Finite Automata, Palindromes, Powers, and **Patterns**

Terry Anderson, Narad Rampersad, Nicolae Santean, Jeffrey Shallit

School of Computer Science University of Waterloo

19 March 2008

Anderson et al. (University of Waterloo) [Palindromes, Powers, Patterns](#page-20-0) 19 March 2008 1/21

 Ω

The Main Questions

- Let $L \subseteq \Sigma^*$ be a fixed language.
- Let *M* be a DFA or NFA over Σ.
- We consider the following three questions:
- ¹ Can we efficiently decide (in terms of the size of *M*) if *L*(*M*) ∩ *L* \neq \emptyset ?
- ² Can we efficiently decide if *L*(*M*) ∩ *L* is infinite?
- ³ What is a good upper bound on the shortest element of *L*(*M*) ∩ *L*?

 Ω

The Languages *L* Considered

- We consider these questions for the following languages *L*.
- The language of **palindromes**, i.e., words *x* such that *x* equals its reversal *x R*.
- The language of *k***-powers**, i.e., words *x* that can be written as $x = y^k = yy \cdots y$ (*k* times).
- The language of **powers**, i.e., words that are *k*-powers for some $k > 2$.
- The language of words matching a given **pattern** *p*, i.e., words *x* for which there exists a non-erasing morphism *h* such that $h(p) = x$.
- Let us also refer to 2-powers and 3-powers as **squares** and **cubes** respectively. We also call non-powers **primitive words**.

E

 Ω

イロト イ押ト イヨト イヨト

Testing if an NFA Accepts at Least One Palindrome

- To warm-up, let us see how to test if an NFA accepts a palindrome.
- If *M* is an NFA with *n* states and *t* transitions, it is easy to construct an NFA M' with n^2+1 states and $\leq 2t^2$ transitions that accepts

$$
L' = \{x \in \Sigma^* : xx^R \in L(M) \text{ or there exists } a \in \Sigma \text{ such that } xax^R \in L(M)\}.
$$

Since NFA emptiness and finiteness can be tested in linear time, using *M'* we can determine if *M* accepts a palindrome (or infinitely many palindromes) in $O(n^2 + t^2)$ time.

 Ω

 $\left\{ \left| \mathbf{a} \right| \mathbf{b} \right| \times \left| \mathbf{a} \right| \geq \left| \mathbf{b} \right| \times \left| \mathbf{a} \right| \geq \left| \mathbf{b} \right| \right\}$

Testing if an NFA Accepts at Least One Palindrome

- A somewhat more difficult problem is determining if an NFA accepts a **palindromic language** (i.e., accepts only palindromes).
- **•** Horváth, Karhumäki, and Kleijn (1987) proved that the question is recursively solvable.
- They proved that if *M* is an *n*-state NFA, then *L*(*M*) is palindromic if and only if $\{x \in L(M) : |x| < 3n\}$ is palindromic.
- To obtain a polynomial time algorithm for palindromicity, we intersect *M* with a "small" NFA *M'* such that *M'* never accepts a palindrome and accepts all non-palindromes of length less than 3*n*.
- We then test if this new NFA accepts the empty language.

 Ω

イロト イ押 トイラト イラト

- A **pattern** is simply a non-empty word over some alphabet ∆.
- We say a pattern *p* ∈ ∆[∗] **matches** a word *w* ∈ Σ ∗ if there exists a $\mathsf{non\text{-}erasing \, morphism} \; h : \Delta^* \to \Sigma^* \; \mathsf{such} \; \mathsf{that} \; h(\rho) = w.$
- For example, if $p = x\gamma x$ and $w = 02111102$, then p matches w. since we may take $h(x) = 02$ and $h(y) = 11$.
- Patterns generalize the notion of *k*-powers, since a *k*-power is a word matching the pattern *x k* .

 Ω

イタト イミト イミトー

We now consider the computational complexity of the decision problem:

NFA PATTERN ACCEPTANCE

INSTANCE: An NFA M over the alphabet Σ *and a pattern p over some alphabet* ∆*. QUESTION: Does there exist* $x \in \Sigma^{+}$ *such that* $x \in L(M)$ *and x matches p?*

• The solvability of this problem is implied by the following result (Restivo and Salemi (2001); Castiglione, Restivo, and Salemi (2004)): Let *L* be a regular language and let ∆ be an alphabet. The set P_{Λ} of all non-empty patterns $p \in \Delta^*$ such that p matches a word in *L* is effectively regular.

