The state complexity of testing divisibility in linear numeration systems

Narad Rampersad

Department of Mathematics University of Liège

Joint work with: É. Charlier, M. Rigo, L. Waxweiler

Numeration systems

► A numeration system is an increasing sequence of integers U = (U_n)_{n≥0} such that

•
$$U_0 = 1$$
 and

•
$$C_U := \sup_{n \ge 0} \left[U_{n+1} / U_n \right] < \infty.$$

▶ U is linear if it satisfies a linear recurrence relation over \mathbb{Z} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A greedy representation of a non-negative integer n is a word w = w_{ℓ-1} · · · w₀ over {0, 1, . . . , C_U − 1} such that

$$\sum_{i=0}^{\ell-1} w_i U_i = n,$$

and for all j

$$\sum_{i=0}^{j-1} w_i U_i < U_j.$$

▶ $\operatorname{rep}_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► A set X of integers is U-recognizable if rep_U(X) is accepted by a finite automaton.
- ▶ If X is U-recognizable, then U is linear.
- The converse is not true in general.
- If rep_U(ℕ) is regular then let A_U be the minimal automaton accepting 0^{*} rep_U(ℕ).

•
$$\mathscr{A}_U = (Q_U, \{0, \dots, C_U - 1\}, \delta_U, q_{U,0}, F_U)$$

The Fibonacci numeration system

- $U_{n+2} = U_{n+1} + U_n (U_0 = 1, U_1 = 2)$
- \mathscr{A}_U accepts all words that do not contain 11.

The ℓ -bonacci numeration system

- $U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$
- $U_i = 2^i$, $i \in \{0, \dots, \ell 1\}$
- \mathscr{A}_U accepts all words that do not contain 1^{ℓ} .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Bertrand numeration systems

▶ Bertrand numeration system: w is in rep_U(N) if and only if w0 is in rep_U(N).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• E.g., the ℓ -bonacci system is Bertrand.

A non-Bertrand system

▲日▼▲□▼▲□▼▲□▼ □ ののの

$$\bullet \ U_{n+2} = U_{n+1} + U_n, (U_0 = 1, U_1 = 3)$$

- $(U_n)_{n\geq 0} = 1, 3, 4, 7, 11, 18, 29, 47, \dots$
- ▶ 2 is a greedy representation but 20 is not.

β -expansions

- Bertrand systems are associated with β -expansions.
- Let $\beta > 1$ be a real number.
- The β-expansion of a real number x ∈ [0, 1] is the lexicographically greatest sequence d_β(x) := (t_i)_{i≥1} over {0,..., [β] − 1} satisfying

$$x = \sum_{i=1}^{\infty} t_i \beta^{-i}.$$

A D M 4 目 M 4 日 M 4 1 H 4

Parry numbers

- If $d_{\beta}(1) = t_1 \cdots t_m 0^{\omega}$, with $t_m \neq 0$, then $d_{\beta}(1)$ is finite.
- In this case $\mathsf{d}^*_\beta(1) := (t_1 \cdots t_{m-1}(t_m 1))^\omega$.
- Otherwise $\mathsf{d}^*_\beta(1) := \mathsf{d}_\beta(1)$.
- If $d^*_{\beta}(1)$ is ultimately periodic, then β is a Parry number.

- Let Fact(D_β) be the set of all words w lexicographically less than or equal to the prefix of d^{*}_β(1) of length |w|.
- For β Parry, let 𝒜_β be the minimal finite automaton accepting Fact(D_β).

An example of the automaton \mathscr{A}_{β}

- Let β be the largest root of $X^3 2X^2 1$.
- $d_{\beta}(1) = 2010^{\omega}$ and $d_{\beta}^{*}(1) = (200)^{\omega}$.
- ► This automaton also accepts $\operatorname{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta > 1$ such that $0^* \operatorname{rep}_U(\mathbb{N}) = \operatorname{Fact}(D_\beta)$ (that is, $A_U = A_\beta$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

The dominant root condition

 \blacktriangleright U satisfies the dominant root condition if

$$\lim_{n \to \infty} U_{n+1}/U_n = \beta \text{ for some real } \beta > 1.$$

- β is the dominant root of the recurrence.
- E.g., Fibonacci: dominant root $\beta = (1 + \sqrt{5})/2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A system with an integral dominant root

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- $U_{n+1} = 3U_n + 2, (U_0 = 1)$
- dominant root $\beta = 3$

Observations and questions

Previous example: two strongly connected components.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- One component is a loop labeled by 0.
- In general, when are there more than one strongly connected component?
- What do these components look like?

The main strongly connected component

Theorem

Let U be a linear numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular.

- (i) The automaton \mathscr{A}_U has a non-trivial strongly connected component \mathscr{C}_U containing the initial state.
- (ii) If p is a state in \mathscr{C}_U , then there exists $N \in \mathbb{N}$ such that $\delta_U(p, 0^n) = q_{U,0}$ for all $n \ge N$. In particular, one cannot leave \mathscr{C}_U by reading a 0.

The main strongly connected component

(iii) If C_U is the only non-trivial strongly connected component of A_U, then lim_{n→∞} U_{n+1} − U_n = ∞.
(iv) If lim_{n→∞} U_{n+1} − U_n = ∞, then δ_U(q_{U,0}, 1) is in C_U.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Theorem (cont'd.)

Suppose U has a dominant root $\beta > 1$. If \mathscr{A}_U has more than one non-trivial strongly connected component, then any such component other than \mathscr{C}_U is a cycle all of whose edges are labelled 0.

An example with two components

- Let $t \geq 1$.
- Let $U_0 = 1$, $U_{tn+1} = 2U_{tn} + 1$, and

▶
$$U_{tn+r} = 2U_{tn+r-1}$$
, for $1 < r \le t$.

• E.g., for t = 2 we have U = (1, 3, 6, 13, 26, 53, ...).

- Then $0^* \operatorname{rep}_U(\mathbb{N}) = \{0, 1\}^* \cup \{0, 1\}^* 2(0^t)^*$.
- ▶ The second component is a cycle of t 0's.

Theorem (cont'd.)

Suppose U has a dominant root $\beta > 1$. There is a morphism of automata Φ from \mathcal{C}_U to \mathcal{A}_{β} .

 Φ maps the states of \mathscr{C}_U onto the states of \mathscr{A}_{eta} so that

$$\blacktriangleright \Phi(q_{U,0}) = q_{\beta,0},$$

▶ for all states q and all letters σ such that q and $\delta_U(q, \sigma)$ are in \mathscr{C}_U , we have $\Phi(\delta_U(q, \sigma)) = \delta_\beta(\Phi(q), \sigma)$.

An example

Recall the Bertrand system defined by

$$U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

▶ $d_{\beta}(1) = 2010^{\omega}$ and $d^{*}_{\beta}(1) = (200)^{\omega}$.

•
$$\mathscr{A}_U = \mathscr{A}_\beta$$
.

Changing the initial conditions

We change the initial values to $(U_0, U_1, U_2) = (1, 5, 6)$.

ヘロト ヘヨト ヘヨト ヘヨト

э

The morphism Φ

 $\Phi \text{ maps } \{a,b,c\} \rightarrow \{1\} \text{; } \{d,e\} \rightarrow \{2\} \text{; and } \{f\} \rightarrow \{3\}.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Other results

- When U has a dominant root $\beta > 1$, we can say more.
- ► E.g., if A_U has more than one strongly connected component, then d_β(1) is finite.
- ► We can also give sufficient conditions for A_U to have only one strongly connected component and sufficient conditions for A_U to have more than one strongly connected component.
- When U has no dominant root, the situation is more complicated.

A system with no dominant root

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

- $U_{n+3} = 24U_n, (U_0, U_1, U_2) = (1, 2, 6)$
- 3 strongly connected components

A system with no dominant root

- ► $U_{n+4} = 3U_{n+2} + U_n, (U_0, U_1, U_2, U_3) = (1, 2, 3, 7)$
- U_{n+1}/U_n does not converge, but
- $\lim_{n \to \infty} U_{2n+2}/U_{2n} = \lim_{n \to \infty} U_{2n+3}/U_{2n+1} = (3 + \sqrt{13})/2$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Application to state complexity

- If \mathbb{N} is U-recognizable then so is $m \mathbb{N}$.
- Alexeev (2004) gave an exact formula for the number of states of the minimal automaton accepting the *b*-ary representations of the multiples of *m*.
- We consider the same problem for other numeration systems.

Theorem (Alexeev 2004)

Let $\lambda(x,y) = \frac{x}{\gcd(x,y)}$. The number of states of the minimal automaton accepting the base b representations of the multiples of m is

$$\lambda(m, b^A) + \sum_{i=0}^{A-1} \lambda(b^i, m),$$

where A is the least non-negative integer i for which $\lambda(m,b^i)-\lambda(m,b^{i+1})<\lambda(b^i,m).$

The Hankel matrix

- Let $U = (U_n)_{n \ge 0}$ be a numeration system.
- ▶ For $t \ge 1$ define

$$H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}$$

•

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

For m ≥ 2, define k_{U,m} to be the largest t such that det H_t ≠ 0 (mod m).

Calculating $k_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- $(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, \dots$
- (U_n mod 2)_{n≥0} is constant and trivially satisfies the recurrence relation U_{n+1} = U_n with U₀ = 1.

- Hence $k_{U,2} = 1$.
- Mod 4 we find $k_{U,4} = 2$.

A system of linear congruences

- Let $k = k_{U,m}$.
- Let $\mathbf{x} = (x_1, \ldots, x_k)$.
- Let $S_{U,m}$ denote the number of k-tuples b in $\{0, \ldots, m-1\}^k$ such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

has at least one solution.

Calculating $S_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- Consider the system

$$\begin{cases} 1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\ 3 x_1 + 7 x_2 \equiv b_2 \pmod{4} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\triangleright 2x_1 \equiv b_2 - b_1 \pmod{4}$

For each value of b_1 there are at most 2 values for b_2 .

• Hence
$$S_{U,4} = 8$$
.

Properties of the automata we consider

(H.1) 𝔄_U has a single strongly connected component 𝔅_U.
(H.2) For all states p, q in 𝔅_U with p ≠ q, there exists a word x_{pq} such that δ_U(p, x_{pq}) ∈ 𝔅_U and δ_U(q, x_{pq}) ∉ 𝔅_U, or vice-versa.

General state complexity result

Theorem

Let $m \ge 2$ be an integer. Let $U = (U_n)_{n\ge 0}$ be a linear numeration system such that

(a) \mathbb{N} is U-recognizable and \mathscr{A}_U satisfies (H.1) and (H.2),

(b) $(U_n \mod m)_{n \ge 0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ from which infinitely many words are accepted is $|\mathscr{C}_U|S_{U,m}$.

Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathscr{A}_U is strongly connected, then the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is $|\mathscr{C}_U|S_{U,m}$.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Result for the ℓ -bonacci system

Corollary

For U the ℓ -bonacci numeration system, the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is ℓm^{ℓ} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

- ► Analyze the structure of A_U for systems with no dominant root.
- Remove the assumption that U is purely periodic in the state complexity result.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Big open problem: Given an automaton accepting rep_U(X), is it decidable whether X is an ultimately periodic set?

The End

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○