Avoiding repetitions in words I

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

KO KKOK KEK KEK LE I KORO

Repetitions in words

- \triangleright What kinds of repetitions can/cannot be avoided in words (sequences)?
- \blacktriangleright e.g., the word

abaabbabaabab

contains several repetitions

 \blacktriangleright but in the word

abcbacbcabcba

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

the same sequence of symbols never repeats twice in succession

Types of repetitions

- \triangleright a square is a non-empty word of the form xx (like couscous)
- \triangleright a word is squarefree if it contains no square
- \blacktriangleright a cube is a non-empty word xxx
- a *t*-power is a non-empty word x^t (x repeated t times)

KORK ERKER ADE YOUR

- \triangleright any long word over 2 symbols contains squares
- \triangleright Over 3 symbols?

Theorem (Thue 1906)

There is an infinite squarefree word over 3 symbols.

Subsequent work

- \blacktriangleright Thue's result was rediscovered many times
- \triangleright e.g., by Arshon (1937); Morse and Hedlund (1940)
- \triangleright a systematic study of avoidable repetitions was begun by Bean, Ehrenfeucht, and McNulty (1979)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Morphisms

- riativiry typical construction of squarefree words: find a map that produces a longer squarefree word from a shorter squarefree word
- e.g., the map (morphism) f that sends $a \rightarrow abcab$; $b \rightarrow acabcb$: $c \rightarrow acbcacb$
- ^I f(acb) = abcab acbcacb acabcb is squarefree
- \triangleright if this morphism preserves squarefreeness we can generate an infinite word by iteration

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Formal definition of morphism

- \triangleright let Σ , Δ be finite alphabets
- ► a morphism is a map $h: \Sigma^* \to \Delta^*$, satisfying $h(xy) = h(x)h(y)$ for all $x, y \in \Sigma^*$
- \triangleright we usually specify a morphism by giving the values $h(a)$ for all $a \in \Sigma$.

$$
\blacktriangleright \text{ e.g., } h: \{a,b,c\}^* \rightarrow \{a,b,c\}^* \text{ maps}
$$

$$
a \rightarrow abc
$$

$$
b \rightarrow ac
$$

$$
c \rightarrow b
$$

KORK ERKER ADE YOUR

Generating sequences with morphisms

- ► a morphism $h: \Sigma^* \to \Sigma^*$ such that $h(a) = ax$ for some $a\in\Sigma$ and $x\in\Sigma^*$ with $h^i(x)\neq\epsilon$ for all i is prolongable $on a$
- if we iterate h we get

$$
h(a) = ax
$$

\n
$$
h^{2}(a) = a x h(x)
$$

\n
$$
\vdots
$$

\n
$$
h^{\omega}(a) = a x h(x) h^{2}(x) h^{3}(x) \cdots
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \blacktriangleright $h^{\omega}(a)$ is a purely morphic word

Iterating a morphism

The morphism $a \to abc, b \to ac, c \to b$ given earlier is prolongable on a , so iteration gives

 $a \rightarrow abc \rightarrow abcacb \rightarrow \cdots \rightarrow abcacababcbacabcacb \cdots$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Preserving squarefreeness

- \triangleright What conditions on a morphism guarantee that it preserves squarefreeness?
- \triangleright we say a morphism is infix if no image of a letter appears inside the image of another letter

KORK ERKER ADE YOUR

 $\rightarrow a \rightarrow abc$; $b \rightarrow ac$; $c \rightarrow b$ is not infix

A sufficient condition for infix morphisms

Theorem (Thue 1912; Bean et. al. 1979)

Let $f : A^* \to B^*$ be a morphism. If f is infix and $f(w)$ is squarefree whenever w is a squarefree word of length at most 3, then f preserves squarefreeness in general.

KORK ERKER ADE YOUR

Claim: Let $w = w_0w_1 \cdots w_n$ be a squarefree word, where each $w_i \in A$. If $f(w) = xf(a)y$ for some $x, y \in A^*$ and $a \in A$, then there exists j such that $x=f(w_1\cdots w_{j-1})$, $a=w_j$, and $y = f(w_{i+1} \cdots w_n).$

KORK ERKER ADE YOUR

- **If** suppose the contrary: $f(a)$ is a factor of $f(w_jw_{j+1})$ for some j and $f(a)$ crosses the boundary between $f(w_i)$ and $f(w_{i+1})$
- ightharpoonup write $f(w_i) = pq$, $f(w_{i+1}) = rs$, and $f(a) = qr$
- \blacktriangleright $f(aw_ia) = qrpqqr$ contains a square, so aw_ia must contain a square
- i.e., $a = w_i$ and similarly $a = w_{i+1}$
- \triangleright so $w_i = w_{i+1}$, contradicting the squarefreeness of w

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- In Let $w = w_0w_1\cdots w_n$ be a shortest squarefree word such that $f(w)$ contains a square.
- ightharpoonup write $f(w) = xyyz$ and $f(w_i) = W_i$

$$
\blacktriangleright
$$
 i.e., $f(w) = W_0 W_1 \cdots W_n = xyyz$

 \triangleright we may suppose that x is a proper prefix of W_0 and z is a proper suffix of W_n

KORKAR KERKER EL VOLO

- \blacktriangleright write $W_0 = xW_0''$ and $W_n = W_n'z$
- ► then $yy = W_0''W_1 \cdots W_{n-1}W_n'$

- \blacktriangleright then $y = W_0''W_1 \cdots W_j' = W_j''W_{j+1} \cdots W_n'$, where $W_j = W'_j W''_j$
- \triangleright we must have $n \geq 3$
- if $i = 0$ then W_1W_2 is a factor of W_0 , contradicting the infix property of f

KORK ERKER ADE YOUR

 \blacktriangleright similarly, we cannot have $j = n$

 \blacktriangleright by earlier claim,

$$
W_0'' = W_j'', W_1 = W_{j+1}, \dots, W_j' = W_n'.
$$

so

$$
f(w_0 w_j w_n) = x W_0'' W_j' W_j'' W_n' z = x W_0'' W_j' W_0'' W_j' z
$$

contains the square $W_0^{\prime\prime}W_j^{\prime\prime}W_0^{\prime\prime}W_j^{\prime}$

 \blacktriangleright then $w_0w_jw_n$ contains a square

- ightharpoonup without loss of generality, suppose that $w_0 = w_j$
- From $W_1 = W_{i+1}, \ldots, W_{i-1} = W_{2i-1}$ we have

$$
w_1 = w_{j+1}, \dots, w_{j-1} = w_{2j-1}
$$

 \triangleright then $w = w_0w_1 \cdots w_{i-1}w_0w_1 \cdots w_{i-1}w_n$ contains a square, a contradiction

KORKAR KERKER EL VOLO

 \blacktriangleright this completes the proof

Generating squarefree words

- In the map $a \rightarrow abcab$; $b \rightarrow acabcb$; $c \rightarrow acbcac$ satisfies the conditions of the theorem
- \triangleright so it preserves squarefreeness
- \blacktriangleright if we iterate it we get squarefree words:

 $a \rightarrow abcab \rightarrow abcabacabcabcabcabcabcabcabc$

KORK ERKER ADE YOUR

So there is an infinite squarefree word over $\{a, b, c\}$

A general criterion

Theorem (Crochemore 1982)

Let $f : A^* \to B^*$ be a morphism. Then f preserves squarefreeness if and only if it preserves squarefreeness on words of length at most

$$
\max\left\{3, 1 + \left\lceil \frac{M(f) - 3}{m(f)} \right\rceil \right\},\
$$

where $M(f) = \max_{a \in A} |f(a)|$ and $m(f) = \min_{a \in A} |f(a)|$.

KORKAR KERKER EL VOLO

Consequences

- \triangleright we have an algorithm to decide if a morphism is squarefree
- \triangleright simply test if it is squarefree on words of a certain length (the bound in the theorem)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \blacktriangleright What about *t*-powers?
- Recall: a square looks like xx ; a t-power looks like $xx \cdots xx$ (*t*-times)

A criterion for t -power-freeness

Theorem (Richomme and Wlazinski 2007)

Let $t > 3$ and let $f : A^* \to B^*$ be a uniform morphism. There exists a finite set $T \subseteq A^*$ such that f preserves t-power-freeness if and only if $f(T)$ consists of t-power-free words.

(uniform means the lengths of the images, $|f(a)|$, are the same for all $a \in A$)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

The general case

Open problem

Is there an algorithm to determine if an arbitrary morphism is t-power-free?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Changing the problem slightly

- \triangleright our initial goal was to generate long t-power-free words
- \triangleright a morphism that preserves *t*-power-freeness can accomplish this
- \triangleright but some morphisms can generate long t-power-free words without preserving t -power-freeness in general

KORK ERKER ADE YOUR

An non-squarefree morphism

 \triangleright consider f defined by

$$
a \to abc \qquad b \to ac \qquad c \to b
$$

 \blacktriangleright iterates are squarefree:

$$
a \to abc \to abcacb \to abcacbabcbac \to \cdots
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \rightarrow but $f(aba) = abcacabc$ is not

Fixed points

Example suppose f generates an infinite word x by iteration

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright we write $\mathbf{x} = f(\mathbf{x})$ and call \mathbf{x} a fixed point of f
- \triangleright Can we determine if x is *t*-power-free?

Deciding if a fixed point is t -power-free

Theorem (Mignosi and Séébold 1993)

There is an algorithm to decide the following problem: Given $t > 2$ and a morphism f with fixed point x, is x t-power-free?

KORK ERKER ADE YOUR

Fractional repetitions

- \blacktriangleright We denote squares by $xx = x^2$ and cubes by $xxx = x^3$.
- What would $x^{7/4}$ or $x^{8/5}$ mean?

$$
\blacktriangleright \text{ ingoing} = x^{7/4} \text{ for } x = \text{ingo}
$$

- \blacktriangleright outshout $=x^{8/5}$ for $x =$ outsh
- If $w = x^r$ for some rational r, then w is a r-power.
- An r^+ -power is a word x^s where $s > r$.
- \triangleright What fractional powers can be avoided on a given alphabet?

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Avoiding cubes on the binary alphabet

- \blacktriangleright x^2 cannot be avoided on a binary alphabet
- \blacktriangleright What about x^3 ?
- iterate the morphism $0 \rightarrow 001$, $1 \rightarrow 011$:

 $0 \to 001 \to 001011011 \to \cdots \to 001001011001011011 \cdots$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

ightharpoort this word avoids x^3 (exercise!)

Fractional repetitions on the binary alphabet

Theorem (Thue 1912)

There is an infinite word over 2 symbols that contains no 2^+ -power (i.e., no s-power where $s > 2$).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The Thue–Morse word

 \triangleright the word Thue constructed is obtained by iterating $0 \rightarrow 01, 1 \rightarrow 10$:

$01101001100101101001011001101001 \cdots$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

 \blacktriangleright this is the Thue–Morse word

Fractional repetitions on the ternary alphabet

- \blacktriangleright x^2 is avoidable on a 3-letter alphabet
- \triangleright Can repetitions with smaller exponent be avoided?
- \blacktriangleright There is an infinite word over 3 symbols that contains no $(7/4)^+$ -power (i.e., no s-power where $s > 7/4$) (Dejean 1972).

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Repetition threshold

- \triangleright 2⁺-powers are avoidable on 2 letters
- \blacktriangleright (7/4)⁺-powers are avoidable on 3 letters
- \triangleright What about larger alphabets?
- \blacktriangleright repetition threshold:

 $RT(k) = inf \{r \in \mathbb{Q} : \text{there is an infinite word over a} \}$ k -letter alphabet that avoids r-powers}

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Dejean's Conjecture (1972)

$$
RT(k) = \begin{cases} 2, & k = 2 \\ 7/4, & k = 3 \\ 7/5, & k = 4 \\ k/(k-1), & k \ge 5. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

The ternary alphabet

 \blacktriangleright Dejean proved that $RT(3) = 7/4$ using the morphism

$$
h(0) = 0120212012102120210
$$

\n
$$
h(1) = 1201020120210201021
$$

\n
$$
h(2) = 2012101201021012102
$$

- \blacktriangleright h maps $(7/4)^+$ -power-free words to $(7/4)^+$ -power-free words
- by iterating h on 0, we obtain an infinite word with the desired property

Morphic constructions for larger alphabets

- \triangleright Can a similar construction exist for larger alphabets?
- \blacktriangleright Brandenburg (1983): No.
- ► For each integer $k > 2$, define

$$
\alpha_k = \begin{cases} 7/4, & \text{if } k = 3; \\ 7/5, & \text{if } k = 4; \\ \frac{k}{k-1}, & \text{if } k \neq 3, 4. \end{cases}
$$

 \blacktriangleright Dejean's Conjecture is that $RT(k) = \alpha_k$.

No α_k^+ $_k^+$ -power-free morphisms

Theorem

Let Σ_k be an alphabet of size $k \geq 4$. There exists no growing α_k^+ $_k^+$ -power-free morphism from Σ_k to $\Sigma_k.$

growing morphism refers to a morphism h such that $h(a) \neq \epsilon$ for all $a \in \Sigma$ and $|h(a)| > 1$ for at least one letter $a \in \Sigma$

KORK ERKER ADE YOUR

Implications of Brandenburg's result

- \triangleright We cannot hope to prove Dejean's Conjecture by producing α_k^+ $_k^+$ -free morphisms.
- It could be the case that there exist morphisms h that are not α_k^+ $_k^+$ -free but still generate an infinite α_k^+ k^+ -free word by iteration.
- \triangleright Still, this is strong evidence that a new idea is needed in order to attack Dejean's Conjecture for larger alphabets.

KID KA KERKER E VOOR

 \blacktriangleright new idea provided by Pansiot

Pansiot's approach

- \blacktriangleright Alphabet size k
- A word of length at least $k + 2$ must contain a factor with exponent at least $k/(k-1)$.
- ► If a word avoids $(k/(k-1))$ ⁺-powers, every block of length $k - 1$ consists of $k - 1$ different letters.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \triangleright The letter following a block y of length $k-1$ is either
	- \blacktriangleright the first letter of y; or
	- In the unique letter that does not occur in y .
- \triangleright Pansiot encoding: encode first case with a 0; second case with a 1.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Can uniquely reconstruct the original word from the Pansiot encoding.

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Example $(k=6)$

Word:

123451632415

Pansiot encoding:

0101101.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Constructing the Pansiot encoding

- **Proving Dejean's conjecture for** $k = 4$: need an infinite $(7/5)^+$ -power-free word w
- Instead, find the binary Pansiot encoding of w
- ▶ Binary encoding: iterate $0 \rightarrow 101101$; $1 \rightarrow 10$:

 $1 \rightarrow 10 \rightarrow 10101101 \rightarrow 101011011011011011011011010 \rightarrow \cdots$

▶ Decode:

 $w = 12342143241342314321...$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

The final resolution of the conjecture

- \triangleright Combined work of: Dejean (1972), Pansiot (1984), Moulin Ollagnier (1992), Currie and Mohammad-Noori (2007), Carpi (2007), Currie and Rampersad (2009), Rao (2009)
- \triangleright Major breakthrough: Carpi's proof of the conjecture for $k > 33$

KORK ERKER ADE YOUR

Words with irrational critical exponent

 \triangleright the critical exponent of a word w is the quantity

 $\sup\{r \in \mathbb{Q} : \mathbf{w} \text{ contains an } r\text{-power}\}\$

- \triangleright the words constructed to verify Dejean's conjecture have rational critical exponent
- Iterate the morphism $0 \to 01$: $1 \to 0$:

 $0 \rightarrow 01 \rightarrow 010 \rightarrow 01001 \rightarrow 01001010 \rightarrow \cdots$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \triangleright the limit word is the Fibonacci word f
- **F** has critical exponent $2 + \varphi = 3.61803399 \cdots$

Patterns

- \triangleright Squares (xx) and cubes (xx) are patterns with one variable.
- \triangleright Patterns can have several variables.
- \triangleright 01122011 is an instance of the pattern $xyyx$.
- \triangleright Given a pattern, is it avoidable over a finite alphabet?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright avoidable: there is an infinite word that avoids the pattern.

Doubled patterns

- \triangleright A doubled pattern: every variable occurs at least twice (like $xyzyxz$).
- Any doubled pattern is avoidable (Bean, Ehrenfeucht, McNulty; Zimin 1979).
- \triangleright Any doubled pattern is avoidable over a 4-letter alphabet (Bell and Goh 2007).

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Long patterns

Theorem (Ochem and Pinlou 2012; Blanchet-Sadri and Woodhouse 2012)

Let p be a pattern containing k distinct variables. (a) If p has length at least 2^k then p is 3-avoidable. (b) If p has length at least $3 \cdot 2^{k-1}$ then p is 2-avoidable.

 \triangleright k-avoidable: there is an infinite word over a k-letter alphabet that avoids the pattern.

KORKAR KERKER EL VOLO

The technique

- \triangleright A combinatorial lemma of Golod and Shafarevich (1964).
- \triangleright Originally used to construct counterexamples to the General Burnside Problem and Kurosh's Problem (ring-theoretic analogue).

General Burnside Problem

If G is a finitely generated group and every element of G has finite order, then must G be finite?

KORK ERKER ADE YOUR

Optimality of the patterns result

 \blacktriangleright The Zimin patterns:

$$
Z_1 = x, \quad Z_2 = xyx, \quad Z_3 = xyxzxyx, \quad \dots
$$

 \blacktriangleright Z_k contains k distinct variables, has length 2^k-1 , and is unavoidable.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Showing the unavoidability of the Zimin patterns

- by induction on k
- Exercise Let Σ be an alphabet of size s.
- ► Clearly Z_1 is unavoidable on Σ .
- ► Suppose Z_k is unavoidable on Σ .
- \blacktriangleright Then there exists N such that every word of length N contains an instance of Z_k .

KORKA SERKER ORA

 \blacktriangleright There are s^N such words.

Showing the unavoidability of the Zimin patterns

► Let $w \in \Sigma^*$ be a word of length $M = s^N(N+1) + N$:

$$
w = x_0 a_0 x_1 a_1 \cdots x_{s^{N-1}} a_{s^{N-1}} x_{s^N},
$$

where for $0\leq i\leq s^{N},\,|x_{i}|=N$ and $|a_{i}|=1.$

- \blacktriangleright There exists $i < j$ such that $x_i = x_j$.
- By the induction hypothesis x_i contains an instance of Z_k .

Showing the unavoidability of the Zimin patterns

 \blacktriangleright Write $x_i = x'yx''$, where y is an instance of Z_k , so

$$
yx''a_ix_{i+1}a_{i+1}\cdots x_{j-1}a_{j-1}x'y
$$

begins and ends with an instance of Z_k .

- It is therefore an instance of Z_{k+1} .
- \blacktriangleright So any word of length M over Σ contains an instance of Z_{k+1} .

KID KA KERKER E VOOR

 \blacktriangleright Σ was arbitrary, so Z_{k+1} is unavoidable.

Existence of long unavoidable patterns

- ► so there exist patterns of length 2^k-1 with k variables that are unavoidable
- \triangleright a similar argument shows that there exist patterns of length $3\cdot 2^{k-1}-1$ with k variables that are unavoidable over the binary alphabet

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

We have seen:

- \blacktriangleright integer powers
- \blacktriangleright fractional powers
- \blacktriangleright patterns

There are many more types of repetitions whose avoidability/unavoidability has been studied.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The End

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @