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Folding a Piece of Paper
Take an ordinary 8 � 5 � 11 piece of paper and fold it in half.
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Folding a Piece of Paper
Take an ordinary 8 � 5 � 11 piece of paper and fold it in half.
Now unfold the paper and record the pattern of hills and valleys
created, writing 0 for a hill and 1 for a valley.

0
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Folding a Piece of Paper
Take an ordinary 8 � 5 � 11 piece of paper and fold it in half.
Now unfold the paper and record the pattern of hills and valleys
created, writing 0 for a hill and 1 for a valley.

0

Now fold the paper twice, unfold, and record the pattern of hills
and valleys.

0 0 1
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Folding a Piece of Paper
Take an ordinary 8 � 5 � 11 piece of paper and fold it in half.
Now unfold the paper and record the pattern of hills and valleys
created, writing 0 for a hill and 1 for a valley.

0

Now fold the paper twice, unfold, and record the pattern of hills
and valleys.

0 0 1

Now fold three times, unfold, and record the pattern.

0 0 1 0 0 1 1
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Folding a Piece of Paper
Take an ordinary 8 � 5 � 11 piece of paper and fold it in half.
Now unfold the paper and record the pattern of hills and valleys
created, writing 0 for a hill and 1 for a valley.

0

Now fold the paper twice, unfold, and record the pattern of hills
and valleys.

0 0 1

Now fold three times, unfold, and record the pattern.

0 0 1 0 0 1 1

Now fold infinitely (!) many times. After unfolding, you get the
following infinite sequence.

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 �����
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Some Notation

For any word x over
�
0 � 1 � , let x denote the word obtained from x by

changing 0’s to 1’s and 1’s to 0’s. Let x R denote the reversal of x .

Example

If x � 0111, then x � 1000, xR � 1110, and xR � 0001.
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Perturbed Symmetry

Definition
For i � 0, let ci 	 � 0 � 1 � and define the sequence of words

F0 � c0

F1 � F0 c1 F0
R

F2 � F1 c2 F1
R

...

Then
f � lim

i 
�� Fi

is a paperfolding word.
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Perturbed Symmetry

Example
Taking ci � 0 for all i � 0, one obtains the sequence

F0 � 0
F1 � 0 0 1
F2 � 001 0 011

...

which converges, in the limit, to the ordinary paperfolding word

0010011000110110 �����
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A Recursive Definition

Definition
A paperfolding word f � f0f1f2 ����� over the alphabet

�
0 � 1 � satisfies the

following recursive definition: there exists a 	 � 0 � 1 � such that

f4n � a � n � 0
f4n 
 2 � a � n � 0�

f2n 
 1 � n � 0 is a paperfolding word �

Definition
The ordinary paperfolding word

0010011000110110 �����
is the paperfolding word uniquely characterized by f2m � 1 � 0 for all
m � 0.
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A Recursive Definition

Example
Consider the odd indexed terms of the ordinary paperfolding word:

f � 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 �����
f ��� 0 0 1 0 0 1 1 �����

Notice that f � f � .
The word f � will always be a paperfolding word for any f, but in general
one will not have f � f � .
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The Toeplitz Construction

Start with an infinite sequence of gaps, denoted ?.
� � � � � � � � � � � ��� � � �����

Fill every other gap with alternating 0’s and 1’s.

0
�

1
�

0
�

1
�

0
�

1
�

0
�

1 �����
Repeat.

0 0 1
�

0 1 1
�

0 0 1
�

0 1 1 �����
0 0 1 0 0 1 1

�
0 0 1 1 0 1 1 �����

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 �����

Narad Rampersad (University of Waterloo) Paperfolding 8 November 2006 8 / 39



The Toeplitz Construction

In the limit, one again obtains the ordinary paperfolding word

0010011000110110 �����
At each step, one may choose to fill in the gaps by either

0101010101 �����
or

1010101010 ����� �
Different choices at each step results in the construction of
different paperfolding words.
Words constructed by such a process are called Toeplitz words.
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Structure in the Paperfolding Words

Theorem
No paperfolding word is ultimately periodic.

