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The Main Questions

Let L ⊆ Σ∗ be a fixed language.
Let M be a DFA or NFA over Σ.
We consider the following three questions:

1 Can we efficiently decide (in terms of the size of M) if
L(M) ∩ L 6= ∅?

2 Can we efficiently decide if L(M) ∩ L is infinite?
3 What is a good upper bound on the shortest element of L(M) ∩ L?
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The Languages L Considered

We consider these questions for the following languages L.
The language of palindromes, i.e., words x such that x equals its
reversal xR.
The language of k -powers, i.e., words x that can be written as
x = yk = yy · · · y (k times).
The language of powers, i.e., words that are k -powers for some
k ≥ 2.
The language of words matching a given pattern p, i.e., words x
for which there exists a non-erasing morphism h such that
h(p) = x .
Let us also refer to 2-powers and 3-powers as squares and
cubes respectively. We also call non-powers primitive words.
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Testing if an NFA Accepts at Least One Palindrome

To warm-up, let us see how to test if an NFA accepts a palindrome.
If M is an NFA with n states and t transitions, it is easy to construct
an NFA M ′ with n2 + 1 states and ≤ 2t2 transitions that accepts

L′ = {x ∈ Σ∗ : xxR ∈ L(M) or there exists a ∈ Σ

such that xaxR ∈ L(M)}.

Since NFA emptiness and finiteness can be tested in linear time,
using M ′ we can determine if M accepts a palindrome (or infinitely
many palindromes) in O(n2 + t2) time.
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Testing if an NFA Accepts at Least One Palindrome

A somewhat more difficult problem is determining if an NFA
accepts a palindromic language (i.e., accepts only palindromes).
Horváth, Karhumäki, and Kleijn (1987) proved that the question is
recursively solvable.
They proved that if M is an n-state NFA, then L(M) is palindromic
if and only if {x ∈ L(M) : |x | < 3n} is palindromic.
To obtain a polynomial time algorithm for palindromicity, we
intersect M with a “small” NFA M ′ such that M ′ never accepts a
palindrome and accepts all non-palindromes of length less than
3n.
We then test if this new NFA accepts the empty language.
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Testing if an NFA Accepts a Word Matching a Pattern

A pattern is simply a non-empty word over some alphabet ∆.
We say a pattern p ∈ ∆∗ matches a word w ∈ Σ∗ if there exists a
non-erasing morphism h : ∆∗ → Σ∗ such that h(p) = w .
For example, if p = xyyx and w = 02111102, then p matches w ,
since we may take h(x) = 02 and h(y) = 11.
Patterns generalize the notion of k -powers, since a k -power is a
word matching the pattern xk .
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Testing if an NFA Accepts a Word Matching a Pattern

We now consider the computational complexity of the decision
problem:

NFA PATTERN ACCEPTANCE
INSTANCE: An NFA M over the alphabet Σ and a pattern
p over some alphabet ∆.
QUESTION: Does there exist x ∈ Σ+ such that x ∈ L(M)
and x matches p?

The solvability of this problem is implied by the following result
(Restivo and Salemi (2001); Castiglione, Restivo, and Salemi
(2004)): Let L be a regular language and let ∆ be an alphabet.
The set P∆ of all non-empty patterns p ∈ ∆∗ such that p matches
a word in L is effectively regular.
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Testing if an NFA Accepts a Word Matching a Pattern

Theorem

The NFA PATTERN ACCEPTANCE problem is PSPACE-complete.

By Savitch’s theorem it suffices to give an NPSPACE algorithm.
For an alphabet symbol a, the transitions of an NFA M can be
represented by a boolean matrix Ba.
For a word w = w0w1 · · ·ws, we write Bw for the matrix product
Bw0Bw1 · · ·Bws .
Suppose the pattern alphabet is ∆ = {1, 2, . . . , k}.
Non-deterministically guess k boolean matrices B1, . . . , Bk .
For each i , verify that Bi = Bw for some word w of length at most
2n2

.
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Testing if an NFA Accepts a Word Matching a Pattern

We guess w symbol-by-symbol and reuse space after perfoming
each matrix multiplication while computing Bw .
If p = p0p1 · · · pr , compute B = Bp0Bp1 · · ·Bpr and accept if and
only if B describes an accepting computation of M.
To show hardness is a straightforward reduction from the
PSPACE-complete problem

DFA INTERSECTION
INSTANCE: An integer k ≥ 1 and k DFAs A1, A2, . . . , Ak ,
each over the alphabet Σ.
QUESTION: Does there exist x ∈ Σ∗ such that x is
accepted by each Ai , 1 ≤ i ≤ k?
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Special Cases of Pattern Acceptance

A special case of NFA PATTERN ACCEPTANCE is the NFA
ACCEPTS A k -POWER problem.
When k is part of the input (i.e., k is not fixed), this is still
PSPACE-complete.
However, if k is fixed, this problem can be solved in polynomial
time.

Proposition

Let M be an NFA with n states and t transitions, and set N = n + t , the
size of M. For any fixed integer k ≥ 2, there is an algorithm running in
O(n2k−1tk ) = O(N2k−1) time to determine if M accepts a k-power.
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Automata Accepting Only Powers

Ito, Katsura, Shyr, and Yu (1988) proved the following result
(stated here in a slightly stronger form than in the original).

Theorem (Ito et. al (1988))
Let L be accepted by an n-state NFA M.

1 Every word in L is a power if and only if every word in the set
{x ∈ L : |x | ≤ 3n} is a power.

2 All but finitely many words in L are powers if and only if every word
in the set {x ∈ L : n ≤ |x | ≤ 3n} is a power.
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The Idea of the Proof

Suppose to the contrary that a shortest non-power x ∈ L had
length greater than 3n.
An accepting computation of M on x must repeat some state q
four times.
It follows that x = uv1v2v3w such that uv∗1 v∗2 v∗3 w ⊆ L.
Consider the words obtained by deleted one or more of the vi ’s
from x , e.g., uv1v3w , uv2w , uw , etc. These must all be powers.
Use standard results from combinatorics on words to derive a
contradiction by showing that if these words are all powers, then x
must be a power, contrary to our assumption.
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Slenderness

The characterization due to Ito et al. (1988) (see also Dömösi,
Horváth, and Ito (2004)) showed that any regular language
consisting only of powers is slender.
A language L is slender if there is a constant C such that, for all
i ≥ 0, the number of words of length i in L is less than C.
The following characterization of slender regular languages has
been independently rediscovered several times in the past (Kunze,
Shyr, and Thierrin (1981); Shallit (1994); Paun and Salomaa
(1995)).
Let L ⊆ Σ∗ be a regular language. Then L is slender if and only if it
can be written as a finite union of languages of the form uv∗w ,
where u, v , w ∈ Σ∗.
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Bounding the Number of Words of Each Length

Again, if a regular language L contains only powers, it contains at
most C words of length i for every i ≥ 0.
Next we show how to bound C in terms of the number n of states
of an NFA accepting L.
We then use the bound to give an efficient algorithm to test if a
regular language contains only powers.

Proposition

Let M be an n-state NFA and let ` be a non-negative integer such that
every word in L(M) of length ≥ ` is a power. For all r ≥ `, the number
of words in L(M) of length r is at most 7n.
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Bounding the Number of Words of Each Length

To prove this, we use a technique from the theory of
non-deterministic state complexity and a classical result from
combinatorics on words.

Theorem (Birget (1992))
Let L ⊆ Σ∗ be a regular language. Suppose there exists a set of pairs
S = {(xi , yi) ∈ Σ∗ ×Σ∗ : 1 ≤ i ≤ n} such that: (a) xiyi ∈ L for 1 ≤ i ≤ n;
and (b) either xiyj /∈ L or xjyi /∈ L for 1 ≤ i , j ≤ n, i 6= j . Then any NFA
accepting L has at least n states.

Theorem (Lyndon and Schützenberger (1962))

If x, y, and z are words satisfying an equation x iy j = zk , where
i , j , k ≥ 2, then they are all powers of a common word.
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Bounding the Number of Words of Each Length

Let r ≥ ` be an arbitrary integer.
Consider the set A of words w in L(M) such that |w | = r and w is
a k -power for some k ≥ 4.
For each such w , write w = x i , where x is a primitive word, and
define a pair (x2, x i−2). Let SA denote the set of such pairs.
Consider two pairs in SA: (x2, x i−2) and (y2, y j−2).
The word x2y j−2 is primitive by the Lyndon–Schützenberger
theorem and hence is not in L(M). The set SA thus satisfies the
conditions of Birget’s theorem. Since L(M) is accepted by an
n-state NFA, we must have |SA| ≤ n and thus |A| ≤ n.
Similar considerations (which we omit) allow us to bound the
number of cubes and squares in L(M), and result in the claimed
bound of 7n.
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Testing if an Automaton Only Accepts Powers

Theorem
Given an NFA M with n states, it is possible to determine if every word
in L(M) is a power in O(n5) time.

Checking if a word is a power can be done in linear time using the
Knuth-Morris-Pratt algorithm.
By the results previously mentioned it suffices to enumerate the
words in L(M) of lengths 1, 2, . . . , 3n, stopping if the number of
such words in any length exceeds 7n.
If all these words are powers, then every word is a power.
Otherwise, if we find a non-power, or if the number of words in any
length exceeds 7n, then not every word is a power.
By the work of Mäkinen (1997) or Ackerman & Shallit (2007), we
can enumerate these words in O(n5) time.
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Testing if An NFA Only Accepts k -powers

How can we efficiently test if an NFA only accepts k -powers?
First we establish a result for k -powers analogous to that of Ito et.
al for powers.

Theorem

Let L be accepted by an n-state NFA M and let k ≥ 2 be an integer.
1 Every word in L is a k-power if and only if every word in the set
{x ∈ L : |x | ≤ 3n} is a k-power.

2 All but finitely many words in L are k-powers if and only if every
word in the set {x ∈ L : n ≤ |x | ≤ 3n} is a k-power.
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Testing if An NFA Only Accepts k -powers

Next we use this result to deduce the following algorithmic result.

Theorem

Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if every word in L(M) is a
k-power in O(n3 + tn2) time.

The idea is to create a “small” NFA M ′r for r = 3n such that no
word in L(M ′r ) is a k -power, and M ′r accepts all non-k -powers of
length ≤ r (and perhaps some other non-k -powers).
We now form a new NFA A as the cross product of M ′r with M. It
follows that L(A) = ∅ iff every word in L(M) is a k -power.
Again, we can determine if L(A) = ∅ in linear time.
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Summary of Results for Various L

decide if decide if
L L(M) ∩ L = ∅ L(M) ∩ L

infinite
palindromes O(n2 + t2) O(n2 + t2)

non-palindromes O(n2 + tn) O(n2 + t2)

k -powers O(n2k−1tk ) O(n2k−1tk )
(k fixed)
k -powers PSPACE- PSPACE-

(k part of input) complete complete
non-k -powers O(n3 + tn2) O(n3 + tn2)

powers PSPACE- PSPACE-
complete complete

non-powers O(n5) O(n5)
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Thank you!
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