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Repetitions in words

I What kinds of repetitions can/cannot be avoided in words

(sequences)?

I e.g., the word

abaabbabaabab

contains several repetitions

I but in the word

abcbacbcabcba

the same sequence of symbols never repeats twice in

succession



Types of repetitions

I a square is a non-empty word of the form xx (like

tauntaun)

I a word is squarefree if it contains no square

I a cube is a non-empty word xxx

I a t-power is a non-empty word xt (x repeated t times)

I any long word over 2 symbols contains squares

I Over 3 symbols?



Thue’s work

Theorem (Thue 1906)

There is an infinite squarefree word over 3 symbols.



Subsequent work

I Thue’s result was rediscovered many times

I e.g., by Arshon (1937); Morse and Hedlund (1940)

I a systematic study of avoidable repetitions was begun by

Bean, Ehrenfeucht, and McNulty (1979)



Morphisms

I typical construction of squarefree words: find a map that

produces a longer squarefree word from a shorter

squarefree word

I e.g., the map (morphism) f that sends a→ abcab;

b→ acabcb; c→ acbcacb

I f(acb) = abcab acbcacb acabcb is squarefree

I if this morphism preserves squarefreeness we can generate

an infinite word by iteration



Preserving squarefreeness

I What conditions on a morphism guarantee that it

preserves squarefreeness?

I we say a morphism is infix if no image of a letter appears

inside the image of another letter

I a→ abc; b→ ac; c→ b is not infix



A sufficient condition for infix morphisms

Theorem (Thue 1912; Bean et. al. 1979)

Let f : A∗ → B∗ be a morphism from words over an alphabet

A to words over an alphabet B. If f is infix and f(x) is

squarefree whenever x is a squarefree word of length at most

3, then f preserves squarefreeness in general.



Generating squarefree words

I the map a→ abcab; b→ acabcb; c→ acbcacb satisfies

the conditions of the theorem

I so it preserves squarefreeness

I if we iterate it we get squarefree words:

a→ abcab→ abcabacabcbacbcacbabcabacabcb

I so there is an infinite squarefree word



A general criterion

Theorem (Crochemore 1982)

Let f : A∗ → B∗ be a morphism. Then f preserves

squarefreeness if and only if it preserves squarefreeness on

words of length at most

max

{
3, 1 +

⌈
M(f)− 3

m(f)

⌉}
,

where M(f) = max
a∈A
|f(a)| and m(f) = min

a∈A
|f(a)|.



Consequences

I we have an algorithm to decide if a morphism is

squarefree

I simply test if it is squarefree on words of a certain length

(the bound in the theorem)

I What about t-powers?

I Recall: a square looks like xx; a t-power looks like

xx · · ·xx (t-times)



A criterion for t-power-freeness

Theorem (Richomme and Wlazinski 2007)

Let t ≥ 3 and let f : A∗ → B∗ be a uniform morphism. There

exists a finite set T ⊆ A∗ such that f preserves

t-power-freeness if and only if f(T ) consists of t-power-free

words.

(uniform means the lengths of the images, |f(a)|, are the

same for all a ∈ A)



The general case

Open problem

Is there an algorithm to determine if an arbitrary morphism is

t-power-free?



Changing the problem slightly

I our initial goal was to generate long t-power-free words

I a morphism that preserves t-power-freeness can

accomplish this

I but some morphisms can generate long t-power-free

words without preserving t-power-freeness in general



An non-squarefree morphism

I consider f defined by

a→ abc b→ ac c→ b

I iterates are squarefree:

a→ abc→ abcacb→ abcacbabcbac→ · · ·

I but f(aba) = abcacabc is not



Fixed points

I suppose f generates an infinite word x by iteration

I we write x = f(x) and call x a fixed point of f

I Can we determine if x is t-power-free?



Deciding if a fixed point is t-power-free

Theorem (Mignosi and Séébold 1993)

There is an algorithm to decide the following problem:

Given t ≥ 2 and a morphism f with fixed point x, is

x t-power-free?



Investigating a special class of morphisms

I we now restrict our attention to a particular class of

morphisms

I primitive morphisms have nice properties that make them

easy to analyse



Primitive morphisms

I a morphism f : Σ∗ → Σ∗ is primitive if there is a constant

d such that for all a, b ∈ Σ, a appears in fd(b)

I the term “primitive” comes from matrix theory



A example of a primitive morphism

Suppose f maps

a→ ab b→ bc c→ a.

Then
a → ab → abbc → abbcbca

b → bc → bca → bcaab

c → a → ab → abbc

and a, b, c all appear in the third iterates.



The matrix of a morphism

I let f : Σ∗ → Σ∗ be a morphism

I Σ = {a1, a2, . . . , ak}

I define a matrix

M = (mi,j)1≤i,j≤k

where mi,j is the number of occurrences of ai in f(aj)



An example

a→ ab

f : b→ bc

c→ a.
M =


a b c

a 1 0 1

b 1 1 0

c 0 1 0





Primitive matrices

I a non-negative matrix M is primitive if there is a positive

integer d such that Md > 0

I the least such d is the index of primitivity

I if M is k × k then d ≤ k2 − 2k + 2 (Wielandt 1950)

I if a morphism is primitive then its matrix is primitive



From the previous example

M =


1 0 1

1 1 0

0 1 0

 M3 =


2 2 1

3 2 2

2 1 1

 > 0



Repetitions and primitive morphisms

Theorem (Mossé 1992)

Let x be an infinite fixed point of a primitive morphism f .

Then either

I x is periodic, or

I there exists a positive integer t such that x is

t-power-free.



Linear recurrence

I this result is a consequence of another important property

I an infinite word x is recurrent if each of its factors occurs

infinitely often

I it is linearly recurrent if there exists a constant C such

that any factor of x of length Cn contains all factors of x

of length n.

I an infinite word generated by a primitive morphism is

linearly recurrent



The connection with repetitions

I let x be an aperiodic fixed point of a primitive morphism

I let C be the constant of linear recurrence

I Claim: x does not contain any repetition of the form vC



Proving x avoids C-powers

I x aperiodic implies that for all n the word x has at least

n+ 1 factors of length n (Coven and Hedlund 1973)

I suppose x contains vC , where |v| = m

I vC contains ≤ m factors of length m

I but |vC | = Cm and by linear recurrence vC contains all

factors of x of length m

I x has ≤ m factors of length m, contradiction



Proving linear recurrence

It remains to prove:

Theorem (Durand 1998)

If x is a fixed point of a primitive morphism f , then there

exists a constant C such that for every n, every factor of x of

length Cn contains every factor of x of length n.



The Perron–Frobenius Theory

Let M be the matrix of f ; so M is primitive. The

fundamental result concerning primitive matrices is:

Theorem (Perron 1907; Frobenius 1912)

A primitive matrix M has a dominant eigenvalue θ; i.e., θ is a

positive, real eigenvalue of M and is strictly greater in

absolute value than all other eigenvalues of M .



Asymptotic growth of Mn

Corollary

The limit

lim
n→∞

Mn

θn

exists and is positive.



The length of the iterates of a morphism

I Let f be a primitive morphism, M its matrix, and θ the

dominant eigenvalue of M .

I For each letter a, there exists a positive constant Ca such

that

lim
n→∞

|fn(a)|
θn

= Ca.

I There exist positive constants A,B such that for all n,

Aθn ≤ min
a∈Σ
|fn(a)| ≤ max

a∈Σ
|fn(a)| ≤ Bθn.



The constant of linear recurrence

I let x be a fixed point of f

I we want to define a C such that any factor of x of length

Cn contains all factors of length n

I it is not hard to show that for n = 2 there exists C2 such

that every factor of length C2 contains all factors of

length 2

I we focus on n ≥ 3

I let A,B, θ be as defined previously

I Claim: we can take C = (C2 + 2)(B/A)θ.



Establishing the claim

I write x = x1x2 · · ·

I consider a factor w = xixi+1 · · ·xi+Cn−1 of x

I |w| = Cn

I since x is a fixed point of f we have x = f(x)

I by iteration we have

x = fp(x1)fp(x2) · · ·

for every p ≥ 1



Taking the preimage of w

I choose p satisfying

min
a∈Σ
|fp−1(a)| < n < min

a∈Σ
|fp(a)|

I write w = ufp(xr)f
p(xr+1) · · · fp(xr+j−1)v

I u and v as small as possible

I we get

|w| = Cn ≤ |u|+ |v|+ jmax
a∈Σ
|fp(a)|

≤ 2 max
a∈Σ
|fp(a)|+ jmax

a∈Σ
|fp(a)|



Rearranging the last inequality

Rearrange to get

j ≥ Cn

maxa∈Σ |fp(a)|
− 2

≥ (C2 + 2)(B/A)θn

Bθp
− 2.

Recall that n > min
a∈Σ
|fp−1(a)| ≥ Aθp−1.

Using this inequality to replace n gives

j ≥ (C2 + 2)(B/A)θAθp−1

Bθp
− 2

= C2.



Concluding the proof

I Recall: w = ufp(xr)f
p(xr+1) · · · fp(xr+j−1)v

I since j ≥ C2 we have |xrxr+1 · · ·xr+j−1| ≥ C2

I xrxr+1 · · ·xr+j−1 contains all factors of x of length 2

I any factor of x of length n is a factor of some fp(z),

where z is a factor of x of length at most 2

I w contains all such fp(z) and thus all factors of length n

I since w was an arbitrary factor of length Cn, the proof is

complete



Recapping the argument

I we have shown that a fixed point x of a primitive

morphism f is linearly recurrent

I from this we deduced that x is either periodic, or avoids

C-powers, where C is the constant of linear recurrence

I this C may not be optimal

I How can we tell if x is (ultimately) periodic?

I we address this question (for arbitrary morphisms) in the

second part



Subword complexity

I if x is an infinite word, its subword complexity function

p(n) counts the number of distinct factors of x of length

n

I we have seen that p(n) is bounded if x is ultimately

periodic

I and that p(n) ≥ n+ 1 if x is aperiodic

I if x is generated by iterating a primitive morphism then

p(n) = O(n) (follows from linear recurrence)



Possible complexity functions

Theorem (Pansiot 1984)

Let x be an infinite word generated by iterating a morphism.

The subword complexity function p(n) of x satisfies one of the

following: p(n) = Θ(1), p(n) = Θ(n), p(n) = Θ(n log log n),

p(n) = Θ(n log n), or p(n) = Θ(n2).



Complexity functions of repetition-free words

I Ehrenfeucht and Rozenberg (80’s) investigated the

subword complexities of repetition-free words generated

by morphisms

I let x be an infinite word generated by iterating a

morphism

I if x avoids t-powers for some t ≥ 2, then

p(n) = O(n log n)

I if x is a cubefree binary word, then p(n) = Θ(n)

I there is a cubefree ternary word with p(n) = Θ(n log n)



Constructing such a cubefree word

Let f be the morphism that maps

a→ ab, b→ ba, c→ cacbc.

Then

c→ cacbc→ cacbcabcacbcbacacbc→ · · ·

is cubefree and has complexity p(n) = Θ(n log n).

(Note: f is not primitive.)



Complexity of squarefree words

I let x be an infinite word generated by iterating a

morphism

I if x is a squarefree ternary word, then p(n) = Θ(n)

I Ehrenfeucht and Rozenberg (1983) constructed a D0L

language with subword complexity p(n) = Θ(n log n)



Constructing the D0L language

Let f be the morphism that maps

a→ abcab, b→ acabcb, c→ acbcacb

d→ dcdadbdadcdbdcd

The language obtained by repeatedly applying f to the word

dabcd is squarefree and has complexity p(n) = Θ(n log n)



Non-morphic words

I the previous results all concerned repetition-free words

generated by iterating a morphism

I if we consider arbitrary words, then it is not too difficult

to construct an infinite ternary squarefree word with

exponential subword complexity



The End


