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Digital sequences

I there are several well-studied sequences whose n-th term

is defined based on some property of the digits of n when

written in some chosen base

I e.g., the sum-of-digits function sk(n) = the sum of the

digits of the base-k representation of n

I e.g., s2(n) counts the number of 1’s in the binary

representation of n

I (tn)n≥0 = ( (−1)s2(n) )n≥0 is the Thue–Morse sequence

+1 −1 −1 +1 −1 +1 +1 −1 · · ·



The Rudin–Shapiro sequence

I let e2;11(n) denote the number of occurrences of 11 in the

binary representation of n

I e.g., e2;11(235) = 3 since 235 = [11101011]2

I (rn)n≥0 = ( (−1)e2;11(n) )n≥0 is the Rudin–Shapiro

sequence

+1 +1 +1 −1 +1 +1 −1 +1 · · ·



Scattered subsequences

I instead of counting occurrences of a given block, we can

count occurrences of a given pattern as a scattered

subsequence in the digital representation of n

I e.g., 302 = [100101110]2 has 13 occurrences of 010 as

scattered subsequences of its binary representation

I an occurrence of 10 as a scattered subsequence is called

an inversion

I in general, an inversion in a word is an occurrence of ba

as a scattered subsequence, where b > a



Counting inversions

I write inv2(n) to denote the number of inversions in the

binary representation of n

I define the sequence (in)n≥0 by in = (−1)inv2(n), so

(in)n≥0 = +1 +1 −1 +1 +1 −1 +1 +1 · · ·

I this sequence has many similarities with the

Rudin–Shapiro sequence



Generalized Rudin–Shapiro sequences

I Allouche and Liardet (1991) studied generalizations of the

Rudin–Shapiro sequence

I fix ab 6= 00 and fix some positive integer d

I define (un)n≥0 such that un equals the number of

occurrences of ab as a scattered subsequence of the

binary representation of n, where a and b occur at

distance d+ 1 from each other

I taking ab = 10 counts the number of inversions where the

inverted elements are separated by distance d+ 1



Representation as an automatic sequence

(in)n≥0 is a 2-automatic sequence
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Operation of the automaton

The automaton calculates in as follows: the binary digits of n

are processed from most significant to least significant, and

when the last digit is read, the automaton halts in the state(
(−1)s2(n)

(−1)inv2(n)

)
.

in is given by the lower component of the label of the state

reached after reading the binary representation of n (the first

component has the value tn).



Generation by morphisms

(in)n≥0 can be generated by iterating the morphism

A→ AB, B → CA, C → BD, D → DC,

to obtain the infinite sequence

ABCABDABCADCABCA · · ·

and then applying the recoding

A,B → +1, C,D → −1.



Rudin–Shapiro morphism

cf. the Rudin–Shapiro sequence, which is obtained by iterating

A→ AB, B → AC, C → DB, D → DC,

and then applying the same recoding as above.



Recurrence relations

i2n = intn (1)

i2n+1 = in (2)

I let w denote the binary representation of n

I the number of 10’s in w0 equals the number of 10’s in w

plus the number of 1’s in w

i2n = (−1)inv2(n)+s2(n) = intn.

I i2n+1 = in is clear, since appending a 1 to w does not

change the number of 10’s



Recurrence relations

i4n = in

i4n+1 = i2n

i4n+2 = −i2n
i4n+3 = in.



Proving the relations

The Thue–Morse sequence satisfies

t2n = tn and t2n+1 = −tn.

Now we have

i4n = i2nt2n = i2ntn = intntn = in,

where we have applied (1) twice. Similarly, we get

i4n+1 = i2(2n)+1 = i2n

by applying (2).



Proving the relations

Next, we calculate

i4n+2 = i2(2n+1) = i2n+1t2n+1 = in(−tn) = −i2n,

and finally,

i4n+3 = i2(2n+1)+1 = i2n+1 = in.



The summatory function of (t3n)n≥0

Newman (1969) and Coquet (1983) studied the summatory

function of the Thue–Morse sequence taken at multiples of 3.

In particular,∑
0≤n<N

t3n = N log4 3G0(log4N) +
1

3
η(N),

where G0 is a bounded, continuous, nowhere differentiable,

periodic function with period 1, and

η(N) =

0 if N is even,

(−1)s2(3N−1) if N is odd.



Summing Rudin–Shapiro

Brillhart, Erdős, and Morton (1983) and Dumont and Thomas

(1989) studied the summatory function of the Rudin–Shapiro

sequence. In this case,∑
0≤n<N

rn =
√
NG1(log4N)

where again G1 is a bounded, continuous, nowhere

differentiable, periodic function with period 1.



Summing the inversions sequence

Define the summatory function S(N) of (in)n≥0 as

S(N) =
∑

0≤n≤N

in.

The first few values of S(N) are:

N 0 1 2 3 4 5 6 7

S(N) 1 2 1 2 3 2 3 4



A plot of the function S(N)

The smooth curves are plots of
√
2
√
N and (

√
3/3)
√
N .



The growth of S(N)

Theorem (Lafrance, R., Yee 2014)

There exists a bounded, continuous, nowhere differentiable,

periodic function G with period 1 such that

S(N) =
√
NG(log4N).

This can be obtained by a criterion from the book of Allouche

and Shallit derived from techniques of Tenenbaum (1997).



A plot of the periodic function G



Upper and lower limits of oscillation

Theorem (Lafrance, R., Yee 2014)

We have

lim inf
n→∞

S(n)√
n

=

√
3

3
and lim sup

n→∞

S(n)√
n

=
√
2.



Combinatorial properties of (in)n≥0

Theorem (Lafrance, R., Yee 2014)

The sequence (in)n≥0 contains

1. no 5-th powers,

2. cubes x3 exactly when |x| = 3,

3. squares xx exactly when |x| ∈ {1, 2} ∪ {3 · 2k : k ≥ 0}.

4. arbitrarily long palindromes.

These results were verified by Jeffrey Shallit and Hamoon

Mousavi using their automated prover for properties of

automatic sequences.



Automaton for period lengths of cubes in (in)n≥0

0

[0]

1[1] 2[1]



Automaton for period lengths of squares in (in)n≥0

0

[0]

1[1]
2[0]

3

[1] [0]



Automaton for lengths of palindromes in (in)n≥0

0

[0]

1[1]

2
[0]

3
[1]

[0] 4
[1]

[0]
[1]

[0]

5[1]
[0]

[1]



The “square root” property

The Rudin–Shapiro sequence satisfies the following:

There exists a constant C such that for all N ≥ 0

sup
θ∈R

∣∣∣∣∣ ∑
0≤n<N

rne
2πinθ

∣∣∣∣∣ ≤ C
√
N.

It would seem that (Allouche, personal communication) the

sequence (in)n≥0 does not have this property.



The End


