The state complexity of testing divisibility in linear numeration systems

Narad Rampersad

Department of Mathematics University of Liège

Joint work with: É. Charlier, M. Rigo, L. Waxweiler

KORK EXTERNE PROVIDE

Numeration systems

▶ A numeration system is an increasing sequence of integers $U = (U_n)_{n \geq 0}$ such that

$$
\quad \textcolor{red}{\blacktriangleright} \ \ U_0 = 1 \ \text{and}
$$

$$
\blacktriangleright C_U := \sup_{n \ge 0} [U_{n+1}/U_n] < \infty.
$$

 \triangleright U is linear if it satisfies a linear recurrence relation over \mathbb{Z} .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

A greedy representation of a non-negative integer n is a word $w = w_{\ell-1} \cdots w_0$ over $\{0, 1, \ldots, C_U - 1\}$ such that

$$
\sum_{i=0}^{\ell-1} w_i U_i = n,
$$

and for all j

$$
\sum_{i=0}^{j-1} w_i U_i < U_j.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

► $rep_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.

- A set X of integers is U-recognizable if $\text{rep}_U(X)$ is accepted by a finite automaton.
- If X is U-recognizable, then U is linear.
- \blacktriangleright The converse is not true in general.
- If rep_U(N) is regular then let \mathscr{A}_U be the minimal automaton accepting 0^* $\operatorname{rep}_U(\mathbb{N}).$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

$$
\blacktriangleright \mathscr{A}_U = (Q_U, \{0, \ldots, C_U - 1\}, \delta_U, q_{U,0}, F_U)
$$

The Fibonacci numeration system

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $U_{n+2} = U_{n+1} + U_n$ $(U_0 = 1, U_1 = 2)$

 \blacktriangleright \mathcal{A}_U accepts all words that do not contain 11.

The ℓ -bonacci numeration system

- $\triangleright U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \cdots + U_n$
- $\blacktriangleright U_i = 2^i, i \in \{0, \ldots, \ell-1\}$
- \blacktriangleright \mathscr{A}_U accepts all words that do not contain 1^{ℓ} .

KORK ERKER ADAM STRAKE

Bertrand numeration systems

▶ Bertrand numeration system: w is in $\text{rep}_U(N)$ if and only if $w0$ is in $\operatorname{rep}_U(\mathbb{N})$.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

 \blacktriangleright E.g., the ℓ -bonacci system is Bertrand.

A non-Bertrand system

K ロ X K @ X K 할 X K 할 X 및 및 X O Q O

$$
\blacktriangleright U_{n+2} = U_{n+1} + U_n, (U_0 = 1, U_1 = 3)
$$

- \blacktriangleright $(U_n)_{n>0} = 1, 3, 4, 7, 11, 18, 29, 47, \ldots$
- \blacktriangleright 2 is a greedy representation but 20 is not.

- \triangleright Bertrand systems are associated with β -expansions.
- \blacktriangleright Let $\beta > 1$ be a real number.
- \triangleright The β -expansion of a real number $x \in [0, 1]$ is the lexicographically greatest sequence $d_{\beta}(x) := (t_i)_{i \geq 1}$ over $\{0, \ldots, \lceil \beta \rceil - 1\}$ satisfying

$$
x = \sum_{i=1}^{\infty} t_i \beta^{-i}.
$$

ADD YEARS ARA YOUR

Parry numbers

- If $d_{\beta}(1) = t_1 \cdots t_m 0^{\omega}$, with $t_m \neq 0$, then $d_{\beta}(1)$ is finite.
- ► In this case $d_{\beta}^*(1) := (t_1 \cdots t_{m-1}(t_m-1))^{\omega}$.
- ► Otherwise $d^*_{\beta}(1) := d_{\beta}(1)$.
- ► If $d^*_{\beta}(1)$ is ultimately periodic, then β is a Parry number.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Let Fact (D_β) be the set of all words w lexicographically less than or equal to the prefix of $d^*_{\beta}(1)$ of length $|w|.$
- \blacktriangleright For β Parry, let \mathscr{A}_{β} be the minimal finite automaton accepting Fact (D_β) .

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

An example of the automaton \mathscr{A}_{β}

- ► Let β be the largest root of $X^3 2X^2 1$.
- \blacktriangleright d_{β}(1) = 2010^{ω} and d_{β}^{*}(1) = (200)^{ω}.
- \blacktriangleright This automaton also accepts $\operatorname{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n$, $(U_0, U_1, U_2) = (1, 3, 7)$.

ADD YEARS ARA YOUR

Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta > 1$ such that $0^* \operatorname{rep}_U(\mathbb{N}) = \operatorname{Fact}(D_\beta)$ (that is, $A_U = A_\beta$).

