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Digital sequences

» there are several well-studied sequences whose n-th term
is defined based on some property of the digits of n when

written in some chosen base

» e.g., the sum-of-digits function sx(n) = the sum of the

digits of the base-k representation of n

> e.g., $2(n) counts the number of 1's in the binary

representation of n

> (tn)nso = ((=1)%2™), 5 is the Thue-Morse sequence

+1 -1 -1 +1 -1 +1 +1 -1



The Rudin—Shapiro sequence

> let e2.41(n) denote the number of occurrences of 11 in the

binary representation of n
> e.g., €2.11(235) = 3 since 235 = [11101011],
> (rn)nso = ((—1)°2110M), 54 is the Rudin—Shapiro

sequence

+1 +1 +1 -1 +1 +1 -1 +1



Scattered subsequences

» instead of counting occurrences of a given block, we can
count occurrences of a given pattern as a scattered

subsequence in the digital representation of n

» e.g., 302 = [100101110]5 has 13 occurrences of 010 as

scattered subsequences of its binary representation

» an occurrence of 10 as a scattered subsequence is called

an inversion

» in general, an inversion in a word is an occurrence of ba

as a scattered subsequence, where b > a



Counting inversions

» write invy(n) to denote the number of inversions in the

binary representation of n

> define the sequence (i,),>0 by i, = (—1)"2(" so

(in)nso = +1 +1 —1 +1 +1 —1 +1 +1

» this sequence has many similarities with the

Rudin—Shapiro sequence



Generalized Rudin—-Shapiro sequences

» Allouche and Liardet (1991) studied generalizations of the

Rudin—Shapiro sequence

» fix ab # 00 and fix some positive integer d

» define (uy,)n>0 such that u, equals the number of
occurrences of ab as a scattered subsequence of the

binary representation of n, where a and b occur at

distance d + 1 from each other

» taking ab = 10 counts the number of inversions where the

inverted elements are separated by distance d + 1



Representation as an automatic sequence

(in)n>0 is @ 2-automatic sequence

0 0
1 0 1
OB OBOBE
1 0 1



Operation of the automaton

The automaton calculates i,, as follows: the binary digits of n
are processed from most significant to least significant, and

when the last digit is read, the automaton halts in the state

()

in is given by the lower component of the label of the state
reached after reading the binary representation of n (the first

component has the value t,,).



Generation by morphisms

(in)n>0 can be generated by iterating the morphism
A— AB, B—CA, C—BD, D— DC,
to obtain the infinite sequence
ABCABDABCADCABCA---
and then applying the recoding

AB—+1, C,D— —1.



Rudin—Shapiro morphism

cf. the Rudin—-Shapiro sequence, which is obtained by iterating
A—AB, B—AC, C— DB, D— DC,

and then applying the same recoding as above.



Recurrence relations

7:2n+1 = Zn (2)

» let w denote the binary representation of n

» the number of 10's in w0 equals the number of 10's in w

plus the number of 1's in w
7:277, — (_1>inv2(n)+52(n) — Zntn

> 9,11 = iy IS Clear, since appending a 1 to w does not

change the number of 10's



Recurrence relations

U4n
i4n+1
i4n+2

L4n+3

In
120

—lon



Proving the relations

The Thue—Morse sequence satisfies
ton =tn and  topii = —Ly.
Now we have
14n = lLopton = lonty = tnlntn = in,
where we have applied (1) twice. Similarly, we get
lant1 = 12(2n)+1 = l2n

by applying (2).



Proving the relations

Next, we calculate
Gan+2 = l22n+1) = Gont1tont1 = in(—tn) = —lon,
and finally,

Lant3 = 122n41)+1 = 2041 = Un-



The summatory function of (t3,),>0

Newman (1969) and Coquet (1983) studied the summatory
function of the Thue—Morse sequence taken at multiples of 3.

In particular,
1
Z l3n = N10g43G0(10g4 N) + gU(N)a
0<n<N

where GGy is a bounded, continuous, nowhere differentiable,

periodic function with period 1, and

0 if NV is even,

n(N) =
(—=1)22GN=1if N is odd.



Summing Rudin-Shapiro

Brillhart, Erdés, and Morton (1983) and Dumont and Thomas
(1989) studied the summatory function of the Rudin-Shapiro

sequence. In this case,
Z rn = VNG (logy N)
0<n<N

where again (G; is a bounded, continuous, nowhere

differentiable, periodic function with period 1.



Summing the inversions sequence

Define the summatory function S(N) of (i,)n>0 as

S(N)= > in.

0<n<N

The first few values of S(N) are:

N
S(N) | 1




A plot of the function S(N)

10000 20000 30000 40000 50000

The smooth curves are plots of v/2v/N and (v/3/3)V/N.



The growth of S(IV)

Theorem (Lafrance, R., Yee 2014)

There exists a bounded, continuous, nowhere differentiable,

periodic function GG with period 1 such that

S(N) = VNG(log, N).

This can be obtained by a criterion from the book of Allouche

and Shallit derived from techniques of Tenenbaum (1997).



A plot of the periodic function GG
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Upper and lower limits of oscillation

Theorem (Lafrance, R., Yee 2014)

We have

liTrLr_lgolf S\ﬁg = ?3 and liin_)solip i\/%) = /2.



Combinatorial properties of (i,,),>0

Theorem (Lafrance, R., Yee 2014)

The sequence (i,),>0 contains
1. no 5-th powers,
2. cubes 2% exactly when |z| = 3,
3. squares zx exactly when |z| € {1,2} U {3-2": k > 0}.
4. arbitrarily long palindromes.
These results were verified by Jeffrey Shallit and Hamoon

Mousavi using their automated prover for properties of

automatic sequences.



Automaton for period lengths of cubes in (i,,),>0



Automaton for period lengths of squares in (i,),>0
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The “square root” property

The Rudin—Shapiro sequence satisfies the following:
There exists a constant C' such that for all N > 0

§ 7,,neQWmG

0<n<N

< CVN.

sup
9cR

It would seem that (Allouche, personal communication) the

sequence (i,),>0 does not have this property.



The End