Theorem (Allouche 1992)
Let f be a paperfolding word. Any subword of f of length at least 7
cannot occur at both an odd and an even position of f.

Theorem (Allouche 1992)
A paperfolding word has exactly 4n distinct subwords of length n for
n � 7.
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Repetitions in Words

Definition
A square (or 2-power) is a non-empty word of the form ww (or w 2). A
word is squarefree if none of its subwords are squares.

Definition
A cube (or 3-power) is a non-empty word of the form www (or w 3). A
word is cubefree if none of its subwords are cubes.

Example
tumtum (as in “So rested he by the Tumtum tree”) is a square.
hohoho is a cube.
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Repetitions in Words

Definition
A overlap (or 2 
 -power) is a non-empty word of the form axaxa, where
a is a letter and x is a (possibly empty) word.

Definition
A 3 
 -power is a non-empty word of the form axaxaxa, where a is a
letter and x is a (possibly empty) word.

Example
entente is an overlap (chevauchement en français).
0110110110 is a 3 
 -power.

One generalizes these definitions to k -powers and k 
 -powers in the
obvious way.
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Avoiding Repetitions in Words

Theorem (Thue 1906)
There exists an infinite squarefree word

w � 210201210120210 �����
over the alphabet

�
0 � 1 � 2 � .

Proof (sketch).
The word w is obtained by iterating the map 2 � 210, 1 � 20, 0 � 1:

2 � 210 � 210201 � 210201210120 �������
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Avoiding Repetitions in Words

Theorem (Thue 1912)
There exists an infinite overlapfree word

t � 0110100110010110 �����
over the alphabet

�
0 � 1 � .

Proof (sketch).
The word t is obtained by iterating the map 0 � 01, 1 � 10:

0 � 01 � 0110 � 01101001 �������
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Avoiding Large Repetitions in Words
Can we avoid all sufficiently large squares over a binary alphabet?

Theorem (Entringer, Jackson, and Schatz 1974)
There exists an infinite binary word x containing no squares xx where�
x
� � 3.

Proof (sketch).
Let w be any infinite squarefree word over

�
0 � 1 � 2 � . Apply the map

0 � 1010, 1 � 1100, 2 � 0111 to w to obtain x; e.g. if

w � 210201210120210 �������
then

x � 01111100101001111010 ����� �
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Repetitions in Paperfolding Words

Theorem (Prodinger and Urbanek 1979)
For the ordinary paperfolding word f, if ww is a non-empty subword of
f, then

�
w
� 	 � 1 � 3 � 5 � .

Theorem (Allouche and Bousquet-Mélou 1994)
For any paperfolding word f, if ww is a non-empty subword of f, then�
w
� 	 � 1 � 3 � 5 � .

Corollary (Allouche and Bousquet-Mélou 1994)
For any paperfolding word f, f contains no 4-powers and no cubes
except 000 and 111. In particular, f contains no 3 
 -power.
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A Language-theoretic Consequence

Corollary (Lehr 1992; Allouche and Bousqet-Mélou 1994)
The language consisting of all subwords of paperfolding words is not
context-free.

Proof.
It is clear from the pumping lemma that any infinite context-free
language contains words with arbitrarily large repetitions.
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Arithmetic Subsequences

Definition
Let

w � w0w1w2 �����
be a word. An arithmetic subsequence of difference j is a word

wiwi 
 jwi 
 2j ����� wi 
 tj

for some i � t .
Example
If

w � w0w1w2 ������� 0110100110010110 �����
then an arithmetic subsequence of difference 3 of w is

w1w4w7w10 � 1110 �
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van der Waerden’s Theorem

Recall, a word is squarefree if no subword is a square.
Does there exists an infinite word such that no arithmetic
subsequence is a square?
Clearly, no. What about trying to avoid cubes, or 4-powers, etc.?