 Ω

イロト イ押 トイラト イラト

Theorem

The **NFA PATTERN ACCEPTANCE** *problem is PSPACE-complete.*

- By Savitch's theorem it suffices to give an NPSPACE algorithm.
- For an alphabet symbol *a*, the transitions of an NFA *M* can be represented by a boolean matrix *Ba*.
- For a word $w = w_0w_1 \cdots w_s$, we write B_w for the matrix product $B_{w_0}B_{w_1}\cdots B_{w_s}.$
- \bullet Suppose the pattern alphabet is $\Delta = \{1, 2, \ldots, k\}.$
- Non-deterministically guess *k* boolean matrices B_1, \ldots, B_k .
- For each *i*, verify that $B_i = B_w$ for some word w of length at most 2^{n^2} .

 Ω

(ロトイ部)→(差)→(差)→

- We guess *w* symbol-by-symbol and reuse space after perfoming each matrix multiplication while computing *B^w* .
- If $\rho = \rho_0 \rho_1 \cdots \rho_r$, compute $B = B_{\rho_0} B_{\rho_1} \cdots B_{\rho_r}$ and accept if and only if *B* describes an accepting computation of *M*.
- To show hardness is a straightforward reduction from the PSPACE-complete problem

DFA INTERSECTION

INSTANCE: An integer $k > 1$ *and k DFAs* A_1, A_2, \ldots, A_k *, each over the alphabet* Σ*.*

QUESTION: Does there exist $x \in \Sigma^*$ *such that x is accepted by each A_i*, 1 \leq *i* \leq *k*?

 Ω

イロト イ押ト イヨト イヨト ニヨ

Special Cases of Pattern Acceptance

- A special case of **NFA PATTERN ACCEPTANCE** is the **NFA ACCEPTS A** *k***-POWER** problem.
- When *k* is part of the input (i.e., *k* is not fixed), this is still PSPACE-complete.
- However, if *k* is fixed, this problem can be solved in polynomial time.

Proposition

Let M be an NFA with n states and t transitions, and set $N = n + t$ *, the size of M. For any fixed integer k* ≥ 2*, there is an algorithm running in* $O(n^{2k-1}t^k) = O(N^{2k-1})$ *time to determine if M accepts a k-power.*

в

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Automata Accepting Only Powers

• Ito, Katsura, Shyr, and Yu (1988) proved the following result (stated here in a slightly stronger form than in the original).

Theorem (Ito et. al (1988))

Let L be accepted by an n-state NFA M.

- ¹ *Every word in L is a power if and only if every word in the set* ${x \in L : |x| \le 3n}$ *is a power.*
- ² *All but finitely many words in L are powers if and only if every word in the set* $\{x \in L : n \le |x| \le 3n\}$ *is a power.*

 Ω

The Idea of the Proof

- Suppose to the contrary that a shortest non-power *x* ∈ *L* had length greater than 3*n*.
- An accepting computation of *M* on *x* must repeat some state *q* four times.
- It follows that $x = uv_1v_2v_3w$ such that $uv_1^*v_2^*v_3^*w \subseteq L$.
- Consider the words obtained by deleted one or more of the *vⁱ* 's from x , e.g., uv_1v_3w , uv_2w , uw , etc. These must all be powers.
- Use standard results from combinatorics on words to derive a contradiction by showing that if these words are all powers, then *x* must be a power, contrary to our assumption.

в

 Ω

The South Book

Slenderness

- The characterization due to Ito et al. (1988) (see also Dömösi, Horváth, and Ito (2004)) showed that any regular language consisting only of powers is slender.
- A language *L* is **slender** if there is a constant *C* such that, for all $i > 0$, the number of words of length *i* in *L* is less than *C*.
- The following characterization of slender regular languages has been independently rediscovered several times in the past (Kunze, Shyr, and Thierrin (1981); Shallit (1994); Paun and Salomaa (1995)).
- Let *L* ⊆ Σ [∗] be a regular language. Then *L* is slender if and only if it can be written as a finite union of languages of the form uv^*w , where $u, v, w \in \Sigma^*$.

 Ω

イロト イ押ト イヨト イヨト ニヨ

Bounding the Number of Words of Each Length

- Again, if a regular language *L* contains only powers, it contains at most *C* words of length *i* for every $i \geq 0$.
- Next we show how to bound *C* in terms of the number *n* of states of an *NFA* accepting *L*.
- We then use the bound to give an efficient algorithm to test if a regular language contains only powers.

Proposition

Let M be an n-state NFA and let ` *be a non-negative integer such that every word in L(M) of length* $> \ell$ *is a power. For all r* $> \ell$ *, the number of words in L*(*M*) *of length r is at most* 7*n.*

в

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Bounding the Number of Words of Each Length

• To prove this, we use a technique from the theory of non-deterministic state complexity and a classical result from combinatorics on words.

Theorem (Birget (1992))

Let L ⊆ Σ [∗] *be a regular language. Suppose there exists a set of pairs* $S = \{(x_i, y_i) \in \Sigma^* \times \Sigma^* : 1 \leq i \leq n\}$ such that: (a) $x_i y_i \in L$ for $1 \leq i \leq n$; *and (b) either* $x_i y_i \notin L$ *or* $x_i y_i \notin L$ *for* $1 \le i, j \le n, i \ne j$. Then any NFA *accepting L has at least n states.*

Theorem (Lyndon and Schützenberger (1962))

If x, y, and z are words satisfying an equation $x^i y^j = z^k$, where $i, j, k \geq 2$, then they are all powers of a common word.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Bounding the Number of Words of Each Length

- Let $r > l$ be an arbitrary integer.
- Consider the set *A* of words *w* in $L(M)$ such that $|w| = r$ and *w* is a k -power for some $k > 4$.
- For each such *w*, write $w = x^i$, where *x* is a primitive word, and define a pair (x^2, x^{i-2}) . Let S_A denote the set of such pairs.
- Consider two pairs in S_A : (x^2, x^{i-2}) and (y^2, y^{j-2}) .
- The word *x* 2*y j*−2 is primitive by the Lyndon–Schützenberger theorem and hence is not in *L*(*M*). The set *S^A* thus satisfies the conditions of Birget's theorem. Since *L*(*M*) is accepted by an *n*-state NFA, we must have $|S_A| < n$ and thus $|A| < n$.
- Similar considerations (which we omit) allow us to bound the number of cubes and squares in *L*(*M*), and result in the claimed bound of 7*n*.

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Testing if an Automaton Only Accepts Powers

Theorem

Given an NFA M with n states, it is possible to determine if every word in L(*M*) *is a power in O*(*n* 5) *time.*

- Checking if a word is a power can be done in linear time using the Knuth-Morris-Pratt algorithm.
- By the results previously mentioned it suffices to enumerate the words in *L*(*M*) of lengths 1, 2, . . . , 3*n*, stopping if the number of such words in any length exceeds 7*n*.
- **If all these words are powers, then every word is a power.**
- Otherwise, if we find a non-power, or if the number of words in any length exceeds 7*n*, then not every word is a power.
- By the work of Mäkinen (1997) or Ackerman & Shallit (2007), we can enumerate these words in *O*(*n* 5) time.

в

 Ω

イロト イ押 トイラト イラト

Testing if An NFA Only Accepts *k*-powers

- How can we efficiently test if an NFA only accepts *k*-powers?
- First we establish a result for *k*-powers analogous to that of Ito et. al for powers.

Theorem

Let L be accepted by an n-state NFA M and let $k \geq 2$ *be an integer.*

- ¹ *Every word in L is a k -power if and only if every word in the set* ${x \in L : |x| \leq 3n}$ *is a k-power.*
- ² *All but finitely many words in L are k -powers if and only if every word in the set* $\{x \in L : n \le |x| \le 3n\}$ *is a k-power.*

в

 Ω

イロト イ押 トイラト イラト

Testing if An NFA Only Accepts *k*-powers

Next we use this result to deduce the following algorithmic result.

Theorem

Let k ≥ 2 *be an integer. Given an NFA M with n states and t transitions, it is possible to determine if every word in L*(*M*) *is a k*-power in $O(n^3 + tn^2)$ time.

- The idea is to create a "small" NFA M'_{r} for $r = 3n$ such that no word in $L(M'_r)$ is a k -power, and M'_r accepts all non- k -powers of length ≤ *r* (and perhaps some other non-*k*-powers).
- We now form a new NFA *A* as the cross product of M'_r with M. It follows that $L(A) = \emptyset$ iff every word in $L(M)$ is a *k*-power.
- Again, we can determine if $L(A) = \emptyset$ in linear time.

 Ω

イロト イ押ト イヨト イヨトー

Summary of Results for Various *L*

重

 299

ラメス 国

4 **EL 1 A RIA 4**

Thank you!

Anderson et al. (University of Waterloo) [Palindromes, Powers, Patterns](#page-0-0) 19 March 2008 21 / 21

 \mathbf{p}

重

 299

4 (D) 3 (F) 3 (F) 3 (F)