Repetitions in Words—Part I

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

KO KKOK KEK KEK LE YORO

Repetitions in words

- \triangleright What kinds of repetitions can/cannot be avoided in words (sequences)?
- \blacktriangleright e.g., the word

abaabbabaabab

contains several repetitions

 \blacktriangleright but in the word

abcbacbcabcba

K ロ ▶ K 個 ▶ K 필 K K 필 K 및 필 시 이 이 이 이

the same sequence of symbols never repeats twice in succession

Types of repetitions

- \triangleright a square is a non-empty word of the form xx (like tauntaun)
- \triangleright a word is squarefree if it contains no square
- \blacktriangleright a cube is a non-empty word xxx
- a *t*-power is a non-empty word x^t (x repeated t times)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright any long word over 2 symbols contains squares
- \triangleright Over 3 symbols?

Theorem (Thue 1906)

There is an infinite squarefree word over 3 symbols.

Subsequent work

- \blacktriangleright Thue's result was rediscovered many times
- \triangleright e.g., by Arshon (1937); Morse and Hedlund (1940)
- \triangleright a systematic study of avoidable repetitions was begun by Bean, Ehrenfeucht, and McNulty (1979)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Morphisms

- riativiry typical construction of squarefree words: find a map that produces a longer squarefree word from a shorter squarefree word
- e.g., the map (morphism) f that sends $a \rightarrow abcab$; $b \rightarrow acabcb$: $c \rightarrow acbcacb$
- ^I f(acb) = abcab acbcacb acabcb is squarefree
- \triangleright if this morphism preserves squarefreeness we can generate an infinite word by iteration

K ロ ▶ K 個 ▶ K 필 K K 필 K 및 필 시 이 이 이 이

Preserving squarefreeness

- \triangleright What conditions on a morphism guarantee that it preserves squarefreeness?
- \triangleright we say a morphism is infix if no image of a letter appears inside the image of another letter

KORK ERKER ADE YOUR

 $\rightarrow a \rightarrow abc$; $b \rightarrow ac$; $c \rightarrow b$ is not infix

A sufficient condition for infix morphisms

Theorem (Thue 1912; Bean et. al. 1979)

Let $f : A^* \to B^*$ be a morphism from words over an alphabet A to words over an alphabet B. If f is infix and $f(x)$ is squarefree whenever x is a squarefree word of length at most 3, then f preserves squarefreeness in general.

KORKAR KERKER EL VOLO

Generating squarefree words

- In the map $a \rightarrow abcab$; $b \rightarrow acabcb$; $c \rightarrow acbcac$ satisfies the conditions of the theorem
- \triangleright so it preserves squarefreeness
- \blacktriangleright if we iterate it we get squarefree words:

 $a \rightarrow abcab \rightarrow abcabacabcabcabcabcabcabcabc$

KORKAR KERKER EL VOLO

 \triangleright so there is an infinite squarefree word

A general criterion

Theorem (Crochemore 1982)

Let $f : A^* \to B^*$ be a morphism. Then f preserves squarefreeness if and only if it preserves squarefreeness on words of length at most

$$
\max\left\{3,1+\left\lceil\frac{M(f)-3}{m(f)}\right\rceil\right\},\
$$

where $M(f) = \max_{a \in A} |f(a)|$ and $m(f) = \min_{a \in A} |f(a)|$.

Consequences

- \triangleright we have an algorithm to decide if a morphism is squarefree
- \triangleright simply test if it is squarefree on words of a certain length (the bound in the theorem)

K ロ ▶ K 個 ▶ K 필 K K 필 K 및 필 시 이 이 이 이

- \blacktriangleright What about *t*-powers?
- Recall: a square looks like xx ; a t-power looks like $xx \cdots xx$ (*t*-times)

A criterion for t -power-freeness

Theorem (Richomme and Wlazinski 2007)

Let $t > 3$ and let $f : A^* \to B^*$ be a uniform morphism. There exists a finite set $T \subseteq A^*$ such that f preserves t-power-freeness if and only if $f(T)$ consists of t-power-free words.

