Paperfolding and Words Avoiding Repetitions

Narad Rampersad

School of Computer Science University of Waterloo

8 November 2006

(Joint work with Jui-Yi Kao, Jeffrey Shallit, and Manuel Silva)

• Take an ordinary 8.5×11 piece of paper and fold it in half.

- Take an ordinary 8.5×11 piece of paper and fold it in half.
- Now unfold the paper and record the pattern of hills and valleys created, writing 0 for a hill and 1 for a valley.

0

- Take an ordinary 8.5×11 piece of paper and fold it in half.
- Now unfold the paper and record the pattern of hills and valleys created, writing 0 for a hill and 1 for a valley.

0

 Now fold the paper twice, unfold, and record the pattern of hills and valleys.

0 0 1

- Take an ordinary 8.5×11 piece of paper and fold it in half.
- Now unfold the paper and record the pattern of hills and valleys created, writing 0 for a hill and 1 for a valley.

0

 Now fold the paper twice, unfold, and record the pattern of hills and valleys.

0 0 1

Now fold three times, unfold, and record the pattern.

0 0 1 0 0 1 1

- Take an ordinary 8.5×11 piece of paper and fold it in half.
- Now unfold the paper and record the pattern of hills and valleys created, writing 0 for a hill and 1 for a valley.

0

 Now fold the paper twice, unfold, and record the pattern of hills and valleys.

0 0 1

Now fold three times, unfold, and record the pattern.

0 0 1 0 0 1 1

 Now fold infinitely (!) many times. After unfolding, you get the following infinite sequence.

Some Notation

For any word x over $\{0,1\}$, let \overline{x} denote the word obtained from x by changing 0's to 1's and 1's to 0's. Let x^R denote the reversal of x.

Example

If x = 0111, then $\overline{x} = 1000$, $x^R = 1110$, and $\overline{x}^R = 0001$.

Perturbed Symmetry

Definition

For $i \ge 0$, let $c_i \in \{0, 1\}$ and define the sequence of words

$$F_0 = c_0$$

$$F_1 = F_0 c_1 \overline{F_0}^R$$

$$F_2 = F_1 c_2 \overline{F_1}^R$$

$$\vdots$$

Then

$$\mathbf{f} = \lim_{i \to \infty} F_i$$

is a paperfolding word.

Perturbed Symmetry

Example

Taking $c_i = 0$ for all $i \ge 0$, one obtains the sequence

$$F_0 = 0$$

 $F_1 = 001$
 $F_2 = 0010011$
 \vdots

which converges, in the limit, to the ordinary paperfolding word

0010011000110110 ...

A Recursive Definition

Definition

A paperfolding word $\mathbf{f} = f_0 f_1 f_2 \cdots$ over the alphabet $\{0, 1\}$ satisfies the following recursive definition: there exists $a \in \{0, 1\}$ such that

$$egin{array}{lcl} f_{4n} &=& a, & n \geq 0 \\ f_{4n+2} &=& \overline{a}, & n \geq 0 \\ (f_{2n+1})_{n \geq 0} & ext{is a paperfolding word.} \end{array}$$

Definition

The ordinary paperfolding word

is the paperfolding word uniquely characterized by $f_{2^m-1} = 0$ for all m > 0.

A Recursive Definition

Example

Consider the odd indexed terms of the ordinary paperfolding word:

Notice that $\mathbf{f} = \mathbf{f}'$.

The word \mathbf{f}' will always be a paperfolding word for any \mathbf{f} , but in general one will not have $\mathbf{f} = \mathbf{f}'$.

The Toeplitz Construction

• Start with an infinite sequence of gaps, denoted ?.

```
? ? ? ? ? ? ? ? ? ? ? ? ? ...
```

Fill every other gap with alternating 0's and 1's.

```
0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ...
```

Repeat.

```
0 0 1 ? 0 1 1 ? 0 0 1 ? 0 1 1 ···
0 0 1 0 0 1 1 ? 0 0 1 1 0 1 1 ···
0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 ···
```

The Toeplitz Construction

In the limit, one again obtains the ordinary paperfolding word

At each step, one may choose to fill in the gaps by either

or

- Different choices at each step results in the construction of different paperfolding words.
- Words constructed by such a process are called Toeplitz words.

