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Representing numbers in base 2

◮ In base 2, we expand using powers of 2:

13 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20.

◮ The representation of 13 in base 2 is 1101.



Representing numbers using other sequences

◮ Suppose we expand using the terms of the Fibonacci

sequence:

13 = 1 · 13 + 0 · 8 + 0 · 5 + 0 · 3 + 0 · 2 + 0 · 1.

◮ The representation of 13 in the Fibonacci system is

100000.

◮ 13 also has the representation 11000.



Numeration systems

◮ A numeration system is an increasing sequence of integers

U = (Un)n≥0 such that

◮ U0 = 1 and

◮ CU := sup
n≥0

⌈Un+1/Un⌉ < ∞.

◮ U is linear if it satisfies a linear recurrence relation over Z.



Greedy representations

◮ A greedy representation of a non-negative integer n is a

word w = wℓ−1 · · ·w0 over {0, 1, . . . , CU − 1} such that

ℓ−1
∑

i=0

wiUi = n,

and for all j
j−1
∑

i=0

wiUi < Uj .

◮ repU(n) is the greedy representation of n with wℓ−1 6= 0.



Numeration languages recognized by automata

◮ Suppose that the language repU(N) of greedy

representations is a regular language.

◮ Let AU be the minimal automaton accepting 0∗ repU(N).

◮ AU = (QU , {0, . . . , CU − 1}, δU , qU,0, FU)



The Fibonacci numeration system

0
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0

◮ Un+2 = Un+1 + Un (U0 = 1, U1 = 2)

◮ AU accepts all words that do not contain 11.



The ℓ-bonacci numeration system
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◮ Un+ℓ = Un+ℓ−1 + Un+ℓ−2 + · · ·+ Un

◮ Ui = 2i, i ∈ {0, . . . , ℓ − 1}

◮ AU accepts all words that do not contain 1ℓ.



Recognizable sets

◮ A set X of integers is U -recognizable if repU(X) is

accepted by a finite automaton.

◮ If N is U -recognizable, then U is linear.

◮ The converse is not true in general.



Recognizing arithmetic progressions

Theorem (Lecomte and Rigo 2001)

Let L be a regular language ordered first by length and then

lexicographically. The language obtained by extracting from L

those words whose indices belong to an ultimately periodic set

is regular.

In particular, if N is U -recognizable then so is m N.



State complexity

Theorem (Krieger, Miller, R., Ravikumar, Shallit

2009)

If L accepted by an n-state DFA, then the minimal DFA

accepting the language of words of L indexed by the multiples

of m has at most nmn states.



An exact result for the integer bases

Theorem (Alexeev 2004)

Let λ(x, y) = x
gcd(x,y)

. The number of states of the minimal

automaton accepting the base b representations of the

multiples of m is

λ(m, bA) +

A−1
∑

i=0

λ(bi, m),

where A is the least non-negative integer i for which

λ(m, bi) − λ(m, bi+1) < λ(bi, m).



The Hankel matrix

◮ Let U = (Un)n≥0 be a numeration system.

◮ For t ≥ 1 define

Ht :=















U0 U1 · · · Ut−1

U1 U2 · · · Ut

...
...

. . .
...

Ut−1 Ut · · · U2t−2















.

◮ For m ≥ 2, define kU,m to be the largest t such that

det Ht 6≡ 0 (mod m).



Calculating kU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ (Un)n≥0 = 1, 3, 7, 17, 41, 99, 239, . . .

◮ (Un mod 2)n≥0 is constant and trivially satisfies the

recurrence relation Un+1 = Un with U0 = 1.

◮ Hence kU,2 = 1.

◮ Mod 4 we find kU,4 = 2.



A system of linear congruences

◮ Let k = kU,m.

◮ Let x = (x1, . . . , xk).

◮ Let SU,m denote the number of k-tuples b in

{0, . . . , m − 1}k such that the system

Hk x ≡ b (mod m)

has at least one solution.



Calculating SU,m

◮ Un+2 = 2Un+1 + Un, (U0, U1) = (1, 3)

◮ Consider the system

{

1 x1 + 3 x2 ≡ b1 (mod 4)

3 x1 + 7 x2 ≡ b2 (mod 4)

◮ 2x1 ≡ b2 − b1 (mod 4)

◮ For each value of b1 there are at most 2 values for b2.

◮ Hence SU,4 = 8.



Properties of the automata we consider

(H.1) AU has a single strongly connected component CU .

(H.2) For all states p, q in CU with p 6= q, there exists a word

xpq such that δU(p, xpq) ∈ CU and δU(q, xpq) 6∈ CU , or

vice-versa.



General state complexity result

Theorem

Let m ≥ 2 be an integer. Let U = (Un)n≥0 be a linear

numeration system such that

(a) N is U -recognizable and AU satisfies (H.1) and (H.2),

(b) (Un mod m)n≥0 is purely periodic.

The number of states of the trim minimal automaton

accepting 0∗ repU(mN) from which infinitely many words are

accepted is |CU |SU,m.



Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and AU is

strongly connected, then the number of states of the trim

minimal automaton accepting 0∗ repU(mN) is |CU |SU,m.



Result for the ℓ-bonacci system
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Corollary

For U the ℓ-bonacci numeration system, the number of states

of the trim minimal automaton accepting 0∗ repU(mN) is ℓmℓ.



Bertrand numeration systems

◮ Bertrand numeration system: w is in repU(N) if and only

if w0 is in repU(N).

◮ E.g., the ℓ-bonacci system is Bertrand.



A non-Bertrand system

0
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0

◮ Un+2 = Un+1 + Un, (U0 = 1, U1 = 3)

◮ (Un)n≥0 = 1, 3, 4, 7, 11, 18, 29, 47, . . .

◮ 2 is a greedy representation but 20 is not.



β-expansions

◮ Bertrand systems are associated with β-expansions.

◮ Let β > 1 be a real number.

◮ The β-expansion of a real number x ∈ [0, 1] is the

lexicographically greatest sequence dβ(x) := (ti)i≥1 over

{0, . . . , ⌈β⌉ − 1} satisfying

x =
∞

∑

i=1

tiβ
−i.



Parry numbers

◮ If dβ(1) = t1 · · · tm0ω, with tm 6= 0, then dβ(1) is finite.

◮ In this case d∗
β(1) := (t1 · · · tm−1(tm − 1))ω.

◮ Otherwise d∗
β(1) := dβ(1).

◮ If d∗
β(1) is ultimately periodic, then β is a Parry number.



The Parry automaton

◮ Let Fact(Dβ) be the set of all words w lexicographically

less than or equal to the prefix of d∗
β(1) of length |w|.

◮ For β Parry, let Aβ be the minimal finite automaton

accepting Fact(Dβ).



An example of the automaton Aβ

0, 1

2 0

0

◮ Let β be the largest root of X3 − 2X2 − 1.

◮ dβ(1) = 2010ω and d∗
β(1) = (200)ω.

◮ This automaton also accepts repU(N) for U defined by

Un+3 = 2Un+2 + Un, (U0, U1, U2) = (1, 3, 7).



Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a β > 1 such

that 0∗ repU(N) = Fact(Dβ) (that is, AU = Aβ).



Applying our result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a

non-integer Parry number β > 1. The set N is U -recognizable

and the trim minimal automaton AU of 0∗ repU(N) fulfills

properties (H.1) and (H.2).

Our state complexity result thus applies to the class of

Bertrand numeration systems.



Further work

◮ Remove the assumption that U is purely periodic in the

state complexity result.

◮ Big open problem: Given an automaton accepting

repU(X), is it decidable whether X is an ultimately

periodic set?



The End