(uniform means the lengths of the images, $|f(a)|$, are the same for all $a \in A$)

K ロ ▶ K 個 ▶ K 필 K K 필 K 및 필 시 이 이 이 이

Open problem

Is there an algorithm to determine if an arbitrary morphism is t-power-free?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Changing the problem slightly

- \triangleright our initial goal was to generate long t-power-free words
- \triangleright a morphism that preserves *t*-power-freeness can accomplish this
- \triangleright but some morphisms can generate long t-power-free words without preserving t -power-freeness in general

KORK ERKER ADE YOUR

An non-squarefree morphism

 \triangleright consider f defined by

$$
a \to abc \qquad b \to ac \qquad c \to b
$$

 \blacktriangleright iterates are squarefree:

$$
a \to abc \to abcacb \to abcacbabcbac \to \cdots
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \rightarrow but $f(aba) = abcacabc$ is not

Fixed points

Example suppose f generates an infinite word x by iteration

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright we write $\mathbf{x} = f(\mathbf{x})$ and call \mathbf{x} a fixed point of f
- \triangleright Can we determine if x is *t*-power-free?

Deciding if a fixed point is t -power-free

Theorem (Mignosi and Séébold 1993)

There is an algorithm to decide the following problem: Given $t > 2$ and a morphism f with fixed point x, is x t-power-free?

KORK ERKER ADE YOUR

Investigating a special class of morphisms

- \triangleright we now restrict our attention to a particular class of morphisms
- \triangleright primitive morphisms have nice properties that make them easy to analyse

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Primitive morphisms

► a morphism $f: \Sigma^* \to \Sigma^*$ is primitive if there is a constant d such that for all $a,b\in\Sigma$, a appears in $f^d(b)$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright the term "primitive" comes from matrix theory

A example of a primitive morphism

Suppose f maps

$$
a \to ab \qquad b \to bc \qquad c \to a.
$$

Then

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

and a, b, c all appear in the third iterates.

The matrix of a morphism

- ► let $f : \Sigma^* \to \Sigma^*$ be a morphism
- $\triangleright \Sigma = \{a_1, a_2, \ldots, a_k\}$
- \blacktriangleright define a matrix

$$
M = (m_{i,j})_{1 \leq i,j \leq k}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

where $m_{i,j}$ is the number of occurrences of a_i in $f(a_j)$

An example

$$
a \to ab
$$

\n
$$
f: b \to bc
$$

\n
$$
c \to a.
$$

\n
$$
M = \begin{pmatrix} a & b & c \\ 1 & 0 & 1 \\ c & 0 & 1 & 0 \end{pmatrix}
$$

イロト イ御 トイミト イミト ニミー りんぴ

Primitive matrices

- \blacktriangleright a non-negative matrix M is primitive if there is a positive integer d such that $M^d > 0$
- \triangleright the least such d is the index of primitivity
- ► if M is $k \times k$ then $d \leq k^2 2k + 2$ (Wielandt 1950)
- \triangleright if a morphism is primitive then its matrix is primitive

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

From the previous example

$$
M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad M^3 = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & 2 \\ 2 & 1 & 1 \end{pmatrix} > 0
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Repetitions and primitive morphisms

Theorem (Mossé 1992)

Let x be an infinite fixed point of a primitive morphism f . Then either

- \triangleright x is periodic, or
- \triangleright there exists a positive integer t such that x is t-power-free.

KORK ERKER ADE YOUR

Linear recurrence

- \triangleright this result is a consequence of another important property
- \triangleright an infinite word x is recurrent if each of its factors occurs infinitely often
- \blacktriangleright it is linearly recurrent if there exists a constant C such that any factor of x of length Cn contains all factors of x of length n .