Theorem (van der Waerden 1927)
For any infinite word w over a finite alphabet A, there exists a 	 A such
that for all m � 1, w contains am in arithmetic progressions.

Suppose we only try to avoid repetitions in certain types of
arithmetic progressions: e.g. arithmetic progressions of odd
difference.
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Subsequences of the Paperfolding Words

Theorem (Avgustinovich, Fon-Der-Flaass, and Frid 2003)

If w is a finite arithmetic subsequence of odd difference of a
paperfolding word, then w is a subword of a paperfolding word.

Example
Take the first 15 symbols of the ordinary paperfolding word:

f0f1 ����� f14 � 001001100011011 �
Then

f0f3 ����� f12 � 00100
f1f4 ����� f13 � 00011
f2f5 ����� f14 � 11011 �
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Subsequences of the Paperfolding Words

Example
Continuing, if

f0f1 ����� f14 � 001001100011011 �
then

f0f5f10 � 011
f1f6f11 � 011
f2f7f12 � 100
f3f8f13 � 001
f4f9f14 � 001 �

One verifies that each of these are subwords of f.
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Subsequences of the Paperfolding Words

Recall that every paperfolding word is 3 
 -powerfree.

Corollary

There exists an infinite word over a binary alphabet that contains no
3 
 -powers in arithmetic progressions of odd difference. Indeed, all
paperfolding words have this property.

The 3 
 above is optimal; it cannot be replaced by 3.
If we increase the alphabet size, can we avoid squares in all
arithmetic progressions of odd difference?
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Repetitions in Arithmetic Progressions

Theorem (Carpi 1988)
There exists an infinite word over a four letter alphabet that avoids
squares in arithmetic progressions of odd difference.

Let f � f0f1f2 ����� be any paperfolding word over
�
1 � 4 � . Define

v � v0v1v2 ����� by

v4n � 2
v4n 
 2 � 3
v2n 
 1 � f2n 
 1 �

for all n � 0.
In other words, we have recoded the periodic subsequence formed by
taking the even positions of f by mapping 1 � 2 and 4 � 3 (or
vice-versa).
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Proof of Carpi’s Theorem

Example
If

f � 1141144111441441 �����
is the ordinary paperfolding word over

�
1 � 4 � , then

v � 2131243121342431 ����� �
Theorem
Let v be any word obtained from a paperfolding word f by the
construction described above. Then the word v contains no squares in
any arithmetic progression of odd difference.
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Proof of Carpi’s Theorem

By the construction of v, any arithmetic subsequence

w � vi0vi1 ����� vik

of odd difference of v can be obtained from the corresponding
subsequence

x � fi0 fi1 ����� fik
of f by recoding the symbols in either the even positions of x or the odd
positions of x by mapping 1 � 2 and 4 � 3 (or vice-versa).
Note that this recoding cannot create any new squares.
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Proof of Carpi’s Theorem

Now suppose that v contains a square ww in an arithmetic progression
of odd difference. Let xx be the corresponding subsequence of f.
By previous results,

�
x
� 	 � 1 � 3 � 5 � and hence

�
w
� 	 � 1 � 3 � 5 � .

Clearly,
�
w
� � 1 is impossible.

If
�
w
� � 3, then ww has one of the forms

���
2
� � � 3 � 2 �

���
3
� � � 2 � 3 ��

2
�

3 � ��� 2
� ��

3
�

2 � ��� 3
� �

where the
�

denotes an arbitrary symbol from
�
1 � 4 � .

Clearly, none of these can be squares.
A similar argument applies for

�
w
� � 5.
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Avoiding Overlaps in Odd Difference A.P.

Theorem
There exists an infinite word over a ternary alphabet that contains no
2 
 -powers (overlaps) and no squares xx,

�
x
� � 2, in arithmetic

progressions of odd difference.

Proof (sketch).
Let v be any word obtained from a paperfolding word by the
construction described above. Let h map 1 � 00, 2 � 11, 3 � 12,
4 � 02. Then w � h

�
v � has the desired properties; e.g. if

v � 2131243121342431 �������
then

w � 110012001102120011 ����� �
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Avoiding Large Squares in Odd Difference A.P.