Structure in the Paperfolding Words

Theorem

No paperfolding word is ultimately periodic.

Theorem (Allouche 1992)

Let **f** be a paperfolding word. Any subword of **f** of length at least 7 cannot occur at both an odd and an even position of **f**.

Theorem (Allouche 1992)

A paperfolding word has exactly 4n distinct subwords of length n for n > 7.

Repetitions in Words

Definition

A square (or 2-power) is a non-empty word of the form ww (or w^2). A word is squarefree if none of its subwords are squares.

Definition

A cube (or 3-power) is a non-empty word of the form www (or w^3). A word is cubefree if none of its subwords are cubes.

Example

- tumtum (as in "So rested he by the Tumtum tree") is a square.
- hohoho is a cube.

Repetitions in Words

Definition

A overlap (or 2^+ -power) is a non-empty word of the form axaxa, where a is a letter and x is a (possibly empty) word.

Definition

A 3^+ -power is a non-empty word of the form axaxaxa, where a is a letter and x is a (possibly empty) word.

Example

- entente is an overlap (chevauchement en français).
- 0110110110 is a 3+-power.

One generalizes these definitions to k-powers and k^+ -powers in the obvious way.

Avoiding Repetitions in Words

Theorem (Thue 1906)

There exists an infinite squarefree word

$$\mathbf{w} = 210201210120210 \cdots$$

over the alphabet $\{0, 1, 2\}$.

Proof (sketch).

The word **w** is obtained by iterating the map $2 \rightarrow 210, 1 \rightarrow 20, 0 \rightarrow 1$:

$$2 \rightarrow 210 \rightarrow 210201 \rightarrow 210201210120 \rightarrow \cdots$$

Avoiding Repetitions in Words

Theorem (Thue 1912)

There exists an infinite overlapfree word

$$t = 0110100110010110 \cdots$$

over the alphabet $\{0, 1\}$.

Proof (sketch).

The word **t** is obtained by iterating the map $0 \rightarrow 01$, $1 \rightarrow 10$:

$$0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow \cdots$$

Avoiding Large Repetitions in Words

Can we avoid all sufficiently large squares over a binary alphabet?

Theorem (Entringer, Jackson, and Schatz 1974)

There exists an infinite binary word \mathbf{x} containing no squares xx where $|x| \geq 3$.

Proof (sketch).

Let **w** be any infinite squarefree word over $\{0, 1, 2\}$. Apply the map $0 \to 1010, 1 \to 1100, 2 \to 0111$ to **w** to obtain **x**; e.g. if

$$\mathbf{w} = 210201210120210 \cdots$$

then

$$\mathbf{x} = 0111111001010011111010 \cdots$$

Repetitions in Paperfolding Words

Theorem (Prodinger and Urbanek 1979)

For the ordinary paperfolding word \mathbf{f} , if ww is a non-empty subword of \mathbf{f} , then $|w| \in \{1, 3, 5\}$.

Theorem (Allouche and Bousquet-Mélou 1994)

For any paperfolding word \mathbf{f} , if ww is a non-empty subword of \mathbf{f} , then $|\mathbf{w}| \in \{1, 3, 5\}$.

Corollary (Allouche and Bousquet-Mélou 1994)

For any paperfolding word **f**, **f** contains no 4-powers and no cubes except 000 and 111. In particular, **f** contains no 3⁺-power.

A Language-theoretic Consequence

Corollary (Lehr 1992; Allouche and Bousqet-Mélou 1994)

The language consisting of all subwords of paperfolding words is not context-free.

Proof.

It is clear from the pumping lemma that any infinite context-free language contains words with arbitrarily large repetitions.

Arithmetic Subsequences

Definition

Let

$$\mathbf{w} = w_0 w_1 w_2 \cdots$$

be a word. An arithmetic subsequence of difference *j* is a word

$$W_iW_{i+j}W_{i+2j}\cdots W_{i+tj}$$

for some *i*, *t*.

Example

lf

$$\mathbf{w} = w_0 w_1 w_2 \cdots = 0110100110010110 \cdots$$

then an arithmetic subsequence of difference 3 of w is

$$w_1 w_4 w_7 w_{10} = 1110.$$

van der Waerden's Theorem

- Recall, a word is squarefree if no subword is a square.
- Does there exists an infinite word such that no arithmetic subsequence is a square?
- Clearly, no. What about trying to avoid cubes, or 4-powers, etc.?

Theorem (van der Waerden 1927)

For any infinite word \mathbf{w} over a finite alphabet A, there exists $a \in A$ such that for all $m \ge 1$, \mathbf{w} contains a^m in arithmetic progressions.

 Suppose we only try to avoid repetitions in certain types of arithmetic progressions: e.g. arithmetic progressions of odd difference.

Subsequences of the Paperfolding Words

Theorem (Avgustinovich, Fon-Der-Flaass, and Frid 2003)

If w is a finite arithmetic subsequence of odd difference of a paperfolding word, then w is a subword of a paperfolding word.

Example

Take the first 15 symbols of the ordinary paperfolding word:

$$f_0 f_1 \cdots f_{14} = 001001100011011.$$

Then

$$f_0 f_3 \cdots f_{12} = 00100$$

 $f_1 f_4 \cdots f_{13} = 00011$
 $f_2 f_5 \cdots f_{14} = 11011$.

Subsequences of the Paperfolding Words

Example

Continuing, if

$$f_0 f_1 \cdots f_{14} = 001001100011011,$$

then

$$f_0 f_5 f_{10} = 011$$

 $f_1 f_6 f_{11} = 011$
 $f_2 f_7 f_{12} = 100$
 $f_3 f_8 f_{13} = 001$
 $f_4 f_9 f_{14} = 001$.

One verifies that each of these are subwords of **f**.

Subsequences of the Paperfolding Words

Recall that every paperfolding word is 3⁺-powerfree.

Corollary

There exists an infinite word over a binary alphabet that contains no 3^+ -powers in arithmetic progressions of odd difference. Indeed, all paperfolding words have this property.

- The 3⁺ above is optimal; it cannot be replaced by 3.
- If we increase the alphabet size, can we avoid squares in all arithmetic progressions of odd difference?

Repetitions in Arithmetic Progressions

Theorem (Carpi 1988)

There exists an infinite word over a four letter alphabet that avoids squares in arithmetic progressions of odd difference.

Let $\mathbf{f} = f_0 f_1 f_2 \cdots$ be any paperfolding word over $\{1, 4\}$. Define $\mathbf{v} = v_0 v_1 v_2 \cdots$ by

$$V_{4n} = 2$$

 $V_{4n+2} = 3$
 $V_{2n+1} = f_{2n+1}$

for all $n \ge 0$.

In other words, we have recoded the periodic subsequence formed by taking the even positions of **f** by mapping $1 \to 2$ and $4 \to 3$ (or vice-versa).

Proof of Carpi's Theorem

Example

lf

 $\mathbf{f} = 1141144111441441 \cdots$

is the ordinary paperfolding word over $\{1,4\}$, then

 $\mathbf{v} = 2131243121342431 \cdots$

Theorem

Let \mathbf{v} be any word obtained from a paperfolding word \mathbf{f} by the construction described above. Then the word \mathbf{v} contains no squares in any arithmetic progression of odd difference.