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

 \blacktriangleright U satisfies the dominant root condition if

 $\lim_{n\to\infty} U_{n+1}/U_n = \beta$ for some real $\beta > 1$.

- \triangleright β is the dominant root of the recurrence.
- ► E.g., Fibonacci: dominant root $\beta = (1 + \sqrt{5})/2$

ADD YEARS ARA YOUR

A system with an integral dominant root

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- $U_{n+1} = 3U_n + 2$, $(U_0 = 1)$
- \blacktriangleright dominant root $\beta = 3$

Observations and questions

▶ Previous example: two strongly connected components.

KORK EXTERNE PROVIDE

- \triangleright One component is a loop labeled by 0.
- \triangleright In general, when are there more than one strongly connected component?
- \blacktriangleright What do these components look like?

The main strongly connected component

Theorem

Let U be a linear numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular.

- (i) The automaton \mathcal{A}_{U} has a non-trivial strongly connected component \mathscr{C}_U containing the initial state.
- (ii) If p is a state in \mathscr{C}_U , then there exists $N \in \mathbb{N}$ such that $\delta_U(p,0^n)=q_{U,0}$ for all $n\geq N$. In particular, one cannot leave \mathscr{C}_U by reading a 0.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

The main strongly connected component

Theorem (cont'd.)

(iii) If \mathcal{C}_U is the only non-trivial strongly connected component of \mathscr{A}_U , then $\lim_{n\to\infty}U_{n+1}-U_n=\infty$. (iv) If $\lim_{n\to\infty} U_{n+1} - U_n = \infty$, then $\delta_U(q_{U,0}, 1)$ is in \mathscr{C}_U .

KORK ERKER ADAM STRAKE

Theorem (cont'd.)

Suppose U has a dominant root $\beta > 1$. If \mathscr{A}_U has more than one non-trivial strongly connected component, then any such component other than \mathcal{C}_U is a cycle all of whose edges are labelled 0.

KORK EXTERNE PROVIDE

- \blacktriangleright Let $t > 1$.
- Execution Let $U_0 = 1$, $U_{tn+1} = 2U_{tn} + 1$, and

$$
\blacktriangleright U_{tn+r} = 2U_{tn+r-1}, \text{ for } 1 < r \leq t.
$$

E.g., for $t = 2$ we have $U = (1, 3, 6, 13, 26, 53, \ldots)$.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

- ► Then 0^* rep_{*U*}(\mathbb{N}) = {0, 1}^{*} ∪ {0, 1}^{*}2(0^t)^{*}.
- \triangleright The second component is a cycle of t 0's.

Theorem (cont'd.)

Suppose U has a dominant root $\beta > 1$. There is a morphism of automata Φ from \mathscr{C}_U to \mathscr{A}_{β} .

 Φ maps the states of \mathscr{C}_U onto the states of \mathscr{A}_{β} so that

$$
\blacktriangleright \Phi(q_{U,0}) = q_{\beta,0},
$$

 \triangleright for all states q and all letters σ such that q and $\delta_{U}(q, \sigma)$ are in \mathscr{C}_{U} , we have $\Phi(\delta_{U}(q, \sigma)) = \delta_{\beta}(\Phi(q), \sigma)$.

A O A G A 4 O A G A G A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A

An example

 \blacktriangleright Recall the Bertrand system defined by

$$
U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).
$$

K ロ X K @ X K 할 X K 할 X 및 및 X O Q O

 \blacktriangleright d_{β}(1) = 2010^{ω} and d_{β}^{*}(1) = (200)^{ω}.

 $\blacktriangleright \mathscr{A}_{U} = \mathscr{A}_{\beta}.$

Changing the initial conditions

We change the initial values to $(U_0, U_1, U_2) = (1, 5, 6)$.

K ロンス 御 > ス 할 > ス 할 > 「 할 …

The morphism Φ

 Φ maps $\{a, b, c\} \rightarrow \{1\}; \{d, e\} \rightarrow \{2\};$ and $\{f\} \rightarrow \{3\}.$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Other results

- ► When U has a dominant root $\beta > 1$, we can say more.
- E.g., if A_{U} has more than one strongly connected component, then $d_β(1)$ is finite.
- \triangleright We can also give sufficient conditions for \mathscr{A}_U to have only one strongly connected component and sufficient conditions for \mathscr{A}_U to have more than one strongly connected component.
- \blacktriangleright When U has no dominant root, the situation is more complicated.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

A system with no dominant root

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

- \blacktriangleright $U_{n+3} = 24U_n$, $(U_0, U_1, U_2) = (1, 2, 6)$
- \triangleright 3 strongly connected components

