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Numeration systems

◮ A numeration system is an increasing sequence of integers

U = (Un)n≥0 such that

◮ U0 = 1 and

◮ CU := sup
n≥0

⌈Un+1/Un⌉ < ∞.

◮ U is linear if it satisfies a linear recurrence relation over Z.



Greedy representations

◮ A greedy representation of a non-negative integer n is a

word w = wℓ−1 · · ·w0 over {0, 1, . . . , CU − 1} such that

ℓ−1
∑

i=0

wiUi = n,

and for all j
j−1
∑

i=0

wiUi < Uj .

◮ repU(n) is the greedy representation of n with wℓ−1 6= 0.



Recognizable sets

◮ A set X of integers is U -recognizable if repU(X) is

accepted by a finite automaton.

◮ If X is U -recognizable, then U is linear.

◮ The converse is not true in general.

◮ If repU(N) is regular then let AU be the minimal

automaton accepting 0∗ repU(N).

◮ AU = (QU , {0, . . . , CU − 1}, δU , qU,0, FU)



The Fibonacci numeration system

0

1

0

◮ Un+2 = Un+1 + Un (U0 = 1, U1 = 2)

◮ AU accepts all words that do not contain 11.



The ℓ-bonacci numeration system

0

1 1 1

0

0
0

◮ Un+ℓ = Un+ℓ−1 + Un+ℓ−2 + · · ·+ Un

◮ Ui = 2i, i ∈ {0, . . . , ℓ − 1}
◮ AU accepts all words that do not contain 1ℓ.



Bertrand numeration systems

◮ Bertrand numeration system: w is in repU(N) if and only

if w0 is in repU(N).

◮ E.g., the ℓ-bonacci system is Bertrand.



A non-Bertrand system

0

1

2
0

◮ Un+2 = Un+1 + Un, (U0 = 1, U1 = 3)

◮ (Un)n≥0 = 1, 3, 4, 7, 11, 18, 29, 47, . . .

◮ 2 is a greedy representation but 20 is not.



β-expansions

◮ Bertrand systems are associated with β-expansions.

◮ Let β > 1 be a real number.

◮ The β-expansion of a real number x ∈ [0, 1] is the

lexicographically greatest sequence dβ(x) := (ti)i≥1 over

{0, . . . , ⌈β⌉ − 1} satisfying

x =
∞

∑

i=1

tiβ
−i.



Parry numbers

◮ If dβ(1) = t1 · · · tm0ω, with tm 6= 0, then dβ(1) is finite.

◮ In this case d∗
β(1) := (t1 · · · tm−1(tm − 1))ω.

◮ Otherwise d∗
β(1) := dβ(1).

◮ If d∗
β(1) is ultimately periodic, then β is a Parry number.



The Parry automaton

◮ Let Fact(Dβ) be the set of all words w lexicographically

less than or equal to the prefix of d∗
β(1) of length |w|.

◮ For β Parry, let Aβ be the minimal finite automaton

accepting Fact(Dβ).



An example of the automaton Aβ

0, 1

2 0

0

◮ Let β be the largest root of X3 − 2X2 − 1.

◮ dβ(1) = 2010ω and d∗
β(1) = (200)ω.

◮ This automaton also accepts repU(N) for U defined by

Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7).



Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a β > 1 such

that 0∗ repU(N) = Fact(Dβ) (that is, AU = Aβ).



The dominant root condition

◮ U satisfies the dominant root condition if

lim
n→∞

Un+1/Un = β for some real β > 1.

◮ β is the dominant root of the recurrence.

◮ E.g., Fibonacci: dominant root β = (1 +
√

5)/2



A system with an integral dominant root

0, 1, 2

3 1

0

4

◮ Un+1 = 3Un + 2, (U0 = 1)

◮ dominant root β = 3



Observations and questions

◮ Previous example: two strongly connected components.

◮ One component is a loop labeled by 0.

◮ In general, when are there more than one strongly

connected component?

◮ What do these components look like?



The main strongly connected component

Theorem

Let U be a linear numeration system such that repU(N) is

regular.

(i) The automaton AU has a non-trivial strongly connected

component CU containing the initial state.

(ii) If p is a state in CU , then there exists N ∈ N such that

δU(p, 0n) = qU,0 for all n ≥ N . In particular, one cannot

leave CU by reading a 0.



The main strongly connected component

Theorem (cont’d.)

(iii) If CU is the only non-trivial strongly connected

component of AU , then lim
n→∞

Un+1 − Un = ∞.

(iv) If lim
n→∞

Un+1 − Un = ∞, then δU(qU,0, 1) is in CU .



Other strongly connected components

Theorem (cont’d.)

Suppose U has a dominant root β > 1. If AU has more than

one non-trivial strongly connected component, then any such

component other than CU is a cycle all of whose edges are

labelled 0.



An example with two components

◮ Let t ≥ 1.

◮ Let U0 = 1, Utn+1 = 2Utn + 1, and

◮ Utn+r = 2Utn+r−1, for 1 < r ≤ t.

◮ E.g., for t = 2 we have U = (1, 3, 6, 13, 26, 53, . . .).

◮ Then 0∗ repU(N) = {0, 1}∗ ∪ {0, 1}∗2(0t)∗.

◮ The second component is a cycle of t 0’s.



Relationship with Aβ

Theorem (cont’d.)

Suppose U has a dominant root β > 1. There is a morphism

of automata Φ from CU to Aβ.

Φ maps the states of CU onto the states of Aβ so that

◮ Φ(qU,0) = qβ,0,

◮ for all states q and all letters σ such that q and δU(q, σ)

are in CU , we have Φ(δU (q, σ)) = δβ(Φ(q), σ).



An example

1 2 3

0, 1

2 0

0

◮ Recall the Bertrand system defined by

Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7).

◮ dβ(1) = 2010ω and d∗
β(1) = (200)ω.

◮ AU = Aβ .



Changing the initial conditions

a d f

b

c

e

g
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2
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0
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0

0

We change the initial values to (U0, U1, U2) = (1, 5, 6).



The morphism Φ

a d f

b

c

e

g

0

2 0

0

1

3, 4

1

2

2

0

1

0

0
1 2 3

0, 1

2 0

0

Φ maps {a,b, c} → {1}; {d, e} → {2}; and {f} → {3}.



Other results

◮ When U has a dominant root β > 1, we can say more.

◮ E.g., if AU has more than one strongly connected

component, then dβ(1) is finite.

◮ We can also give sufficient conditions for AU to have only

one strongly connected component and sufficient

conditions for AU to have more than one strongly

connected component.

◮ When U has no dominant root, the situation is more

complicated.



A system with no dominant root
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2 2 2

3 3 30, 1

2
0, 1 0, 1

3

0, 1, 2 0, 1

2, 3
3

0, 1, 2, 3

0, 1, 2

2

◮ Un+3 = 24Un, (U0, U1, U2) = (1, 2, 6)

◮ 3 strongly connected components



A system with no dominant root

1 1 2 2 2 2

0

1

0

1 0

1

0

0, 1

2

2

0

◮ Un+4 = 3Un+2 + Un, (U0, U1, U2, U3) = (1, 2, 3, 7)

◮ Un+1/Un does not converge, but

◮ lim
n→∞

U2n+2/U2n = lim
n→∞

U2n+3/U2n+1 = (3 +
√

13)/2



Application to state complexity

◮ If N is U -recognizable then so is m N.

◮ Alexeev (2004) gave an exact formula for the number of

states of the minimal automaton accepting the b-ary

representations of the multiples of m.

◮ We consider the same problem for other numeration

systems.



The integer bases

Theorem (Alexeev 2004)

Let λ(x, y) = x
gcd(x,y)

. The number of states of the minimal

automaton accepting the base b representations of the

multiples of m is

λ(m, bA) +

A−1
∑

i=0

λ(bi, m),

where A is the least non-negative integer i for which

λ(m, bi) − λ(m, bi+1) < λ(bi, m).



The Hankel matrix

◮ Let U = (Un)n≥0 be a numeration system.

◮ For t ≥ 1 define

Ht :=















U0 U1 · · · Ut−1

U1 U2 · · · Ut

...
...

. . .
...

Ut−1 Ut · · · U2t−2















.

◮ For m ≥ 2, define kU,m to be the largest t such that

det Ht 6≡ 0 (mod m).



Calculating kU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ (Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

◮ (Un mod 2)n≥0 is constant and trivially satisfies the

recurrence relation Un+1 = Un with U0 = 1.

◮ Hence kU,2 = 1.

◮ Mod 4 we find kU,4 = 2.



A system of linear congruences

◮ Let k = kU,m.

◮ Let x = (x1, . . . , xk).

◮ Let SU,m denote the number of k-tuples b in

{0, . . . , m − 1}k such that the system

Hk x ≡ b (mod m)

has at least one solution.



Calculating SU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ Consider the system

{

1 x1 + 3 x2 ≡ b1 (mod 4)

3 x1 + 7 x2 ≡ b2 (mod 4)

◮ 2x1 ≡ b2 − b1 (mod 4)

◮ For each value of b1 there are at most 2 values for b2.

◮ Hence SU,4 = 8.



Properties of the automata we consider

(H.1) AU has a single strongly connected component CU .

(H.2) For all states p, q in CU with p 6= q, there exists a word

xpq such that δU(p, xpq) ∈ CU and δU(q, xpq) 6∈ CU , or

vice-versa.



General state complexity result

Theorem

Let m ≥ 2 be an integer. Let U = (Un)n≥0 be a linear

numeration system such that

(a) N is U -recognizable and AU satisfies (H.1) and (H.2),

(b) (Un mod m)n≥0 is purely periodic.

The number of states of the trim minimal automaton

accepting 0∗ repU(mN) from which infinitely many words are

accepted is |CU |SU,m.



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and AU is

strongly connected, then the number of states of the trim

minimal automaton accepting 0∗ repU(mN) is |CU |SU,m.



Result for the ℓ-bonacci system

0

1 1 1

0

0
0

Corollary

For U the ℓ-bonacci numeration system, the number of states

of the trim minimal automaton accepting 0∗ repU(mN) is ℓmℓ.



Further work

◮ Analyze the structure of AU for systems with no

dominant root.

◮ Remove the assumption that U is purely periodic in the

state complexity result.

◮ Big open problem: Given an automaton accepting

repU(X), is it decidable whether X is an ultimately

periodic set?



The End


