. It follows that every binary pattern of length at
least 13 is avoided by either the Thue–Morse word or the worda. Dekking’s pa-
per was published in 1979; Schmidt’s was published in 1989. Had she been aware
of Dekking’s result, Schmidt might have immediately deduced that all binary pat-
terns of length at least 13 are avoidable on the binary alphabet. Nevertheless, prov-
ing that the Fibonacci word avoids the patternsxyyxyxxyandxyyxxyyxallows for
an interesting application of several well-known properties of the Fibonacci word.
We present a somewhat simpler proof of this result below

Note that the bound of 13 in Theorem 1 is not optimal: if one applies Cas-
saigne’s result [2, Theorem 5.2] that the Thue–Morse word avoids the pattern
xxyxxy, it is possible to replace 13 with 12. Restivo and Salemi [7, Proposition 1]
stated (without proof) that 13 can be replaced by 11.

Subsequent to Schmidt’s work, Roth [8] showed that every binary pattern of
length at least 6 is avoided by some infinite binary word; however, more than just
the Thue–Morse and Fibonacci words are needed to witness theavoidability of
some of these patterns. Cassaigne [2] completed the work of Roth by determining
exactly the set of binary patterns that are avoidable by someinfinite binary word.
This classification was also obtained independently by Vanic̆ek [13] (see [5]). The
survey chapter in Lothaire [6, Chapter 3] gives a good overview of the main results
concerning avoidable patterns.

2 Preliminaries

We are concerned only with patterns over the alphabet{x, y} and words over the al-
phabet{0,1}. We begin with some definitions related to the well-studied Fibonacci
word. We define the following sequence (sn)n≥−1 of words:

s−1 = 1, s0 = 0, sn = sn−1sn−2.



For n ≥ 0, we callsn a standard word. The infinite wordf = limn→∞sn is the
Fibonacci word. We also define the sequence (qn)n≥−1, whereqn = |sn|. Clearly,
for n ≥ 1, we have

qn = qn−1 + qn−2. (1)

Observe that forn ≥ 0, qn = Fn+2, whereFn denotes then-th Fibonacci number.
Next, we define the morphismφ by φ(0) = 01 andφ(1) = 0. Forn ≥ 0, we

see thatsn = φ
n(0), so thatf = φω(0). We need the following properties of the

Fibonacci word.

• The wordf does not contain the subwords 11, 000, 10101, or 00100100.

• The wordf is recurrent; that is, every subword off occurs infinitely often
in f.

• If u is a subword off, then so is its reversal, denoteduR.

• A subwordu of f is left specialif 0u and 1u are both subwords off. The
Fibonacci word has exactly one left special subword of each length and this
subword is a prefix off. In particular, the left special subwords are prefixes
of the standard words.

• If uu is a non-empty subword off, thenu is a conjugate of a standard word
(wordsw andz areconjugatesif one can writew = xy andz= yx for some
wordsx andy).

All of the preceding properties off, except perhaps the last, are well-known and
can be found, for example, in Lothaire [6, Chapter 2]. The characterization of the
squares of the Fibonacci word seems to have first been proved by Séébold [9].

3 The Fibonacci word avoids xyyxyxxy and xyyxxyyx

Proposition 2. The Fibonacci word avoids the pattern xyyxyxxy.

Proof. Suppose to the contrary thatf contains a subwordw = uvvuvuuvof mini-
mal length. Sincew contains the squaresuu, vv, andvuvu, the wordsu, v, andvu
are each conjugates of a standard word. We thus have|vu| = qn for somen ≥ 2.
Further, either|u| = qn−1 and |v| = qn−2, or vice-versa. Ifn = 2, then either
(u, v) = (0,01) or (u, v) = (01,0). In either case, we see thatw contains 000, a
contradiction. We suppose then thatn > 2.

Case 1:u andv end with different letters. Thenu andv are left special, and
hence are both standard words (since the left special subwords are the prefixes of



the standard words). Lettingu′ = φ−1(u) andv′ = φ−1(v), it follows thatφ−1(w) =
u′v′v′u′v′u′u′v′ is a subword off, contradicting the minimality ofw.

Case 2:u andv begin with different letters. Then, since the set of subwords of
f is closed under reversal, we may apply the argument of Case 1 to wR to derive a
contradiction.

Case 3:uandvboth begin and end with 1. Thenw contains 11, a contradiction.
Case 4:u andv both begin with 0 and end with 1. Then lettingu′ = φ−1(u)

andv′ = φ−1(v), it follows thatφ−1(w) = u′v′v′u′v′u′u′v′ is a subword off, contra-
dicting the minimality ofw.

Case 5:u andv both begin with 1 and end with 0. Then we may apply the
argument of Case 4 towR to derive a contradiction.

Case 6:u and v both begin and end with 0. Note that since 000 is not a
subword ofw, u0−1 andv0−1 both end with 1. Suppose that 0w is a subword off.
Then, lettingu′ = φ−1(0u0−1) andv′ = φ−1(0v0−1), it follows thatφ−1(0w0−1) =
u′v′v′u′v′u′u′v′ is a subword off, contradicting the minimality ofw. Similarly, if
w0 is a subword off, we may apply the preceding argument to 0wR to derive a
contradiction.

It remains to consider the case that 1w1 is a subword off. If u = 010 or
v = 010, thenvuuvor uvvu, respectively, contains the subword 00100100, a con-
tradiction. Otherwise, sincef does not contain any occurrence of 11, 000, or
10101, one easily checks thatu must begin with 0100 andv must end with 0010.
But thenvu contains the subword 00100100, a contradiction.

In all cases we have derived a contradiction. We conclude that f avoids the
patternxyyxyxxy, as required. �

Proposition 3. The Fibonacci word avoids the pattern xyyxxyyx.

Proof. Suppose to the contrary thatf contains a subwordw = uvvuuvvu, whereu
andv are non-empty. Sincew contains the squaresuu, vv, and (uvvu)2, the words
u, v, anduvvuare each conjugates of a standard word. Thus|u| = qi, |v| = q j,
and|uvvu| = qk = 2(qi + q j), wherei, j < k. We first show that the equationqk =

2(qi + q j) has only the solution given byq4 = 2(q2 + q0) = 2(3+ 1) = 8. Observe
first thati and j cannot be consecutive integers. Suppose without loss of generality
thati > j. Recall that by Zeckendorf’s theorem,qk/2 can be represented uniquely
as the sum of non-consecutive Fibonacci numbers, and this representation is given
by the greedy algorithm. Sinceqk/2 = qi + q j must therefore be the unique
Zeckendorf expansion ofqk/2, we see from applying the greedy algorithm that
we must havei = k − 2 and j ≤ k − 4. However, one easily proves by induction
onk that

qk−2 + qk−5 < qk/2 < qk−2 + qk−4

for all k ≥ 5. Thus we must havek = 4, i = 2, and j = 0, as noted earlier. Then
eitherv = 0 andu is a conjugate of 010, or vice-versa. In either case we have



000 as a subword ofw, a contradiction. We conclude thatf avoidsxyyxxyyx, as
required. �

Theorem 1 now follows.
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