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The Thue–Morse sequence

I the prototypical 2-automatic sequence:

0110100110010110 · · ·

I generated by iterating the map

0→ 01, 1→ 10



Properties of the Thue–Morse sequence

I aperiodic

I uniformly recurrent

I contains no block of the form xxx

I contains at most 4n blocks of length n + 1 for n ≥ 1

I etc.



Decidable properties

I We present algorithms to decide if an automatic sequence

I is aperiodic

I is recurrent

I avoids repetitions

I etc.

I We also describe algorithms to calculate its

I complexity function

I recurrence function

I critical exponent

I etc.



Automatic sequences

I A sequence is k-automatic if it is generated by first

iterating a k-uniform morphism and then renaming some

of the symbols.



The characteristic sequence of the powers of 2

I Iterate the 2-uniform morphism

a→ ab, b→ bc, c→ cc

to get the infinite sequence

abbcbcccbcccccccbcccccccccccccccbcc · · · .

I Now recode by a, c→ 0; b→ 1:

01101000100000001000000000000000100 · · · .



Determining periodicity

I Given a k-automatic sequence, can we tell if it is

ultimately periodic?

I Honkala (1986) gave an algorithm.

I This result was often reproved: Muchnik (1991), Fagnot

(1997), Allouche, R., and Shallit (2009).

I Leroux (2005) gave a polynomial time algorithm.



An automaton-based characterization

I The proof of Allouche et al. is perhaps the simplest.

I It is based on another characterization of automatic

sequences:

I A sequence a is k-automatic if there exists a finite

automaton with output that, when given the base-k

representation of n as input, outputs the (n + 1)-th term

of a.

I This is the original definition of an automatic sequence;

the equivalence with the morphism-based definition is due

to Cobham.



An automaton for the powers of 2

0 0

1 1

0 1 0

0,1



A logic-based characterization

I Another important characterization (Büchi–Bruyère):

I Let Vk(x) denote the largest power of k that divides x.

I A sequence a is k-automatic if it is definable in the

logical structure 〈N, +, Vk〉.

I I.e., for each alphabet symbol b, there exists a first-order

formula ϕb of 〈N, +, Vk〉 such that

a−1(b) = {n ∈ N : 〈N, +, Vk〉 |= ϕb(n)}.



Defining the powers of 2 using logic

I The characteristic sequence a of the powers of 2 has a

simple definition in this formulation:

a−1(1) = {n ∈ N : 〈N, +, Vk〉 |= (V2(n) = n)}

a−1(0) = {n ∈ N : 〈N, +, Vk〉 |= ¬(V2(n) = n)}



Decidability

Theorem (Bruyère 1985)

The first order theory of 〈N, +, Vk〉 is decidable.



Putting all these ideas together

Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence x using

quantifiers, logical operations, integer variables, the operations

of addition, subtraction, indexing into x, and comparison of

integers or elements of x, then this property is decidable.



Applying these ideas

I We can now apply these ideas to obtain algorithms to

determine periodicity, recurrence, etc.

I A sequence a is ultimately periodic if and only if there

exist integers p ≥ 1 and n ≥ 0 such that a(i) = a(i + p)

for all i ≥ n.

I Hence there exists a decision procedure for determining

the periodicity of k-automatic sequences.



Recurrence

I An infinite word is recurrent if every factor that occurs at

least once in it occurs infinitely often.

I Equivalently, for each occurrence of a factor there exists a

later occurrence of that factor.

I Equivalently, for every n ≥ 0, r ≥ 1, there exists m > n

such that a(n + j) = a(m + j) for 0 ≤ j < r.



Uniform recurrence

I An infinite word is uniformly recurrent if every factor that

occurs at least once occurs infinitely often with bounded

gaps between consecutive occurrences.

I Equivalently, for every r ≥ 1 there exists t > 0 such that

for every n ≥ 0 there exists m ≥ 0 with n < m < n + t

such that a(n + i) = a(m + i) for 0 ≤ i < r.



Deciding recurrence

I We obtain another proof of the following result:

Theorem (Nicolas and Pritykin 2009)

There is an algorithm to decide if a k-automatic sequence is

recurrent or uniformly recurrent.



The k-kernel

I We now look at enumeration results.

I Recall that we have three equivalent characterizations of

k-automatic sequences: uniform morphisms, automata,

and logic.

I The k-kernel of a sequence (a(n))n≥0 is the set

{(a(ken + c))n≥0 : e ≥ 0, 0 ≤ c < ke}.

I A sequence is k-automatic if and only if its k-kernel is

finite (Eilenberg).



k-regular sequences

I With this definition we can generalize the notion of

k-automatic to the class of sequences over infinite

alphabets.

I A sequence (a(n))n≥0 is k-regular if the module

generated by the set

{(a(ken + c))n≥0 : e ≥ 0, 0 ≤ c < ke}

is finitely generated.



Factor complexity

I The following result generalizes slightly a result of Mossé

(1996).

I Carpi and D’Alonzo (2010) proved a slightly more general

result.

Theorem (Charlier, R., Shallit 2011)

Let x be a k-automatic sequence. Let b(n) be the number of

distinct factors of length n in x. Then (b(n))n≥0 is a k-regular

sequence.



Palindrome complexity

I The following result generalizes a result of Allouche,

Baake, Cassaigne and Damanik (2003).

I Carpi and D’Alonzo (2010) proved a slightly more general

result.

