
Finite Automata, Palindromes, Powers, and
Patterns

Terry Anderson, Narad Rampersad,
Nicolae Santean, Jeffrey Shallit

School of Computer Science
University of Waterloo

19 March 2008

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 1 / 21

The Main Questions

Let L ⊆ Σ∗ be a fixed language.
Let M be a DFA or NFA over Σ.
We consider the following three questions:

1 Can we efficiently decide (in terms of the size of M) if
L(M) ∩ L 6= ∅?

2 Can we efficiently decide if L(M) ∩ L is infinite?
3 What is a good upper bound on the shortest element of L(M) ∩ L?

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 2 / 21

The Languages L Considered

We consider these questions for the following languages L.
The language of palindromes, i.e., words x such that x equals its
reversal xR.
The language of k -powers, i.e., words x that can be written as
x = yk = yy · · · y (k times).
The language of powers, i.e., words that are k -powers for some
k ≥ 2.
The language of words matching a given pattern p, i.e., words x
for which there exists a non-erasing morphism h such that
h(p) = x .
Let us also refer to 2-powers and 3-powers as squares and
cubes respectively. We also call non-powers primitive words.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 3 / 21

Testing if an NFA Accepts at Least One Palindrome

To warm-up, let us see how to test if an NFA accepts a palindrome.
If M is an NFA with n states and t transitions, it is easy to construct
an NFA M ′ with n2 + 1 states and ≤ 2t2 transitions that accepts

L′ = {x ∈ Σ∗ : xxR ∈ L(M) or there exists a ∈ Σ

such that xaxR ∈ L(M)}.

Since NFA emptiness and finiteness can be tested in linear time,
using M ′ we can determine if M accepts a palindrome (or infinitely
many palindromes) in O(n2 + t2) time.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 4 / 21

Testing if an NFA Accepts at Least One Palindrome

A somewhat more difficult problem is determining if an NFA
accepts a palindromic language (i.e., accepts only palindromes).
Horváth, Karhumäki, and Kleijn (1987) proved that the question is
recursively solvable.
They proved that if M is an n-state NFA, then L(M) is palindromic
if and only if {x ∈ L(M) : |x | < 3n} is palindromic.
To obtain a polynomial time algorithm for palindromicity, we
intersect M with a “small” NFA M ′ such that M ′ never accepts a
palindrome and accepts all non-palindromes of length less than
3n.
We then test if this new NFA accepts the empty language.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 5 / 21

Testing if an NFA Accepts a Word Matching a Pattern

A pattern is simply a non-empty word over some alphabet ∆.
We say a pattern p ∈ ∆∗ matches a word w ∈ Σ∗ if there exists a
non-erasing morphism h : ∆∗ → Σ∗ such that h(p) = w .
For example, if p = xyyx and w = 02111102, then p matches w ,
since we may take h(x) = 02 and h(y) = 11.
Patterns generalize the notion of k -powers, since a k -power is a
word matching the pattern xk .

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 6 / 21

Testing if an NFA Accepts a Word Matching a Pattern

We now consider the computational complexity of the decision
problem:

NFA PATTERN ACCEPTANCE
INSTANCE: An NFA M over the alphabet Σ and a pattern
p over some alphabet ∆.
QUESTION: Does there exist x ∈ Σ+ such that x ∈ L(M)
and x matches p?

The solvability of this problem is implied by the following result
(Restivo and Salemi (2001); Castiglione, Restivo, and Salemi
(2004)): Let L be a regular language and let ∆ be an alphabet.
The set P∆ of all non-empty patterns p ∈ ∆∗ such that p matches
a word in L is effectively regular.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 7 / 21

Testing if an NFA Accepts a Word Matching a Pattern

Theorem

The NFA PATTERN ACCEPTANCE problem is PSPACE-complete.

By Savitch’s theorem it suffices to give an NPSPACE algorithm.
For an alphabet symbol a, the transitions of an NFA M can be
represented by a boolean matrix Ba.
For a word w = w0w1 · · ·ws, we write Bw for the matrix product
Bw0Bw1 · · ·Bws .
Suppose the pattern alphabet is ∆ = {1, 2, . . . , k}.
Non-deterministically guess k boolean matrices B1, . . . , Bk .
For each i , verify that Bi = Bw for some word w of length at most
2n2

.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 8 / 21

Testing if an NFA Accepts a Word Matching a Pattern

We guess w symbol-by-symbol and reuse space after perfoming
each matrix multiplication while computing Bw .
If p = p0p1 · · · pr , compute B = Bp0Bp1 · · ·Bpr and accept if and
only if B describes an accepting computation of M.
To show hardness is a straightforward reduction from the
PSPACE-complete problem

DFA INTERSECTION
INSTANCE: An integer k ≥ 1 and k DFAs A1, A2, . . . , Ak ,
each over the alphabet Σ.
QUESTION: Does there exist x ∈ Σ∗ such that x is
accepted by each Ai , 1 ≤ i ≤ k?

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 9 / 21

Special Cases of Pattern Acceptance

A special case of NFA PATTERN ACCEPTANCE is the NFA
ACCEPTS A k -POWER problem.
When k is part of the input (i.e., k is not fixed), this is still
PSPACE-complete.
However, if k is fixed, this problem can be solved in polynomial
time.

Proposition

Let M be an NFA with n states and t transitions, and set N = n + t , the
size of M. For any fixed integer k ≥ 2, there is an algorithm running in
O(n2k−1tk) = O(N2k−1) time to determine if M accepts a k-power.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 10 / 21

Automata Accepting Only Powers

Ito, Katsura, Shyr, and Yu (1988) proved the following result
(stated here in a slightly stronger form than in the original).

Theorem (Ito et. al (1988))
Let L be accepted by an n-state NFA M.

1 Every word in L is a power if and only if every word in the set
{x ∈ L : |x | ≤ 3n} is a power.

2 All but finitely many words in L are powers if and only if every word
in the set {x ∈ L : n ≤ |x | ≤ 3n} is a power.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 11 / 21

The Idea of the Proof

Suppose to the contrary that a shortest non-power x ∈ L had
length greater than 3n.
An accepting computation of M on x must repeat some state q
four times.
It follows that x = uv1v2v3w such that uv∗1 v∗2 v∗3 w ⊆ L.
Consider the words obtained by deleted one or more of the vi ’s
from x , e.g., uv1v3w , uv2w , uw , etc. These must all be powers.
Use standard results from combinatorics on words to derive a
contradiction by showing that if these words are all powers, then x
must be a power, contrary to our assumption.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 12 / 21

Slenderness

The characterization due to Ito et al. (1988) (see also Dömösi,
Horváth, and Ito (2004)) showed that any regular language
consisting only of powers is slender.
A language L is slender if there is a constant C such that, for all
i ≥ 0, the number of words of length i in L is less than C.
The following characterization of slender regular languages has
been independently rediscovered several times in the past (Kunze,
Shyr, and Thierrin (1981); Shallit (1994); Paun and Salomaa
(1995)).
Let L ⊆ Σ∗ be a regular language. Then L is slender if and only if it
can be written as a finite union of languages of the form uv∗w ,
where u, v , w ∈ Σ∗.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 13 / 21

Bounding the Number of Words of Each Length

Again, if a regular language L contains only powers, it contains at
most C words of length i for every i ≥ 0.
Next we show how to bound C in terms of the number n of states
of an NFA accepting L.
We then use the bound to give an efficient algorithm to test if a
regular language contains only powers.

Proposition

Let M be an n-state NFA and let ` be a non-negative integer such that
every word in L(M) of length ≥ ` is a power. For all r ≥ `, the number
of words in L(M) of length r is at most 7n.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 14 / 21

Bounding the Number of Words of Each Length

To prove this, we use a technique from the theory of
non-deterministic state complexity and a classical result from
combinatorics on words.

Theorem (Birget (1992))
Let L ⊆ Σ∗ be a regular language. Suppose there exists a set of pairs
S = {(xi , yi) ∈ Σ∗ ×Σ∗ : 1 ≤ i ≤ n} such that: (a) xiyi ∈ L for 1 ≤ i ≤ n;
and (b) either xiyj /∈ L or xjyi /∈ L for 1 ≤ i , j ≤ n, i 6= j . Then any NFA
accepting L has at least n states.

Theorem (Lyndon and Schützenberger (1962))

If x, y, and z are words satisfying an equation x iy j = zk , where
i , j , k ≥ 2, then they are all powers of a common word.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 15 / 21

Bounding the Number of Words of Each Length

Let r ≥ ` be an arbitrary integer.
Consider the set A of words w in L(M) such that |w | = r and w is
a k -power for some k ≥ 4.
For each such w , write w = x i , where x is a primitive word, and
define a pair (x2, x i−2). Let SA denote the set of such pairs.
Consider two pairs in SA: (x2, x i−2) and (y2, y j−2).
The word x2y j−2 is primitive by the Lyndon–Schützenberger
theorem and hence is not in L(M). The set SA thus satisfies the
conditions of Birget’s theorem. Since L(M) is accepted by an
n-state NFA, we must have |SA| ≤ n and thus |A| ≤ n.
Similar considerations (which we omit) allow us to bound the
number of cubes and squares in L(M), and result in the claimed
bound of 7n.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 16 / 21

Testing if an Automaton Only Accepts Powers

Theorem
Given an NFA M with n states, it is possible to determine if every word
in L(M) is a power in O(n5) time.

Checking if a word is a power can be done in linear time using the
Knuth-Morris-Pratt algorithm.
By the results previously mentioned it suffices to enumerate the
words in L(M) of lengths 1, 2, . . . , 3n, stopping if the number of
such words in any length exceeds 7n.
If all these words are powers, then every word is a power.
Otherwise, if we find a non-power, or if the number of words in any
length exceeds 7n, then not every word is a power.
By the work of Mäkinen (1997) or Ackerman & Shallit (2007), we
can enumerate these words in O(n5) time.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 17 / 21

Testing if An NFA Only Accepts k -powers

How can we efficiently test if an NFA only accepts k -powers?
First we establish a result for k -powers analogous to that of Ito et.
al for powers.

Theorem

Let L be accepted by an n-state NFA M and let k ≥ 2 be an integer.
1 Every word in L is a k-power if and only if every word in the set
{x ∈ L : |x | ≤ 3n} is a k-power.

2 All but finitely many words in L are k-powers if and only if every
word in the set {x ∈ L : n ≤ |x | ≤ 3n} is a k-power.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 18 / 21

Testing if An NFA Only Accepts k -powers

Next we use this result to deduce the following algorithmic result.

Theorem

Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if every word in L(M) is a
k-power in O(n3 + tn2) time.

The idea is to create a “small” NFA M ′r for r = 3n such that no
word in L(M ′r) is a k -power, and M ′r accepts all non-k -powers of
length ≤ r (and perhaps some other non-k -powers).
We now form a new NFA A as the cross product of M ′r with M. It
follows that L(A) = ∅ iff every word in L(M) is a k -power.
Again, we can determine if L(A) = ∅ in linear time.

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 19 / 21

Summary of Results for Various L

decide if decide if
L L(M) ∩ L = ∅ L(M) ∩ L

infinite
palindromes O(n2 + t2) O(n2 + t2)

non-palindromes O(n2 + tn) O(n2 + t2)

k -powers O(n2k−1tk) O(n2k−1tk)
(k fixed)
k -powers PSPACE- PSPACE-

(k part of input) complete complete
non-k -powers O(n3 + tn2) O(n3 + tn2)

powers PSPACE- PSPACE-
complete complete

non-powers O(n5) O(n5)

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 20 / 21

Thank you!

Anderson et al. (University of Waterloo) Palindromes, Powers, Patterns 19 March 2008 21 / 21

