Finite Automata, Palindromes, Powers, and Patterns

Terry Anderson, Narad Rampersad, Nicolae Santean, Jeffrey Shallit

> School of Computer Science University of Waterloo

> > 19 March 2008

The Main Questions

- Let $L \subseteq \Sigma^*$ be a fixed language.
- Let *M* be a DFA or NFA over Σ.
- We consider the following three questions:
- Can we efficiently decide (in terms of the size of *M*) if L(M) ∩ L ≠ Ø?
- 2 Can we efficiently decide if $L(M) \cap L$ is infinite?
- Solution What is a good upper bound on the shortest element of $L(M) \cap L$?

The Languages L Considered

- We consider these questions for the following languages *L*.
- The language of **palindromes**, i.e., words *x* such that *x* equals its reversal *x*^{*R*}.
- The language of *k*-**powers**, i.e., words *x* that can be written as $x = y^k = yy \cdots y$ (*k* times).
- The language of **powers**, i.e., words that are *k*-powers for some *k* ≥ 2.
- The language of words matching a given pattern p, i.e., words x for which there exists a non-erasing morphism h such that h(p) = x.
- Let us also refer to 2-powers and 3-powers as squares and cubes respectively. We also call non-powers primitive words.

Testing if an NFA Accepts at Least One Palindrome

- To warm-up, let us see how to test if an NFA accepts a palindrome.
- If *M* is an NFA with *n* states and *t* transitions, it is easy to construct an NFA *M'* with $n^2 + 1$ states and $\leq 2t^2$ transitions that accepts

$$L' = \{x \in \Sigma^* : xx^R \in L(M) \text{ or there exists } a \in \Sigma \\ \text{ such that } xax^R \in L(M) \}.$$

• Since NFA emptiness and finiteness can be tested in linear time, using M' we can determine if M accepts a palindrome (or infinitely many palindromes) in $O(n^2 + t^2)$ time.

Testing if an NFA Accepts at Least One Palindrome

- A somewhat more difficult problem is determining if an NFA accepts a palindromic language (i.e., accepts only palindromes).
- Horváth, Karhumäki, and Kleijn (1987) proved that the question is recursively solvable.
- They proved that if *M* is an *n*-state NFA, then L(M) is palindromic if and only if $\{x \in L(M) : |x| < 3n\}$ is palindromic.
- To obtain a polynomial time algorithm for palindromicity, we intersect *M* with a "small" NFA *M*′ such that *M*′ never accepts a palindrome and accepts all non-palindromes of length less than 3*n*.
- We then test if this new NFA accepts the empty language.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A **pattern** is simply a non-empty word over some alphabet Δ .
- We say a pattern p ∈ Δ* matches a word w ∈ Σ* if there exists a non-erasing morphism h : Δ* → Σ* such that h(p) = w.
- For example, if p = xyyx and w = 02111102, then p matches w, since we may take h(x) = 02 and h(y) = 11.
- Patterns generalize the notion of k-powers, since a k-power is a word matching the pattern x^k.

• We now consider the computational complexity of the decision problem:

NFA PATTERN ACCEPTANCE

INSTANCE: An NFA M over the alphabet Σ and a pattern p over some alphabet Δ . QUESTION: Does there exist $x \in \Sigma^+$ such that $x \in L(M)$ and x matches p?

 The solvability of this problem is implied by the following result (Restivo and Salemi (2001); Castiglione, Restivo, and Salemi (2004)): Let *L* be a regular language and let Δ be an alphabet. The set *P*_Δ of all non-empty patterns *p* ∈ Δ* such that *p* matches a word in *L* is effectively regular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

The NFA PATTERN ACCEPTANCE problem is PSPACE-complete.

- By Savitch's theorem it suffices to give an NPSPACE algorithm.
- For an alphabet symbol a, the transitions of an NFA M can be represented by a boolean matrix B_a .
- For a word $w = w_0 w_1 \cdots w_s$, we write B_w for the matrix product $B_{w_0} B_{w_1} \cdots B_{w_s}$.
- Suppose the pattern alphabet is $\Delta = \{1, 2, \dots, k\}$.
- Non-deterministically guess k boolean matrices B_1, \ldots, B_k .
- For each *i*, verify that $B_i = B_w$ for some word *w* of length at most 2^{n^2} .

- We guess *w* symbol-by-symbol and reuse space after perfoming each matrix multiplication while computing *B_w*.
- If $p = p_0 p_1 \cdots p_r$, compute $B = B_{p_0} B_{p_1} \cdots B_{p_r}$ and accept if and only if *B* describes an accepting computation of *M*.
- To show hardness is a straightforward reduction from the PSPACE-complete problem

DFA INTERSECTION

INSTANCE: An integer $k \ge 1$ and k DFAs A_1, A_2, \ldots, A_k , each over the alphabet Σ .

QUESTION: Does there exist $x \in \Sigma^*$ such that x is accepted by each A_i , $1 \le i \le k$?

Special Cases of Pattern Acceptance

- A special case of NFA PATTERN ACCEPTANCE is the NFA ACCEPTS A *k*-POWER problem.
- When *k* is part of the input (i.e., *k* is not fixed), this is still PSPACE-complete.
- However, if *k* is fixed, this problem can be solved in polynomial time.

Proposition

Let *M* be an NFA with *n* states and *t* transitions, and set N = n + t, the size of *M*. For any fixed integer $k \ge 2$, there is an algorithm running in $O(n^{2k-1}t^k) = O(N^{2k-1})$ time to determine if *M* accepts a *k*-power.

3

Automata Accepting Only Powers

• Ito, Katsura, Shyr, and Yu (1988) proved the following result (stated here in a slightly stronger form than in the original).

Theorem (Ito et. al (1988))

Let L be accepted by an n-state NFA M.

- Every word in L is a power if and only if every word in the set $\{x \in L : |x| \le 3n\}$ is a power.
- 2 All but finitely many words in L are powers if and only if every word in the set $\{x \in L : n \le |x| \le 3n\}$ is a power.

BA 4 BA

The Idea of the Proof

- Suppose to the contrary that a shortest non-power $x \in L$ had length greater than 3n.
- An accepting computation of *M* on *x* must repeat some state *q* four times.
- It follows that $x = uv_1v_2v_3w$ such that $uv_1^*v_2^*v_3^*w \subseteq L$.
- Consider the words obtained by deleted one or more of the v_i's from x, e.g., uv₁v₃w, uv₂w, uw, etc. These must all be powers.
- Use standard results from combinatorics on words to derive a contradiction by showing that if these words are all powers, then *x* must be a power, contrary to our assumption.

3

A THE A THE A

Slenderness

- The characterization due to Ito et al. (1988) (see also Dömösi, Horváth, and Ito (2004)) showed that any regular language consisting only of powers is slender.
- A language *L* is **slender** if there is a constant *C* such that, for all $i \ge 0$, the number of words of length *i* in *L* is less than *C*.
- The following characterization of slender regular languages has been independently rediscovered several times in the past (Kunze, Shyr, and Thierrin (1981); Shallit (1994); Paun and Salomaa (1995)).
- Let L ⊆ Σ* be a regular language. Then L is slender if and only if it can be written as a finite union of languages of the form uv*w, where u, v, w ∈ Σ*.

Bounding the Number of Words of Each Length

- Again, if a regular language *L* contains only powers, it contains at most *C* words of length *i* for every *i* ≥ 0.
- Next we show how to bound *C* in terms of the number *n* of states of an *NFA* accepting *L*.
- We then use the bound to give an efficient algorithm to test if a regular language contains only powers.

Proposition

Let M be an n-state NFA and let ℓ be a non-negative integer such that every word in L(M) of length $\geq \ell$ is a power. For all $r \geq \ell$, the number of words in L(M) of length r is at most 7n.

3

Bounding the Number of Words of Each Length

 To prove this, we use a technique from the theory of non-deterministic state complexity and a classical result from combinatorics on words.

Theorem (Birget (1992))

Let $L \subseteq \Sigma^*$ be a regular language. Suppose there exists a set of pairs $S = \{(x_i, y_i) \in \Sigma^* \times \Sigma^* : 1 \le i \le n\}$ such that: (a) $x_i y_i \in L$ for $1 \le i \le n$; and (b) either $x_i y_j \notin L$ or $x_j y_i \notin L$ for $1 \le i, j \le n$, $i \ne j$. Then any NFA accepting L has at least n states.

Theorem (Lyndon and Schützenberger (1962))

If x, y, and z are words satisfying an equation $x^i y^j = z^k$, where $i, j, k \ge 2$, then they are all powers of a common word.

Bounding the Number of Words of Each Length

- Let $r \ge \ell$ be an arbitrary integer.
- Consider the set A of words w in L(M) such that |w| = r and w is a k-power for some k ≥ 4.
- For each such *w*, write $w = x^i$, where *x* is a primitive word, and define a pair (x^2, x^{i-2}) . Let S_A denote the set of such pairs.
- Consider two pairs in S_A : (x^2, x^{i-2}) and (y^2, y^{j-2}) .
- The word $x^2 y^{j-2}$ is primitive by the Lyndon–Schützenberger theorem and hence is not in L(M). The set S_A thus satisfies the conditions of Birget's theorem. Since L(M) is accepted by an *n*-state NFA, we must have $|S_A| \le n$ and thus $|A| \le n$.
- Similar considerations (which we omit) allow us to bound the number of cubes and squares in L(M), and result in the claimed bound of 7n.

Testing if an Automaton Only Accepts Powers

Theorem

Given an NFA M with n states, it is possible to determine if every word in L(M) is a power in $O(n^5)$ time.

- Checking if a word is a power can be done in linear time using the Knuth-Morris-Pratt algorithm.
- By the results previously mentioned it suffices to enumerate the words in L(M) of lengths 1, 2, ..., 3n, stopping if the number of such words in any length exceeds 7n.
- If all these words are powers, then every word is a power.
- Otherwise, if we find a non-power, or if the number of words in any length exceeds 7*n*, then not every word is a power.
- By the work of Mäkinen (1997) or Ackerman & Shallit (2007), we can enumerate these words in $O(n^5)$ time.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Testing if An NFA Only Accepts k-powers

- How can we efficiently test if an NFA only accepts k-powers?
- First we establish a result for *k*-powers analogous to that of Ito et. al for powers.

Theorem

Let L be accepted by an n-state NFA M and let $k \ge 2$ be an integer.

- Solution Every word in L is a k-power if and only if every word in the set $\{x \in L : |x| \le 3n\}$ is a k-power.
- 2 All but finitely many words in L are k-powers if and only if every word in the set $\{x \in L : n \le |x| \le 3n\}$ is a k-power.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Testing if An NFA Only Accepts k-powers

• Next we use this result to deduce the following algorithmic result.

Theorem

Let $k \ge 2$ be an integer. Given an NFA M with n states and t transitions, it is possible to determine if every word in L(M) is a *k*-power in $O(n^3 + tn^2)$ time.

- The idea is to create a "small" NFA M'_r for r = 3n such that no word in L(M'_r) is a k-power, and M'_r accepts all non-k-powers of length ≤ r (and perhaps some other non-k-powers).
- We now form a new NFA A as the cross product of M'_r with M. It follows that L(A) = ∅ iff every word in L(M) is a k-power.
- Again, we can determine if $L(A) = \emptyset$ in linear time.

Summary of Results for Various L

	decide if	decide if
L	$L(M) \cap L = \emptyset$	$L(M) \cap L$
		infinite
palindromes	$O(n^2 + t^2)$	$O(n^2 + t^2)$
non-palindromes	$O(n^2 + tn)$	$O(n^2 + t^2)$
<i>k</i> -powers	$O(n^{2k-1}t^k)$	$O(n^{2k-1}t^k)$
(k fixed)		
<i>k</i> -powers	PSPACE-	PSPACE-
(<i>k</i> part of input)	complete	complete
non-k-powers	$O(n^3 + tn^2)$	$O(n^3 + tn^2)$
powers	PSPACE-	PSPACE-
	complete	complete
non-powers	$O(n^5)$	$O(n^5)$
non-powers	$O(n^5)$	$O(n^5)$

э

3 > 4 3

Thank you!

Anderson et al. (University of Waterloo)

Palindromes, Powers, Patterns

19 March 2008 21 / 21

2

3 1 4 3