Proof of Carpi's Theorem

By the construction of \mathbf{v} , any arithmetic subsequence

$$w=v_{i_0}v_{i_1}\cdots v_{i_k}$$

of odd difference of ${\bf v}$ can be obtained from the corresponding subsequence

$$x=f_{i_0}f_{i_1}\cdots f_{i_k}$$

of **f** by recoding the symbols in either the even positions of x or the odd positions of x by mapping $1 \rightarrow 2$ and $4 \rightarrow 3$ (or vice-versa).

Note that this recoding cannot create any new squares.

Proof of Carpi's Theorem

Now suppose that \mathbf{v} contains a square ww in an arithmetic progression of odd difference. Let xx be the corresponding subsequence of \mathbf{f} .

By previous results, $|x| \in \{1, 3, 5\}$ and hence $|w| \in \{1, 3, 5\}$.

Clearly, |w| = 1 is impossible.

If |w| = 3, then ww has one of the forms

where the * denotes an arbitrary symbol from $\{1,4\}$.

Clearly, none of these can be squares.

A similar argument applies for |w| = 5.

Avoiding Overlaps in Odd Difference A.P.

Theorem

There exists an infinite word over a ternary alphabet that contains no 2^+ -powers (overlaps) and no squares xx, $|x| \ge 2$, in arithmetic progressions of odd difference.

Proof (sketch).

Let **v** be any word obtained from a paperfolding word by the construction described above. Let h map $1 \rightarrow 00$, $2 \rightarrow 11$, $3 \rightarrow 12$, $4 \rightarrow 02$. Then $\mathbf{w} = h(\mathbf{v})$ has the desired properties; e.g. if

$$\mathbf{v} = 2131243121342431 \cdots,$$

then

$$\mathbf{w} = 110012001102120011 \cdots$$

Avoiding Large Squares in Odd Difference A.P.

Theorem

There exists an infinite word over a binary alphabet that contains no squares xx with $|x| \ge 3$ in any arithmetic progression of odd difference.

Proof (sketch).

Let \mathbf{v} be any word obtained from a paperfolding word by the construction described above. Let h map $1 \to 0110$, $2 \to 0101$, $3 \to 0001$, $4 \to 0111$. Then $\mathbf{w} = h(\mathbf{v})$ has the desired properties; e.g. if

$$\mathbf{v} = 2131243121342431 \cdots,$$

then

$$\mathbf{w} = 01010110000101100101 \cdots$$

Higher Dimensions

An infinite word over a finite alphabet A is a map \mathbf{w} from \mathbb{N} to A, where we write w_n for $\mathbf{w}(n)$. This inspires the following generalization.

Definition

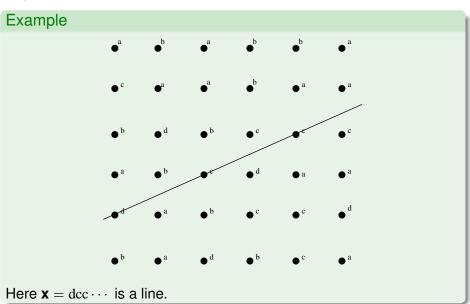
A 2-dimensional word is a map **w** from \mathbb{N}^2 to A, where we write $w_{m,n}$ for $\mathbf{w}(m,n)$.

Definition

A word **x** is a line of **w** if there exists i_1 , i_2 , j_1 , j_2 , such that $gcd(j_1, j_2) = 1$ and for $t \ge 0$

$$x_t = w_{i_1+j_1t,i_2+j_2t}.$$

Higher Dimensions



Higher Dimensions

Theorem (Carpi 1988)

There exists a 2-dimensional word **w** over a 16-letter alphabet, such that every line of **w** is squarefree.

Proof of Carpi's 2D construction

Proof.

Let $\mathbf{u} = u_0 u_1 u_2 \cdots$ and $\mathbf{v} = v_0 v_1 v_2 \cdots$ be any infinite words over the alphabet $A = \{1, 2, 3, 4\}$ that avoid squares in all arithmetic progressions of odd difference. We define \mathbf{w} over the alphabet $A \times A$ by

$$w_{m,n}=(u_m,v_n).$$

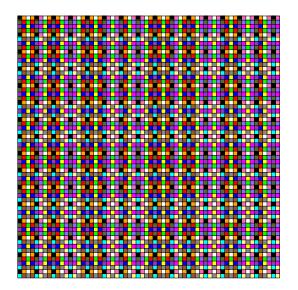
Consider an arbitrary line

$$\mathbf{x} = (w_{i_1+j_1t,i_2+j_2t})_{t\geq 0},$$

= $(u_{i_1+j_1t}, v_{i_2+j_2t})_{t\geq 0},$

for some i_1, i_2, j_1, j_2 , with $gcd(j_1, j_2) = 1$. Without loss of generality, we may assume j_1 is odd. Then the word $(u_{i_1+j_1t})_{t\geq 0}$ is an arithmetic subsequence of odd difference of \mathbf{u} and hence is squarefree. The line \mathbf{x} is therefore also squarefree.

Tiling Based on Carpi's 2D Word



Avoiding 3⁺-powers on the Integer Lattice

Theorem

There exists a 2-dimensional word ${\bf w}$ over a 4-letter alphabet, such that every line of ${\bf w}$ is ${\bf 3}^+$ -power-free.

Proof.

Let $\mathbf{u}=u_0u_1u_2\cdots$ and $\mathbf{v}=v_0v_1v_2\cdots$ be any paperfolding words. Then \mathbf{u} and \mathbf{v} each avoid 3^+ -powers in all arithmetic progressions of odd difference. We now define \mathbf{w} by

$$w_{m,n} = (u_m, v_n).$$

Avoiding Overlaps on the Integer Lattice

Theorem

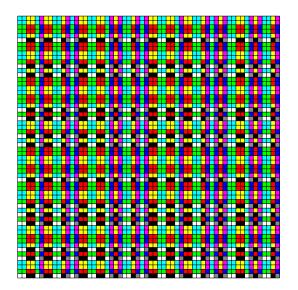
There exists a 2-dimensional word \mathbf{w} over a 9-letter alphabet, such that every line of \mathbf{w} is 2^+ -power-free (overlapfree).

Proof.

Let $\mathbf{u}=u_0u_1u_2\cdots$ and $\mathbf{v}=v_0v_1v_2\cdots$ be any words over $\{0,1,2\}$ that avoid overlaps in all arithmetic progressions of odd difference. We now define \mathbf{w} by

$$w_{m,n}=(u_m,v_n).$$

Tiling Based on 2D Overlapfree Word



Avoiding Large Squares on the Integer Lattice

Theorem

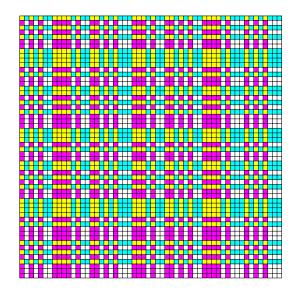
There exists a 2-dimensional word \mathbf{w} over a 4-letter alphabet, such that every line of \mathbf{w} avoids squares xx, where $|x| \ge 3$.

Proof.

Let $\mathbf{u}=u_0u_1u_2\cdots$ and $\mathbf{v}=v_0v_1v_2\cdots$ be any words over $\{0,1\}$ that avoid squares xx, $|x|\geq 3$, in all arithmetic progressions of odd difference. We now define \mathbf{w} by

$$w_{m,n} = (u_m, v_n).$$

Tiling that Avoids Large Squares



Open Problems

- Recall that the language of all subwords of paperfolding words is not context-free. What about its complement? It is known that if the complement is context-free, it must be inherently ambiguous.
- Find the optimal alphabet sizes for the 2D constructions described above.
- We have only discussed here arithmetic progressions of odd difference. What about other differences? Carpi's 1988 paper has some additional results in this regard.