Theorem (Charlier, R., Shallit 2011)

Let x be a k-automatic sequence. Let c(n) be the number of

distinct palindromes of length n in x. Then (c(n))n≥0 is a

k-regular sequence.



Other numeration systems

I The previous results hold in a slightly more general

setting.

I The automaton-based formulation of k-automatic

sequences used numeration in base k.

I We can also consider other non-standard numeration

systems.



Positional numeration systems

I A positional numeration system is an increasing sequence

of integers U = (Un)n≥0 such that

I U0 = 1 and

I CU := sup
n≥0
dUn+1/Une <∞.

I It is linear if it satisfies a linear recurrence over Z.



Greedy representations

I A greedy representation of a non-negative integer n is a

word w = w`−1 · · ·w0 over {0, 1, . . . , CU − 1} such that

`−1∑
i=0

wiUi = n,

and for all j
j−1∑
i=0

wiUi < Uj.

I (n)U denotes the greedy representation of n with

w`−1 6= 0.



U -automatic sequences

I An infinite sequence x is U -automatic if it is computable

by a finite automaton taking as input the

U -representation (n)U of n, and having x(n) as the

output associated with the last state encountered.



The Fibonacci word

I Let U = (1, 2, 3, 5, 8, 13, . . .) be the sequence of

Fibonacci numbers.

I Greedy U -representations do not contain 11.

I The well-known Fibonacci word

0100101001001010010100100101001 · · ·

generated by the morphism 0→ 01, 1→ 0 is

U -automatic.

I The (n + 1)-th term is 1 exactly when the

U -representation of n ends with a 1.



Pisot systems

I A Pisot number is a real algebraic integer greater than

one such that all of its algebraic conjugates have absolute

value less than one.

I A Pisot system is a linear numeration system whose

characteristic polynomial is the minimal polynomial of a

Pisot number.



Recognizability of addition

Theorem (Frougny and Solomyak 1996)

Addition is recognizable in all Pisot systems U , i.e., it can be

performed by a finite letter-to-letter transducer reading

U -representations with least significant digit first.



An equivalent logical formulation

Theorem (Bruyère and Hansel 1997)

Let U be a Pisot system. A sequence is U -automatic if and

only if it is U -definable, i.e., it is expressible as a predicate of

〈N, +, VU〉, where VU(n) is the smallest Ui occurring in (n)U

with a nonzero coefficient.



Passing to this more general setting

I By virtue of these results, all of our previous reasoning

applies to U -automatic sequences when U is a Pisot

system.

I Hence, there exist algorithms to decide periodicity,

recurrence, etc. for sequences defined in such systems.

I Next we return again to the base-k setting.



Linear recurrence

I An infinite word w is linearly recurrent if it is recurrent

and there exists a constant R such that for each factor u

of w, the distance between consecutive occurrences of u

in w is at most R|u|.

I Given an automatic sequence, can we decide if it is

linearly recurrent?

I Can we compute the constant R?



Representing pairs of integers

I the binary representation of 12 is 1100

I the binary representation of 37 is 100101

I we represent the pair (12, 37) by

[0, 1], [0, 0], [1, 0], [1, 1], [0, 0], [0, 1]

I the sequence of first components gives 001100

I the sequence of second components gives 100101

I we denote the representation of (x, y) in base k by (x, y)k



A technical result

Theorem (Shallit 2011)

Let X ⊆ N2 and let k ≥ 2. Suppose that

{(x, y)k : (x, y) ∈ X}

is accepted by a finite automaton. The quantity

sup{x/y : (x, y) ∈ X}

is either rational or infinite and can be effectively computed.



Linear recurrence

I For a k-automatic sequence a, one can construct a finite

automaton to accept the set X of all pairs (n, l)k such

that:

I there exists i ≥ 0 such that for all j, 0 ≤ j < l we have

a(i + j) = a(i + n + j), and

I there exists no t, 0 < t < n such that for all j, 0 ≤ j < l

we have a(i + j) = a(i + t + j).

I The constant of linear recurrence is

sup{x/y : (x, y) ∈ X}.



Decidability of linear recurrence

Theorem (Shallit 2011)

Given a k-automatic sequence, there is an algorithm to decide

if it is linearly recurrent, and if so, to compute its recurrence

constant.



Critical exponent

I A word w with period p has an exponent |w|/p.

I The exponent of w is its largest exponent.

I The critical exponent of an infinite word is the supremum

of the exponents of its finite factors.

I The Thue–Morse word has critical exponent 2.

I The Fibonacci word has critical exponent 2 + ϕ.



An expression for the critical exponent

I Krieger showed that the critical exponent of the fixed

point of a uniform morphism is either rational or infinite.

I For a sequence a, let X be the set of all pairs (q, p) such

that there exists a factor of a of length q with period p.

I If a is k-automatic, we can construct a finite automaton

to accept {(q, p)k : (q, p) ∈ X}.

I The critical exponent is sup{q/p : (q, p) ∈ X}.



Calculating the critical exponent

Theorem (Shallit 2011)

Given a k-automatic sequence, its critical exponent is either

rational or infinite and can be effectively computed.



What remains to be done

I Recall: automatic sequences are generated by uniform

morphisms (with some possible recoding of the alphabet)

I The general case consists of morphic sequences: those

generated by possibly non-uniform morphisms (again with

a final recoding of the alphabet).

I Our techniques do not seem to apply in this setting.

I Some partial results are known (typically for purely

morphic sequences).

I Finding decision procedures for periodicity, etc. in the

general setting remains an open problem.



The End