A system with no dominant root

- \blacktriangleright $U_{n+4} = 3U_{n+2} + U_n$, $(U_0, U_1, U_2, U_3) = (1, 2, 3, 7)$
- \blacktriangleright U_{n+1}/U_n does not converge, but
- ► $\lim_{n \to \infty} U_{2n+2}/U_{2n} = \lim_{n \to \infty} U_{2n+3}/U_{2n+1} = (3 + \sqrt{13})/2$

ADD YEARS ARA YOUR

Application to state complexity

- If N is U-recognizable then so is $m \mathbb{N}$.
- \triangleright Alexeev (2004) gave an exact formula for the number of states of the minimal automaton accepting the b -ary representations of the multiples of m .
- \triangleright We consider the same problem for other numeration systems.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Alexeev 2004)

Let $\lambda(x,y) = \frac{x}{\gcd(x,y)}$. The number of states of the minimal automaton accepting the base b representations of the multiples of m is

$$
\lambda(m, b^A) + \sum_{i=0}^{A-1} \lambda(b^i, m),
$$

where A is the least non-negative integer i for which $\lambda(m, b^i) - \lambda(m, b^{i+1}) < \lambda(b^i, m).$

The Hankel matrix

- ► Let $U = (U_n)_{n \geq 0}$ be a numeration system.
- ► For $t \geq 1$ define

$$
H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}
$$

.

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

► For $m \geq 2$, define $k_{U,m}$ to be the largest t such that $\det H_t \not\equiv 0 \pmod{m}$.

Calculating $k_{U,m}$

- \blacktriangleright $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- \blacktriangleright $(U_n)_{n>0} = 1, 3, 7, 17, 41, 99, 239, \ldots$
- \blacktriangleright $(U_n \mod 2)_{n\geq 0}$ is constant and trivially satisfies the recurrence relation $U_{n+1} = U_n$ with $U_0 = 1$.

ADD YEARS ARA YOUR

- \blacktriangleright Hence $k_{U,2} = 1$.
- \blacktriangleright Mod 4 we find $k_{U,4} = 2$.

A system of linear congruences

- \blacktriangleright Let $k = k_{U,m}$.
- \blacktriangleright Let $\mathbf{x} = (x_1, \ldots, x_k)$.
- \blacktriangleright Let $S_{U,m}$ denote the number of k-tuples b in $\{0,\ldots,m-1\}^k$ such that the system

$$
H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

has at least one solution.

Calculating $S_{U,m}$

- \blacktriangleright $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- \blacktriangleright Consider the system

$$
\begin{cases}\n1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\
3 x_1 + 7 x_2 \equiv b_2 \pmod{4}\n\end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 \blacktriangleright 2 $x_1 \equiv b_2 - b_1 \pmod{4}$

 \blacktriangleright For each value of b_1 there are at most 2 values for b_2 .

$$
\blacktriangleright \text{ Hence } S_{U,4} = 8.
$$

Properties of the automata we consider

 $(H.1)$ \mathscr{A}_U has a single strongly connected component \mathscr{C}_U . (H.2) For all states p, q in \mathcal{C}_U with $p \neq q$, there exists a word x_{pq} such that $\delta_U (p, x_{pq}) \in \mathscr{C}_U$ and $\delta_U (q, x_{pq}) \notin \mathscr{C}_U$, or vice-versa.

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

Theorem

Let $m > 2$ be an integer. Let $U = (U_n)_{n \geq 0}$ be a linear numeration system such that

(a) N is U-recognizable and \mathscr{A}_U satisfies (H.1) and (H.2),

(b) $(U_n \mod m)_{n>0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^* \, \mathrm{rep}_U(m\mathbb{N})$ from which infinitely many words are accepted is $|\mathscr{C}_U|S_{U,m}$.

Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathscr{A}_U is strongly connected, then the number of states of the trim minimal automaton accepting 0^* $\operatorname{rep}_U(m\mathbb{N})$ is $|\mathscr{C}_U|S_{U,m}.$

ADD YEARS ARA YOUR

Result for the ℓ -bonacci system

Corollary

For U the ℓ -bonacci numeration system, the number of states of the trim minimal automaton accepting 0^* $\mathrm{rep}_U(m\mathbb{N})$ is $\ell m^\ell.$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 η an

- Analyze the structure of \mathcal{A}_{U} for systems with no dominant root.
- Remove the assumption that U is purely periodic in the state complexity result.

K ロ X K @ X K 할 X K 할 X 및 및 X O Q O

► Big open problem: Given an automaton accepting $\operatorname{rep}_U(X)$, is it decidable whether X is an ultimately periodic set?

The End

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @