Repetitions in Words—Part II

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Deciding if a fixed point is periodic

- Recall: a primitive morphism generates either periodic words or words avoiding *t*-powers for some *t*.
- Given a morphism (not necessarily primitive), can we tell if its fixed points are periodic?
- Pansiot (1986) and also Harju and Linna (1986) gave a decision procedure.

▶ Honkala (2008) gave a a nice, short proof.

Elementary morphisms

- Honkala's proof uses the notion of an elementary morphism (Ehrenfeucht and Rozenberg 1978)
- A morphism h : X* → Y* is simplifiable if there is an alphabet Z, smaller than X, and morphisms
 f : X* → Z* and g : Z* → Y*, such that h = gf.
- e.g., $h: 0 \mapsto 0012, 1 \mapsto 12, 2 \mapsto 012$ is simplifiable via $f: 0 \mapsto aab, 1 \mapsto b, 2 \mapsto ab$ and $g: a \mapsto 0, b \mapsto 12$.

a morphism is elementary if it is not simplifiable

Properties of elementary morphisms

- elementary morphisms are injective on finite and infinite words (Ehrenfeucht and Rozenberg 1978)
- they are also non-erasing
- Honkala's method for deciding periodicity of fixed points is based on two cancellation lemmas
- the first extends a result of Ehrenfeucht and Rozenberg

First cancellation result

Cancellation Lemma A (Honkala 2008)

Let $h: X^* \to X^*$ and let \mathbf{u} and \mathbf{v} be infinite words over X. If there is a positive integer n such that $h^n(\mathbf{u}) = h^n(\mathbf{v})$, then $h^{|X|}(\mathbf{u}) = h^{|X|}(\mathbf{v})$.

The elementary case is immediate

- by induction on |X|
- the result is true when |X| = 1
- ► let |X| = k > 1 and suppose the result holds for all smaller alphabets
- if h is elementary then h is injective and the result follows immediately
- if h is not elementary then h = gf, where $f : X^* \to Y^*$, $g : Y^* \to X^*$, and |Y| < |X|.

Applying the induction hypothesis

• we have
$$(gf)^n(\mathbf{u}) = (gf)^n(\mathbf{v})$$

- ▶ apply f to both sides: $(fg)^n f(\mathbf{u}) = (fg)^n f(\mathbf{v})$
- note: fg is a morphism from Y^* to Y^*
- ► apply the induction hypothesis to fg: $(fg)^{|Y|}f(\mathbf{u}) = (fg)^{|Y|}f(\mathbf{v})$
- ▶ apply g to both sides: $(gf)^{|Y|+1}(\mathbf{u}) = (gf)^{|Y|+1}(\mathbf{v})$

▶ i.e.,
$$h^{|Y|+1}(\mathbf{u}) = h^{|Y|+1}(\mathbf{v})$$

 \blacktriangleright apply h to both sides as many times as needed to get $h^{|X|}(\mathbf{u}) = h^{|X|}(\mathbf{v})$

Second cancellation result

Cancellation Lemma B (Honkala 2008)

Let $h: X^* \to X^*$ and let \mathbf{u} be an infinite word over X. If there is a positive integer n such that $\mathbf{u} = h^n(\mathbf{u})$, then $\mathbf{u} = h^{|X|!}(\mathbf{u})$.

Another induction

- ▶ by induction on |X|
- the result is true when |X| = 1
- ▶ let |X| = k > 1 and suppose the result holds for all smaller alphabets
- let $Z = \{a \in X : |h^n(a)| = 1 \text{ for all } n\}$
- \blacktriangleright when h is elementary it induces a permutation of Z

• in particular $h^{|X|!}$ fixes any element of Z

The elementary case

- suppose h is elementary
- ▶ if u contains only letters from Z then u = h^{|X|!}(u) is immediate
- so write $\mathbf{u} = wb\mathbf{v}$ where $w \in Z^*$ and $b \notin Z$
- then $h^n(b\mathbf{v}) = b\mathbf{v}$
- \blacktriangleright since $b \notin Z$ and h non-erasing, this implies $(h^n)^\omega(b) = b \mathbf{v}$

▶ then there must be $m \leq |X|$ for which $(h^m)^{\omega}(b) = b\mathbf{v}$

The conclusion of the elementary case

- therefore $h^m(b\mathbf{v}) = b\mathbf{v}$
- so in particular $h^{|X|!}(b\mathbf{v}) = b\mathbf{v}$
- recall: $\mathbf{u} = wb\mathbf{v}$
- since $w \in Z^*$ we have $w = h^{|X|!}(w)$
- \blacktriangleright then $h^{|X|!}(\mathbf{u})=h^{|X|!}(wb\mathbf{v})=wb\mathbf{v}=\mathbf{u}$

The non-elementary case

 \blacktriangleright suppose h is not elementary and write h=gf , where

$$f:X^*\to Y^*\text{, }g:Y^*\to X^*\text{, and }|Y|<|X|.$$

- we have $\mathbf{u} = (gf)^n(\mathbf{u})$
- \blacktriangleright apply f to both sides: $f(\mathbf{u}) = (fg)^n f(\mathbf{u})$
- note: fg is a morphism from Y^* to Y^*
- ► apply the induction hypothesis to fg: $f(\mathbf{u}) = (fg)^{|Y|!}f(\mathbf{u})$
- ▶ apply g to both sides: $(gf)(\mathbf{u}) = (gf)^{|Y|!+1}(\mathbf{u})$

▶ i.e.,
$$h(\mathbf{u}) = h^{|Y|!+1}(\mathbf{u})$$

The conclusion of the non-elementary case

- recall the hypothesis: $\mathbf{u} = h^n(\mathbf{u})$
- if n < |X| we can easily obtain $\mathbf{u} = h^{|X|!}(\mathbf{u})$
- $\blacktriangleright \text{ suppose } n \geq |X|$
- \blacktriangleright apply h^n to both sides of $h(\mathbf{u}) = h^{|Y|!+1}(\mathbf{u})$

$$\blacktriangleright \text{ we get } h^{n+1}(\mathbf{u}) = h^{n+1} h^{|Y|!}(\mathbf{u})$$

- apply Cancellation Lemma A to reduce the exponent: $h^n(\mathbf{u}) = h^n h^{|Y|!}(\mathbf{u})$

- substitute \mathbf{u} for $h^n(\mathbf{u})$ to get $\mathbf{u} = h^{|Y|!}(\mathbf{u})$
- now it is easy to get $\mathbf{u} = h^{|X|!}(\mathbf{u})$

Some preliminaries

Let X be a k-letter alphabet. Let $h: X^* \to X^*$ be a morphism. Let $a \in X$ be a letter where h(a) = au and

$$\mathbf{x} = h^{\omega}(a) = auh(u)h^2(u)\cdots$$

is an infinite word. Write $\mathbf{x} = w_1 w_2^q \mathbf{y}$, where

$$w_{1} = auh(u)h^{2}(u)\cdots h^{k-1}(u),$$

$$w_{2}^{q} = h^{k}(u)h^{k+1}(u)\cdots h^{k+k!-1}(u),$$

$$\mathbf{y} = h^{k+k!}(u)h^{k+k!+1}(u)\cdots,$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

and $|w_2|$ is minimal.

Honkala's criterion

Theorem (Honkala 2008)

The word x is ultimately periodic if and only if there are integers $r \ge 0$, $s \ge 1$, and words w_3, w_4 satisfying

$$h(w_1) = w_1 w_2^r w_3, \quad h(w_2) = (w_4 w_3)^s, \quad w_2 = w_3 w_4$$

Proof

- \blacktriangleright suppose ${\bf x}$ is ultimately periodic
- ▶ then there are i < j such that $h^i(u)h^{i+1}(u)\cdots = h^j(u)h^{j+1}(u)\cdots$
- ▶ then $h^i(uh(u)\cdots) = h^i(h^{j-i}(u)h^{j-i+1}(u)\cdots)$
- ▶ apply Cancellation Lemma A:
 h^k(uh(u)···) = h^k(h^{j-i}(u)h^{j-i+1}(u)···)
- expand and rearrange:

$$h^{k}(u)h^{k+1}(u)\cdots = h^{k+j-i}(u)h^{k+j-i+1}(u)\cdots$$

= $h^{j-i}(h^{k}(u)h^{k+1}(u)\cdots)$

Proof

- \blacktriangleright we have $h^k(u)h^{k+1}(u)\cdots=h^{j-i}(h^k(u)h^{k+1}(u)\cdots)$
- Apply Cancellation Lemma B:

$$h^{k}(u)h^{k+1}(u)\cdots = h^{k!}(h^{k}(u)h^{k+1}(u)\cdots)$$

= $h^{k!+k}(u)h^{k!+k+1}(u)\cdots$

▶ but
$$w_2^q = h^k(u)h^{k+1}(u)\cdots h^{k+k!-1}(u)$$
 and
 $\mathbf{y} = h^{k+k!}(u)h^{k+k!+1}(u)\cdots$

• so
$$w_2^q \mathbf{y} = \mathbf{y}$$

• we have
$$\mathbf{y} = w_2^{\omega}$$
 and thus $\mathbf{x} = w_1 w_2^{\omega}$

Proof

 $\blacktriangleright \text{ now } h(\mathbf{x}) = \mathbf{x}$

• so
$$h(w_1)h(w_2)^\omega = w_1w_2^\omega$$

- this implies that $h(w_2)$ is a conjugate of a power of w_2
- ▶ i.e., $h(w_2) = (w_4w_3)^s$ for some s, where $w_2 = w_3w_4$
- thus $h(w_1)(w_4w_3)^{\omega} = w_1(w_3w_4)^{\omega}$
- ▶ this implies that $h(w_1) = w_1(w_3w_4)^rw_3$ for some r

this completes the proof

A more general result

Theorem (Durand 2011; Mitrofanov 2011)

The following problem is decidable: Given morphisms $h: X^* \to X^*$ and $\tau: X^* \to Y^*$ and a letter $a \in X$, is the word $\tau(h^{\omega}(a))$ ultimately periodic?

Characterizations of periodic words

- we have previously seen a characterization of periodic words:
- A word x is ultimately periodic if and only if there is a constant C such that for every n the number of factors of x of length n is at most C.
- we will give another, based on repetitions ending at each position

Fractional powers

- the exponent of a word is the ratio of its length to its minimal period
- the exponent of toronto is 7/5
- ▶ we say it is a 7/5-power
- for any rational α we can define the notion of α -power
- let $\phi = 1.618 \cdots$ be the golden ratio (so $\phi^2 = 2.618 \cdots$)

A characterization of periodic words

Theorem (Mignosi, Restivo, and Salemi 1998)

An infinite word x is ultimately periodic if and only if there is a constant N such that every prefix of x of length at least N ends with a repetition of exponent at least ϕ^2 .

An application to perfect sets of words

- in topology, a perfect set is a closed set for which every point is a limit point
- In the context of infinite words, a set S of infinite words is perfect if every word x ∈ S has the following property: For every positive n, there is another word y ∈ S such that x and y agree on a prefix of length n.
- ► an equivalent reformulation: Let u be a finite word; if u has an infinite extension to a word in S, then it has two infinite extensions to words in S.

Perfect sets of repetition-free words

 several authors have studied classes of repetition-free words with respect to the property of being perfect

- notably: Shelton, Soni, and Currie
- they used the so-called fixing-block method
- ► a powerful, but technically difficult, method

- ▶ an overlap is a repetition with exponent larger than 2
- the Thue–Morse word

 $\mathbf{t} = 0110100110010110 \cdots$

- is overlap-free (Thue 1912)
- Fife (1980) completely characterized the infinite overlap-free binary words
- an immediate consequence is that the set of infinite overlap-free binary words is perfect

Some notation

- ► we will show that for α ≥ φ² + 1, the set of infinite α-power-free words over any alphabet of size at least two is perfect
- let $\alpha > 3$ be a real number
- let $a_1 \cdots a_k$ be a word of length k over an alphabet A
- ▶ let \mathbf{t}_h denote the word obtained by deleting the first h-1 symbols of the Thue–Morse word

The first extension lemma

Lemma A

If $a_1 \cdots a_k \mathbf{t}_h$ is an α -power-free extension of $a_1 \cdots a_k$, then there is another α -power-free extension of $a_1 \cdots a_k$.

Proof of the first extension lemma

- hypothesis: $a_1 \cdots a_k \mathbf{t}_h$ is α -power-free
- ▶ let v be a prefix of \mathbf{t}_h of length longer than $k\alpha$
- since the set of infinite overlap-free words is perfect, there
 is another overlap-free word vs

• claim: $a_1 \cdots a_k v \mathbf{s}$ is α -power-free

Proof of the first extension lemma

- suppose $a_1 \cdots a_k v \mathbf{s}$ contains an α -power z with period P
- then z starts somewhere within a₁ · · · a_k and extends into
 vs
- ▶ P < k, since otherwise vs contains an $(\alpha 1)$ -power
- ► also z extends into s, since otherwise z is contained in a₁ · · · a_kv which is α-power-free

- $\blacktriangleright \ {\rm so} \ |z| \leq P\alpha < k\alpha \ {\rm and} \ |z| > |v| > k\alpha$
- we have a contradiction

The second extension lemma

Lemma B

If $a_1 \cdots a_k$ is α -power-free and does not end in an $(\alpha - 1)$ -power, then there exists i such that $a_1 \cdots a_k \mathbf{t}_i$ is α -power-free.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof of the second extension lemma

- if $a_1 \cdots a_k \mathbf{t}_1$ is α -power-free we are done
- suppose it contains an α -power z with period P
- z begins within $a_1 \cdots a_k$ and extends into \mathbf{t}_1
- ► z begins at least P ≤ k positions before t₁, since otherwise t₁ contains an (α − 1)-power
- ► z extends at least P positions into t₁, since otherwise a₁ · · · a_k ends with an (α − 1)-power
- ▶ so the suffix of a₁ · · · a_k of length P equals the prefix of t₁ of length P

• i.e.,
$$a_{k-P+1}a_{k-P+2}\cdots a_k \mathbf{t}_{P+1} = \mathbf{t}_1$$

Proof of the second extension lemma

- now consider the word $a_1 \cdots a_k \mathbf{t}_{P+1} = a_1 \cdots a_{k-P} \mathbf{t}_1$
- if it is α-power-free we are done
- suppose it contains an α -power z_2 with period P_2
- ► as before, z₂ begins at least P₂ ≤ k positions before t_{P+1} and extends at least P₂ positions into t_{P+1}
- ▶ furthermore, P₂ > P, since otherwise z₂ is contained in t₁, which is overlap-free
- ► so the suffix of a₁ ··· a_k of length P₂ equals the prefix of t_{P+1} of length P₂

• i.e.,
$$a_{k-P_2+1}a_{k-P_2+2}\cdots a_k\mathbf{t}_{P+P_2+1} = \mathbf{t}_{P+1}$$

Proof of the second extension lemma

- ▶ we continue in this way and obtain a sequence of integers $P < P_2 < P_3 < \cdots$
- but each P_i is less than or equal to k
- so the sequence ends after some finite number, say q, of terms
- ▶ then for $i = P + P_2 + P_3 + \cdots + P_q$ the word $a_1 \cdots a_k \mathbf{t}_i$ is α -power-free

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The set of α -power-free words is perfect

Theorem (Mignosi, Restivo, and Salemi 1998)

Let α be a real number greater than or equal to $\phi^2 + 1$. The set of α -power-free words over an alphabet of size at least 2 is perfect.

Proof of Theorem

- let $\mathbf{x} = a_1 a_2 \cdots$ be an α -power-free word
- ► there are infinitely many k such that a₁ ··· a_k does not end with an (α − 1)-power, since otherwise x would be ultimately periodic
- for each such k, by Lemma B there is an i such that
 y = a₁ ··· a_kt_i is α-power-free
- \blacktriangleright if $\mathbf{x} \neq \mathbf{y}$ we are done
- If x = y then Lemma A implies that a₁ · · · ak has two α-power-free extensions

this concludes the proof

The tree of α -power-free words

- the last result says something about infinite branches in the tree of α-power-free words
- one can also ask about finite branches in this tree
- \blacktriangleright a leaf corresponds to a maximal $\alpha\text{-power-free word}$
- let t and k be positive integers
- any t-power-free word over a k-letter alphabet can be extended to a maximal t-power-free word (Bean, Ehrenfeucht, McNulty 1979)

Maximal squarefree words

Theorem (Petrova and Shur 2012)

For every n there is a ternary squarefree word w whose longest squarefree extension wv satisfies |v| = n.

Conclusion

- we have seen the following results:
- primitive morphisms generate either periodic words or words avoiding t-powers for some t
- there is an algorithm to decide if an infinite word generated by a morphism is periodic
- ▶ for $\alpha \ge \phi^2 + 1$, the set of α -power-free words is perfect

The End