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Numeration systems

» A numeration system is an increasing sequence of integers
U = (Un)n>o such that
» Uy=1 and
» Cy :=sup[U,41/U,] < 0.
n>0

» U is linear if it satisfies a linear recurrence relation over Z.



Greedy representations

» A greedy representation of a non-negative integer n is a

word w = wy_q - - - wp over {0,1,...,Cy — 1} such that
-1
sz‘Uz =n,
i=0

and for all j

7j—1
Z w;U; < Uj.
=0

» repy(n) is the greedy representation of n with w,_; # 0.



Recognizable sets

v

A set X of integers is U-recognizable if rep; (X) is

accepted by a finite automaton.

v

If X is U-recognizable, then U is linear.

v

The converse is not true in general.

v

If rep,;(N) is regular then let 27, be the minimal

automaton accepting 0* repy (N).

dU = (QU7 {07 .. 'aCU - 1}75U7qU,07FU)

v



The Fibonacci numeration system

0
. o
"1
> Un+2 = Un+1 + U, (U() =1, U, = 2)

» ./ accepts all words that do not contain 11.



The ¢-bonacci numeration system

> Unt = Unie1 + Ungoa + -+ Uy
» U;=21,1€{0,....0—1}

» ofj; accepts all words that do not contain 1°.



Bertrand numeration systems

» Bertrand numeration system: w is in repy; (N) if and only
if w0 is in repy (N).

» E.g., the /-bonacci system is Bertrand.



A non-Bertrand system

> Un+2 = Un-{—l + Una (UO = 17 Ul = 3)
> (Up)uso = 1,3,4,7,11,18,29,47, . ..

» 2 is a greedy representation but 20 is not.



(3-expansions

» Bertrand systems are associated with 3-expansions.
» Let 3 > 1 be a real number.

» The [-expansion of a real number x € [0, 1] is the
lexicographically greatest sequence dg(z) := (;);>1 over
{0,...,[B] — 1} satisfying

0o
i=1



Parry numbers

v

If dg(1) =ty - -t,,0%, with t,, # 0, then dg(1) is finite.
In this case dj(1) := (t1 - - tm1(tm — 1))*.
Otherwise d(1) := dg(1).

v

v

v

If d3(1) is ultimately periodic, then 3 is a Parry number.



The Parry automaton

» Let Fact(Dg) be the set of all words w lexicographically
less than or equal to the prefix of d7(1) of length |w|.

» For (3 Parry, let .73 be the minimal finite automaton

accepting Fact(Dg).



An example of the automaton &3

0,1 0
oo

A

» Let 3 be the largest root of X3 —2X2 — 1.
> dy(1) = 2010° and d(1) = (200)~.

» This automaton also accepts rep;,(N) for U defined by
Un+3 = 2Un+2 + Una (UOa U1> UQ) = (17 3a 7)



Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a § > 1 such
that 0* rep;;(N) = Fact(Dg) (that is, Ay = Ap).



The dominant root condition

» [ satisfies the dominant root condition if

lim U,,41 /U, = [ for some real § > 1.
n—oo
» (3 is the dominant root of the recurrence.

» E.g., Fibonacci: dominant root 3 = (1 +/5)/2



A system with an integral dominant root

> Un+1 = 3Un + 2, (U() = 1)

» dominant root § =3



Observations and questions

» Previous example: two strongly connected components.
» One component is a loop labeled by 0.

» In general, when are there more than one strongly

connected component?

» What do these components look like?



The main strongly connected component

Theorem

Let U be a linear numeration system such that rep;(N) is

regular.
(i) The automaton <7, has a non-trivial strongly connected
component 6 containing the initial state.

(i) If p is a state in 6y, then there exists N € N such that

du(p,0™) = quy for all n > N. In particular, one cannot

leave 6y by reading a 0.



The main strongly connected component

Theorem (cont'd.)

(iii) If €y is the only non-trivial strongly connected

component of «7;, then lim U, — U, = oc.

n—oo

(iv) If lim U4y — U, = 0o, then 0y (quo,1) is in 6.



Other strongly connected components

Theorem (cont'd.)

Suppose U has a dominant root 3 > 1. If @7, has more than
one non-trivial strongly connected component, then any such
component other than %}, is a cycle all of whose edges are
labelled 0.



An example with two components

v

Let ¢t > 1.

Let Uy =1, Uy = 2U;, + 1, and

Uinir = 2Upirq, for 1 <r < t.

E.g., for t =2 we have U = (1, 3,6, 13,26,53,...).
Then 0*rep, (N) = {0, 1}* U {0, 1}*2(0")*.

v

v

v

v

v

The second component is a cycle of ¢ 0's.



Relationship with 273

Theorem (cont'd.)

Suppose U has a dominant root 3 > 1. There is a morphism
of automata ® from ¢y to 3.

® maps the states of %67 onto the states of <73 so that

> ®(qu0) = gp0,
» for all states ¢ and all letters o such that ¢ and dy(q, o)
are in 6y, we have ®(dy(q,0)) = 63(P(q), o).



An example

» Recall the Bertrand system defined by

Unis = 2Up 0+ Uy, (Uy, Uy, Us) = (1,3,7).
> dg(1) = 2010 and dj(1) = (200)~.
> Ay = 3.



Changing the initial conditions

We change the initial values to (Uy, Uy, Us) = (1,5, 6).



The morphism @

® maps {a,b,c} — {1}; {d,e} — {2}; and {f} — {3}.



Other results

» When U has a dominant root 3 > 1, we can say more.

» E.g., if Ay has more than one strongly connected
component, then dg(1) is finite.

» We can also give sufficient conditions for 27, to have only
one strongly connected component and sufficient
conditions for .7; to have more than one strongly
connected component.

» When U has no dominant root, the situation is more

complicated.



A system with no dominant root

0,1,2,3

0,1,2
> Upys = 24U, (Uy, Uy, Us) = (1,2,6)

» 3 strongly connected components



A system with no dominant root

> Un+4 = 3Un+2 + Una (UOa U1> U2> UB) = (L 27 3a 7)
» U,.1/U, does not converge, but

> nlinoloU2n+2/U2n = nli_)r{.loUQn—i—i’»/UQn—l—l - (3 + \/ﬁ)/Q



Application to state complexity

» If N is U-recognizable then so is m N.

» Alexeev (2004) gave an exact formula for the number of
states of the minimal automaton accepting the b-ary
representations of the multiples of m.

» We consider the same problem for other numeration

systems.



The integer bases

Theorem (Alexeev 2004)

Let A(2,y) = q(z57- The number of states of the minimal
automaton accepting the base b representations of the

multiples of m is

A-1
A(m, b4) + ) DA, m),

1=0

where A is the least non-negative integer i for which
A(m, b%) — A(m, b ) < A(B', m).



The Hankel matrix

» Let U = (Uy,)n>0 be a numeration system.

» For t > 1 define

U U - U
Ht — .l .2 .t
U U o Uss

» For m > 2, define kg, to be the largest ¢ such that
det H; # 0 (mod m).



Calculating ky i,

> Upio =2U,11 + Uy, (Up,Ur) = (1,3)

» (Un)n>o =1,3,7,17,41,99,239, . ..

» (U, mod 2),,>¢ is constant and trivially satisfies the
recurrence relation U,, .1 = U, with Uy = 1.

» Hence ko = 1.

» Mod 4 we find ky4 = 2.



A system of linear congruences

> Let k= kU,m-
> Let x = (21,...,x%).

» Let Sy, denote the number of k-tuples b in
{0,...,m — 1}* such that the system

Hyx=b (mod m)

has at least one solution.



Calculating Sy,

> Unto = 2Upq1 + Uy, (Uo,Ur) = (1,3)
» Consider the system
lx1+3xy = by (mod 4)
314+ T7x9 = by (mod 4)
> 21’1 = bg — b1 (IIlOd 4)
» For each value of b; there are at most 2 values for b,.
» Hence Sy4 = 8.



Properties of the automata we consider

(H.1) @7, has a single strongly connected component % .

(H.2) For all states p, ¢ in 6 with p # ¢, there exists a word
Tpq such that oy (p, z,y) € Gy and oy (q, xpy) & €U, or

vice-versa.



General state complexity result

Theorem

Let m > 2 be an integer. Let U = (U,),>0 be a linear
numeration system such that

(a) N is U-recognizable and o7 satisfies (H.1) and (H.2),
(b) (U, mod m),> is purely periodic.

The number of states of the trim minimal automaton

accepting 0* rep;;(mN) from which infinitely many words are

accepted is |6y |Sym.-



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and .7 is
strongly connected, then the number of states of the trim

minimal automaton accepting 0* rep;; (mN) is |6y | Su,m.



Result for the /-bonacci system

Corollary

For U the /-bonacci numeration system, the number of states

of the trim minimal automaton accepting 0* rep,;(mN) is ¢m’.



Further work

» Analyze the structure of A for systems with no

dominant root.

» Remove the assumption that U is purely periodic in the

state complexity result.

» Big open problem: Given an automaton accepting
repy (X), is it decidable whether X is an ultimately

periodic set?



The End