Theorem
There exists an infinite word over a binary alphabet that contains no
squares xx with

�
x
� � 3 in any arithmetic progression of odd difference.

Proof (sketch).
Let v be any word obtained from a paperfolding word by the
construction described above. Let h map 1 � 0110, 2 � 0101,
3 � 0001, 4 � 0111. Then w � h

�
v � has the desired properties; e.g. if

v � 2131243121342431 �������
then

w � 01010110000101100101 ����� �
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Higher Dimensions

An infinite word over a finite alphabet A is a map w from � to A, where
we write wn for w

�
n � . This inspires the following generalization.

Definition
A 2-dimensional word is a map w from � 2 to A, where we write wm � n
for w

�
m � n � .

Definition
A word x is a line of w if there exists i1, i2, j1, j2, such that
gcd

�
j1 � j2 � � 1 and for t � 0

xt � wi1 
 j1t � i2 
 j2t �
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Higher Dimensions

Example
a b

ac

b

a b

b b

a a

ccbd

ba

d a b

c d a a

dcc

b a d b c a

a

c

a

Here x � dcc ����� is a line.
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Higher Dimensions

Theorem (Carpi 1988)
There exists a 2-dimensional word w over a 16-letter alphabet, such
that every line of w is squarefree.
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Proof of Carpi’s 2D construction

Proof.
Let u � u0u1u2 ����� and v � v0v1v2 ����� be any infinite words over the
alphabet A � � 1 � 2 � 3 � 4 � that avoid squares in all arithmetic
progressions of odd difference. We define w over the alphabet A � A by

wm � n � � um � vn � �
Consider an arbitrary line

x � �
wi1 
 j1t � i2 
 j2t � t � 0 �

� �
ui1 
 j1t � vi2 
 j2t � t � 0 �

for some i1 � i2, j1 � j2, with gcd
�
j1 � j2 � � 1. Without loss of generality, we

may assume j1 is odd. Then the word
�
ui1 
 j1t � t � 0 is an arithmetic

subsequence of odd difference of u and hence is squarefree. The line
x is therefore also squarefree.
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Tiling Based on Carpi’s 2D Word
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Avoiding 3  -powers on the Integer Lattice

Theorem
There exists a 2-dimensional word w over a 4-letter alphabet, such that
every line of w is 3 
 -power-free.

Proof.
Let u � u0u1u2 ����� and v � v0v1v2 ����� be any paperfolding words.
Then u and v each avoid 3 
 -powers in all arithmetic progressions of
odd difference. We now define w by

wm � n � � um � vn � �
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Avoiding Overlaps on the Integer Lattice

Theorem
There exists a 2-dimensional word w over a 9-letter alphabet, such that
every line of w is 2 
 -power-free (overlapfree).

Proof.
Let u � u0u1u2 ����� and v � v0v1v2 ����� be any words over

�
0 � 1 � 2 � that

avoid overlaps in all arithmetic progressions of odd difference. We now
define w by

wm � n � � um � vn � �
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Tiling Based on 2D Overlapfree Word
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Avoiding Large Squares on the Integer Lattice

Theorem
There exists a 2-dimensional word w over a 4-letter alphabet, such that
every line of w avoids squares xx, where

�
x
� � 3.

Proof.
Let u � u0u1u2 ����� and v � v0v1v2 ����� be any words over

�
0 � 1 � that

avoid squares xx ,
�
x
� � 3, in all arithmetic progressions of odd

difference. We now define w by

wm � n � � um � vn � �
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Tiling that Avoids Large Squares
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Open Problems

Recall that the language of all subwords of paperfolding words is
not context-free. What about its complement? It is known that if
the complement is context-free, it must be inherently ambiguous.
Find the optimal alphabet sizes for the 2D constructions described
above.
We have only discussed here arithmetic progressions of odd
difference. What about other differences? Carpi’s 1988 paper has
some additional results in this regard.
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