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Unavoidable regularity

van der Waerden's Theorem

If the natural numbers are partitioned into finitely many sets,

then one set contains arbitrarily large arithmetic progressions.



Subsequences

> W = Wowiwsg - - -

» subsequence: a word w;,w;, - -+ , where
0<ip<ig <---.

» arithmetic subsequence of difference j: a word

Wi Wi4 jWiq25 ** where Z 0 and ] 2 1.



Unavoidable repetitions

vdW rephrased

For any infinite word w over a finite alphabet A, there exists
a € A such that for all m > 1, w contains a™ in a

subsequence indexed by an arithmetic progression.



Repetitions in arithmetic progressions

Theorem (Carpi 1988)

Let p be a prime and let m be a non-negative integer. There
exists an infinite word over a finite alphabet that avoids
(14 1/p™)-powers in arithmetic progressions of all differences,

except those differences that are a multiple of p.



Squares in arithmetic progressions

Corollary

There exists an infinite word over a 4-letter alphabet that
contains no squares in any arithmetic progression of odd

difference.



The construction

Let ¢ = p™*!. We construct an infinite word with the desired

properties over the alphabet
Y={n:0<n<2¢and ¢{n}.

Define w = ajas - - - as follows. For n > 1, write n = ¢'r/,
where ¢ 1 n/, and define
n’ mod ¢?, if t =0;

ap =
¢* + (n’ mod ¢?), ift>0.



An example of the construction
Take p =2 and m = 0 (so that ¢ = 2). Then ¥ = {1,3,5,7}
and, writing n = 27/,

n’ mod 4, if n is odd:;
an, =
4+ (n’ mod 4), if nis even.

It follows that

w = 1535173515371735153 - - -

contains no squares in arithmetic progressions of odd

difference.



Proof of the construction

Recall: w = ajas--- and ¢ = p™*L. For n > 1, write

n = q'n’, where ¢{tn’. Then

n’ mod ¢?, if t =0;
ap =
¢*> + (n’ mod ¢?), ift>0.

Suppose w contains a (1 4 1/p™)-power in an arithmetic

progression of difference k, where k is not a multiple of p:

AiQjy kg Qg (s—1)k = Qiprk Qi (r+1)k - it (r4s5—1)k

for some integers ¢, r, s satisfying s/r > 1/p™.



Proof of the construction

If @; = a;1r, > q° then ¢ divides both i and i 4 rk and hence
divides rk.

If a; = a;y < g2, then i mod ¢*> = (i + rk) mod ¢?, so that
q* divides rk.

In either case, since p does not divide £, it must be the case
that ¢ divides r.

So we write r = ¢“’ for some positive integers £, 7" with r’ not

divisible by q.



Proof of the construction

Recall that s/r > 1/p™ and ¢ = p™*?, so that

V)
v

qfr//pm
— pqéflr/
> pg

Thus {i,i + k,...,i+ (s — 1)k} forms a complete set of

residue classes modulo pg‘~1.

There exists j € {i,i+ k,...,i+ (s — 1)k} such that

j=q¢"" (mod pg").



Proof of the construction

Write

jo= apqt+¢!
= ¢ Hap+1),

for some non-negative integer a.

We also have

j4rk = ¢ Hap+1)+ ¢k
= ¢ Hap+1+qr'k).



Proof of the construction

Also a; = aj;,, and so from the definition of w we have
ap+1=ap+1+qg'k (mod ¢*),

so that ¢r'k =0 (mod ¢?).
This implies 'k = 0 (mod ¢). However, p does not divide k,
and ¢ does not divide 7', so this congruence cannot be

satisfied. This contradiction completes the proof.



The paperfolding word

v

again take p=2and m =0
then w = 1535173515371735153 - - -

v

v

apply the map 1,5 — 0, 3,7 — 1 to get
f =0010011000110110001 - - -

v

v

this is the ordinary paperfolding word



The Toeplitz construction

» Start with an infinite sequence of gaps, denoted 7.
O Y O S S A O O O O O Y O
» Fill every other gap with alternating 0's and 1's.
o?”1?20?217?207?7?172071
» Repeat.
6001?2011 ?0017%?0T11

060010011 ?0011011



Paperfolding words

» In the limit one obtains the ordinary paperfolding word:
0010011000110110 - - -
» At each step, one may choose to fill in the gaps by either
0101010101 - - -

or
1010101010 - - - .

» Different choices result in different paperfolding words.



Repetitions in paperfolding words

Theorem (Allouche and Bousquet-Mélou 1994)

If £ is a paperfolding word and ww is a non-empty factor of f,
then |w| € {1, 3,5}.



2-dimensional words

» A 2-dimensional word w is a 2D array of symbols.
> Wy, the symbol of w at position (m,n).
» A word x is a line of w if there exists 71, 72, 71, J2, such
that
» ged(41,72) =1 and

» for t > 0, we have 2y = Wj, 4}t is4jot-



Avoiding repetitions in higher dimensions

Theorem (Carpi 1988)

There exists a 2-dimensional word w over a 16-letter alphabet

such that every line of w is squarefree.



Constructing the 2D-word

» Let u = uguquy--- and v = vgvivs - - - be infinite words
over a 4-letter alphabet A that avoid squares in all

arithmetic progressions of odd difference.

» Define w over the alphabet A x A by wy,, = (U, V).



Lines through the 2D-word

v

Consider an arbitrary line

X = (wi1+j1t,i2+j2t)tzo,

= ( (ui1+j1t> Ui2+j2t> )7207

for some iy, s, J1, j2, with ged(ji, j2) = 1.

v

Without loss of generality, we may assume j; is odd.

v

Then (u;,1j,¢)1>0 is an arithmetic subsequence of odd

difference of u and hence is squarefree.

v

X is therefore also squarefree.



Abelian repetitions

Erdés 1961 abelian square: a word xx’ such that 2’ is a

permutation of z (like reappear)
Evdokimov 1968 abelian squares avoidable over 25 letters
Pleasants 1970 abelian squares avoidable over 5 letters
Justin 1972 abelian 5-powers avoidable over 2 letters
Dekking 1979 abelian 4-powers avoidable over 2 letters
abelian cubes avoidable over 3 letters

Keranen 1992 abelian squares avoidable over 4 letters



The adjacency matrix of a morphism

Given a morphism ¢ : ¥* — ¥* for some finite set
Y ={ay,as,...,aq}, we define the adjacency matrix
M = M, as follows:

M = (m;;)1<ij<d

where m; ; is the number of occurrences of a; in v(a;), i.e.,

m;; = ‘90<aj)

a;-



An example

Y:a—ab
b— cc

c — bb.

O = = Q

N oo

S N OO



Properties of M

» Define ¢ : ¥* — Z? by
]T

1/)(7«0) = [|w|a17 |w|a2’ SO |w|ad :

» Then
U(p(w)) = My(w).

» By induction M;‘ = M~, and hence

(" (w)) = M7y (w).



Dekking's construction

» Define a map:
a — aaab, b — abb.

» The limit of the sequence

a — aaab — aaabaaabaaababb — - - -

contains no abelian 4-power.



Dekking's method

» the idea is to map letters to elements of Z/nZ for some n

» abelian repetitions correspond to certain arithmetic

progressions in Z/nZ

» show no such arithmetic progressions exist



Some definitions

» Let p: X" — X* be a morphism.
» Call the words ¢(a), for a € %, blocks.

» If p(a) = v/, v/ # ¢, then v is a left subblock and v’ a
right subblock.

» Let G be a finite abelian group (written additively).

» A C G is progression-free of order n if for all a € A,
a,a+g,a+2g,...,a+(n—1)g € Aimplies g = 0.



p-injectivity

» Let f:X* — G be a morphism: i.e., f(¢) =0 and
flaraz---a;) = Y flay).

1<5<i
» Call f a weight function.

» Let vyv], vav), . .., v, be blocks.

» fis p-injective if
flv1) = fvz) = - = f(vn)

implies either vy = vy =--- =wv, or vy = vy =---



The main criterion

Suppose that
(a) The adjacency matrix of ¢ is invertible.
(b) f(¢(a)) =0 forallack;
(c) the set A= {f(v): v a left subblock of ¢} is
progression-free of order n + 1;
(d) fis ¢-injective.
If ¢ is prolongable on a, and ¢*“(a) avoids “short” abelian

n-powers, then ¢*(a) is abelian n-power-free.



Proof

Ch Cy Cs

i ! / o
X = 1)1101| | v2}vQ| | vglv3| | v4lu4|

- R N S N

Let x = ¢“(a). Suppose B1Bs - B, is an abelian n-power in
x with |B;| minimal.

Suppose the B; are not “short”: i.e., | B;| > max,eyx [¢(a)l.



X = v ] vy 104 | | [osivs] | v v |

» Since the B;'s contain the same numbers of each letter,
we have f(B1) = f(Bs) = -+ = [(Bn).

» By hypothesis f(p(a)) = 0 for every a € 3.

> Hence f(B;) = f(v;) + f(vi+1).



v

v

v

v

Cs

‘ ‘
x = 2)1}'u1| | 112}11;|

.
i
| 1)3}113|

;
v4lvg|

Since f(v;v;) = 0, we get f(B;) = —f(vi) + f(vit1).
Thus the f(v;) form an (n + 1)-term arithmetic

progression with difference f(B;).

This forces f(v1) = f(vg) =

= f(vn+1)-

p-injectivity forces either v; = vy = -+ = v, 41 or

I — o/
U =V =" =Upp



Cy Cy Cs

X = viivp| ] v 104 | | [osios] | v v |

Bs

In the first case, we “slide” the abelian n-power to the left by
|v1| symbols to get another n-power C1Cs - - - C,,, which is
aligned with blocks of (. In the second case we slide to the

right.



v

v

v

v

v

U11vi| | 1;2}1)’2| |v;;1v§| | U4lvﬁl|

Let D; be such that C; = ¢(D;).

Since x = p(x), D1Dy - -- D, is a factor of x.

Now ¢(C;) = M1(D;), where M is the matrix of .
Since M is invertible and (C}) = (Cy) = --- = ¥(C,),
we have (D) = ¢(Dg) = -+ - = (D).

Dy -

-+ D, is a shorter abelian n-power, contradiction.



Avoiding abelian 4-powers

v

We check that the morphism ¢
a — aaab, b — abb

verifies the criterion we just proved.

v

31
The matrix of ¢ is ( o ) , which is invertible.

v

Take G = Z/5Z.
Define f : {a,b}* — G by f(a) =1 and f(b) = 2.
f(aaab) = f(abb) =0

v

v



Avoiding abelian 4-powers

v

A =1{0,1,2,3} is progression free of order 5

» fis p-injective

v

©¥“(a) has no short abelian 4-powers

» by previous criterion, ¢*(a) avoids abelian 4-powers



Avoiding abelian cubes

Define ¥ by ¥(a) = aabc, ¥(b) = bbe, and Y(c) = acc. The

same method shows that ¥*(a) avoids abelian cubes.



Avoiding abelian squares

» Finding a construction that avoids abelian squares over

4-letters is much harder.
» Keranen found one in 1992 by intensive computer search.

» The images of the letters under his morphism each have

length 85.



Avoiding patterns in the abelian sense

» an abelian instance of the pattern zxyxyx is a word
X1 XoY1 X3Y5 Xy

where the X are all abelian equivalent and the Y; are all

abelian equivalent; e.g.,
0012 0120 221 1020 122 2100

» relatively little is known about avoidability of patterns in

the abelian sense



Avoiding long binary patterns in the abelian sense

Theorem (Currie and Visentin 2008)

Patterns over {x,y} of length greater than 118 are avoidable

in the abelian sense on a binary alphabet.



Avoiding sum-cubes

The following avoidability result is even stronger than avoiding

abelian cubes:

Theorem (Cassaigne, Currie, Schaeffer, Shallit 2011)

There exists an infinite word over a finite subset of N that
contains no three consecutive blocks of the same length and

the same sum (sum-cube).

The word is the fixed point of the morphism

0—03 1—43 3—1 4 — 01.



Avoiding sum-squares

Open problem

Does there exist an infinite word over a finite subset of N that
contains no two consecutive blocks of the same length and the

same sum (sum-square)?



The End