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright an infinite word generated by a primitive morphism is linearly recurrent

The connection with repetitions

- \triangleright let x be an aperiodic fixed point of a primitive morphism
- \blacktriangleright let C be the constant of linear recurrence
- \blacktriangleright Claim: ${\bf x}$ does not contain any repetition of the form v^C

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Proving x avoids C-powers

- \triangleright x aperiodic implies that for all n the word x has at least $n + 1$ factors of length n (Coven and Hedlund 1973)
- \blacktriangleright suppose x contains v^C , where $|v|=m$
- $\blacktriangleright \; v^C$ contains $\leq m$ factors of length m
- \blacktriangleright but $|v^C| = Cm$ and by linear recurrence v^C contains all factors of x of length m

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright x has $\leq m$ factors of length m, contradiction

Proving linear recurrence

It remains to prove:

Theorem (Durand 1998)

If x is a fixed point of a primitive morphism f , then there exists a constant C such that for every n , every factor of x of length C_n contains every factor of x of length n .

KORK ERKER ADE YOUR

The Perron–Frobenius Theory

Let M be the matrix of f ; so M is primitive. The fundamental result concerning primitive matrices is:

Theorem (Perron 1907; Frobenius 1912)

A primitive matrix M has a dominant eigenvalue θ ; i.e., θ is a positive, real eigenvalue of M and is strictly greater in absolute value than all other eigenvalues of M .

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Asymptotic growth of M^n

Corollary

The limit

$$
\lim_{n \to \infty} \frac{M^n}{\theta^n}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

exists and is positive.

The length of the iterates of a morphism

- In Let f be a primitive morphism, M its matrix, and θ the dominant eigenvalue of M .
- \blacktriangleright For each letter a, there exists a positive constant C_a such that

$$
\lim_{n \to \infty} \frac{|f^n(a)|}{\theta^n} = C_a.
$$

 \blacktriangleright There exist positive constants A, B such that for all n ,

$$
A\theta^n \le \min_{a \in \Sigma} |f^n(a)| \le \max_{a \in \Sigma} |f^n(a)| \le B\theta^n.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The constant of linear recurrence

- let x be a fixed point of f
- \triangleright we want to define a C such that any factor of x of length Cn contains all factors of length n
- it is not hard to show that for $n = 2$ there exists C_2 such that every factor of length C_2 contains all factors of length 2

KORKAR KERKER EL VOLO

- \blacktriangleright we focus on $n \geq 3$
- In let A, B, θ be as defined previously
- ► Claim: we can take $C = (C_2 + 2)(B/A)\theta$.

Establishing the claim

- \triangleright write $\mathbf{x} = x_1x_2 \cdots$
- ► consider a factor $w = x_i x_{i+1} \cdots x_{i+Cn-1}$ of x

$$
\blacktriangleright \ |w| = Cn
$$

- ightharpoonup since x is a fixed point of f we have $x = f(x)$
- \blacktriangleright by iteration we have

$$
\mathbf{x} = f^p(x_1) f^p(x_2) \cdots
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

for every $p > 1$

Taking the preimage of w

 \blacktriangleright choose p satisfying

$$
\min_{a \in \Sigma} |f^{p-1}(a)| < n < \min_{a \in \Sigma} |f^p(a)|
$$

$$
\blacktriangleright \text{ write } w = u f^p(x_r) f^p(x_{r+1}) \cdots f^p(x_{r+j-1}) v
$$

 \blacktriangleright u and v as small as possible

 \triangleright we get

$$
|w| = Cn \le |u| + |v| + j \max_{a \in \Sigma} |f^p(a)|
$$

$$
\le 2 \max_{a \in \Sigma} |f^p(a)| + j \max_{a \in \Sigma} |f^p(a)|
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Rearranging the last inequality

Rearrange to get

$$
j \geq \frac{Cn}{\max_{a \in \Sigma} |f^{p}(a)|} - 2
$$

$$
\geq \frac{(C_2 + 2)(B/A)\theta n}{B\theta^p} - 2.
$$

Recall that $n > \min_{a \in \Sigma} |f^{p-1}(a)| \ge A\theta^{p-1}$.

Using this inequality to replace n gives

$$
j \geq \frac{(C_2 + 2)(B/A)\theta A \theta^{p-1}}{B\theta^p} - 2
$$

= C_2.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Concluding the proof

- ► Recall: $w = uf^p(x_r)f^p(x_{r+1}) \cdots f^p(x_{r+j-1})v$
- \triangleright since $j \geq C_2$ we have $|x_r x_{r+1} \cdots x_{r+j-1}| \geq C_2$
- \triangleright $x_r x_{r+1} \cdots x_{r+j-1}$ contains all factors of x of length 2
- ightharpoonup any factor of some $f^p(z)$, where z is a factor of x of length at most 2
- \blacktriangleright w contains all such $f^p(z)$ and thus all factors of length n
- ighth since w was an arbitrary factor of length C_n , the proof is complete

KORK (FRAGE) EL POLO

Recapping the argument

- \triangleright we have shown that a fixed point x of a primitive morphism f is linearly recurrent
- \triangleright from this we deduced that x is either periodic, or avoids C -powers, where C is the constant of linear recurrence
- \blacktriangleright this C may not be optimal
- \triangleright How can we tell if x is (ultimately) periodic?
- \triangleright we address this question (for arbitrary morphisms) in the second part

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Subword complexity

- \triangleright if x is an infinite word, its subword complexity function $p(n)$ counts the number of distinct factors of x of length \boldsymbol{n}
- \triangleright we have seen that $p(n)$ is bounded if x is ultimately periodic
- ► and that $p(n) \geq n+1$ if x is aperiodic
- \triangleright if x is generated by iterating a primitive morphism then $p(n) = O(n)$ (follows from linear recurrence)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Possible complexity functions

Theorem (Pansiot 1984)

Let x be an infinite word generated by iterating a morphism. The subword complexity function $p(n)$ of x satisfies one of the following: $p(n) = \Theta(1)$, $p(n) = \Theta(n)$, $p(n) = \Theta(n \log \log n)$, $p(n) = \Theta(n \log n)$, or $p(n) = \Theta(n^2)$.

KORK ERKER ADE YOUR

Complexity functions of repetition-free words

- \blacktriangleright Ehrenfeucht and Rozenberg (80's) investigated the subword complexities of repetition-free words generated by morphisms
- \triangleright let x be an infinite word generated by iterating a morphism
- In if x avoids t-powers for some $t > 2$, then $p(n) = O(n \log n)$
- In if x is a cubefree binary word, then $p(n) = \Theta(n)$
- In there is a cubefree ternary word with $p(n) = \Theta(n \log n)$

KORKAR KERKER EL VOLO

Constructing such a cubefree word

Let f be the morphism that maps

$$
a \to ab
$$
, $b \to ba$, $c \to cacbc$.

Then

 $c \rightarrow cache \rightarrow cachea bcabcabcabcabc \rightarrow \cdots$

KORK ERKER ADE YOUR

is cubefree and has complexity $p(n) = \Theta(n \log n)$. (Note: f is not primitive.)

Complexity of squarefree words

- In let x be an infinite word generated by iterating a morphism
- In if x is a squarefree ternary word, then $p(n) = \Theta(n)$
- \triangleright Ehrenfeucht and Rozenberg (1983) constructed a DOL language with subword complexity $p(n) = \Theta(n \log n)$

KORK ERKER ADE YOUR

Constructing the D0L language

Let f be the morphism that maps

$$
a \rightarrow abcab, \quad b \rightarrow acabcb, \quad c \rightarrow acbcacb
$$

d → dcdadbdadcdbdcd

The language obtained by repeatedly applying f to the word dabcd is squarefree and has complexity $p(n) = \Theta(n \log n)$

KORK ERKER ADE YOUR

Non-morphic words

- \triangleright the previous results all concerned repetition-free words generated by iterating a morphism
- \triangleright if we consider arbitrary words, then it is not too difficult to construct an infinite ternary squarefree word with exponential subword complexity

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The End

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @