The state complexity of testing divisibility

Narad Rampersad

Department of Mathematics University of Liège

Joint work with: É. Charlier, M. Rigo, L. Waxweiler

▲日▼▲□▼▲□▼▲□▼ □ ののの

Representing numbers in base 2

▶ In base 2, we expand using powers of 2:

$$13 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

▶ The representation of 13 in base 2 is 1101.

Representing numbers using other sequences

Suppose we expand using the terms of the Fibonacci sequence:

 $13 = 1 \cdot 13 + 0 \cdot 8 + 0 \cdot 5 + 0 \cdot 3 + 0 \cdot 2 + 0 \cdot 1.$

- ► The representation of 13 in the Fibonacci system is 100000.
- ▶ 13 also has the representation 11000.

Numeration systems

► A numeration system is an increasing sequence of integers U = (U_n)_{n≥0} such that

•
$$U_0 = 1$$
 and

•
$$C_U := \sup_{n \ge 0} \left[U_{n+1} / U_n \right] < \infty.$$

▶ U is linear if it satisfies a linear recurrence relation over \mathbb{Z} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A greedy representation of a non-negative integer n is a word w = w_{ℓ-1} · · · w₀ over {0, 1, . . . , C_U − 1} such that

$$\sum_{i=0}^{\ell-1} w_i U_i = n,$$

and for all j

$$\sum_{i=0}^{j-1} w_i U_i < U_j.$$

▶ $\operatorname{rep}_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Numeration languages recognized by automata

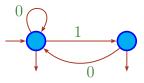
► Suppose that the language rep_U(N) of greedy representations is a regular language.

• Let \mathscr{A}_U be the minimal automaton accepting $0^* \operatorname{rep}_U(\mathbb{N})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

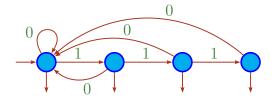
•
$$\mathscr{A}_U = (Q_U, \{0, \dots, C_U - 1\}, \delta_U, q_{U,0}, F_U)$$

The Fibonacci numeration system



- $U_{n+2} = U_{n+1} + U_n (U_0 = 1, U_1 = 2)$
- \mathscr{A}_U accepts all words that do not contain 11.

The ℓ -bonacci numeration system



- $U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$
- $U_i = 2^i$, $i \in \{0, \dots, \ell 1\}$
- \mathscr{A}_U accepts all words that do not contain 1^{ℓ} .

▲日▼▲□▼▲□▼▲□▼ □ ののの

► A set X of integers is U-recognizable if rep_U(X) is accepted by a finite automaton.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- If \mathbb{N} is U-recognizable, then U is linear.
- ▶ The converse is not true in general.

Theorem (Lecomte and Rigo 2001)

Let L be a regular language ordered first by length and then lexicographically. The language obtained by extracting from Lthose words whose indices belong to an ultimately periodic set is regular.

In particular, if \mathbb{N} is *U*-recognizable then so is $m \mathbb{N}$.

Theorem (Krieger, Miller, R., Ravikumar, Shallit 2009)

If L accepted by an n-state DFA, then the minimal DFA accepting the language of words of L indexed by the multiples of m has at most nm^n states.

Theorem (Alexeev 2004)

Let $\lambda(x,y) = \frac{x}{\gcd(x,y)}$. The number of states of the minimal automaton accepting the base b representations of the multiples of m is

$$\lambda(m, b^A) + \sum_{i=0}^{A-1} \lambda(b^i, m),$$

where A is the least non-negative integer i for which $\lambda(m,b^i)-\lambda(m,b^{i+1})<\lambda(b^i,m).$

The Hankel matrix

- Let $U = (U_n)_{n \ge 0}$ be a numeration system.
- ▶ For $t \ge 1$ define

$$H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}$$

•

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

For m ≥ 2, define k_{U,m} to be the largest t such that det H_t ≠ 0 (mod m).

Calculating $k_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- $(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, \dots$
- (U_n mod 2)_{n≥0} is constant and trivially satisfies the recurrence relation U_{n+1} = U_n with U₀ = 1.

- Hence $k_{U,2} = 1$.
- Mod 4 we find $k_{U,4} = 2$.

A system of linear congruences

- Let $k = k_{U,m}$.
- Let $\mathbf{x} = (x_1, \ldots, x_k)$.
- Let $S_{U,m}$ denote the number of k-tuples b in $\{0, \ldots, m-1\}^k$ such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

has at least one solution.

Calculating $S_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- Consider the system

$$\begin{cases} 1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\ 3 x_1 + 7 x_2 \equiv b_2 \pmod{4} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

 $\triangleright 2x_1 \equiv b_2 - b_1 \pmod{4}$

For each value of b_1 there are at most 2 values for b_2 .

• Hence
$$S_{U,4} = 8$$
.

Properties of the automata we consider

(H.1) 𝔄_U has a single strongly connected component 𝔅_U.
(H.2) For all states p, q in 𝔅_U with p ≠ q, there exists a word x_{pq} such that δ_U(p, x_{pq}) ∈ 𝔅_U and δ_U(q, x_{pq}) ∉ 𝔅_U, or vice-versa.

General state complexity result

Theorem

Let $m \ge 2$ be an integer. Let $U = (U_n)_{n\ge 0}$ be a linear numeration system such that

(a) \mathbb{N} is U-recognizable and \mathscr{A}_U satisfies (H.1) and (H.2),

(b) $(U_n \mod m)_{n \ge 0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ from which infinitely many words are accepted is $|\mathscr{C}_U|S_{U,m}$.

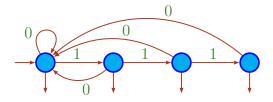
Result for strongly connected automata

Corollary

If U satisfies the conditions of the previous theorem and \mathscr{A}_U is strongly connected, then the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is $|\mathscr{C}_U|S_{U,m}$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Result for the ℓ -bonacci system



Corollary

For U the ℓ -bonacci numeration system, the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is ℓm^{ℓ} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

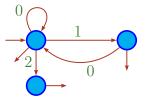
Bertrand numeration systems

► Bertrand numeration system: w is in rep_U(N) if and only if w0 is in rep_U(N).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• E.g., the ℓ -bonacci system is Bertrand.

A non-Bertrand system



▲日▼▲□▼▲□▼▲□▼ □ のので

$$\bullet \ U_{n+2} = U_{n+1} + U_n, (U_0 = 1, U_1 = 3)$$

- $(U_n)_{n\geq 0} = 1, 3, 4, 7, 11, 18, 29, 47, \dots$
- ▶ 2 is a greedy representation but 20 is not.

β -expansions

- Bertrand systems are associated with β -expansions.
- Let $\beta > 1$ be a real number.
- The β-expansion of a real number x ∈ [0, 1] is the lexicographically greatest sequence d_β(x) := (t_i)_{i≥1} over {0,..., [β] − 1} satisfying

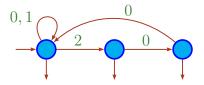
$$x = \sum_{i=1}^{\infty} t_i \beta^{-i}.$$

Parry numbers

- If $d_{\beta}(1) = t_1 \cdots t_m 0^{\omega}$, with $t_m \neq 0$, then $d_{\beta}(1)$ is finite.
- In this case $\mathsf{d}^*_\beta(1) := (t_1 \cdots t_{m-1}(t_m 1))^\omega$.
- Otherwise $\mathsf{d}^*_\beta(1) := \mathsf{d}_\beta(1)$.
- If $d^*_{\beta}(1)$ is ultimately periodic, then β is a Parry number.

- Let Fact(D_β) be the set of all words w lexicographically less than or equal to the prefix of d^{*}_β(1) of length |w|.
- For β Parry, let 𝒜_β be the minimal finite automaton accepting Fact(D_β).

An example of the automaton \mathscr{A}_{β}



- Let β be the largest root of $X^3 2X^2 1$.
- $d_{\beta}(1) = 2010^{\omega}$ and $d_{\beta}^{*}(1) = (200)^{\omega}$.
- ► This automaton also accepts $\operatorname{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).$

▲日▼▲□▼▲□▼▲□▼ □ のので

Characterization of Bertrand systems

Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta > 1$ such that $0^* \operatorname{rep}_U(\mathbb{N}) = \operatorname{Fact}(D_\beta)$ (that is, $\mathscr{A}_U = \mathscr{A}_\beta$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Applying our result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a non-integer Parry number $\beta > 1$. The set \mathbb{N} is U-recognizable and the trim minimal automaton \mathscr{A}_U of $0^* \operatorname{rep}_U(\mathbb{N})$ fulfills properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand numeration systems.

Remove the assumption that U is purely periodic in the state complexity result.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

▶ Big open problem: Given an automaton accepting rep_U(X), is it decidable whether X is an ultimately periodic set?

The End

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●