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The Thue—Morse sequence

» the prototypical 2-automatic sequence:

0110100110010110 - - -

» generated by iterating the map

0—01, 1—10



Properties of the Thue—Morse sequence

» aperiodic

» uniformly recurrent

» contains no block of the form zzx

» contains at most 4n blocks of length n 4+ 1 for n > 1

> etc.



Decidable properties

» We present algorithms to decide if an automatic sequence
» is aperiodic
» is recurrent
» avoids repetitions

> etc.

» We also describe algorithms to calculate its
» complexity function
» recurrence function

» critical exponent

» etc.



Automatic sequences

» A sequence is k-automatic if it is generated by first
iterating a k-uniform morphism and then renaming some

of the symbols.



The characteristic sequence of the powers of 2

» lterate the 2-uniform morphism
a — ab,b — bc,c — cc
to get the infinite sequence
abbcbeecbeccececbecceccccecceeeebec - - -
» Now recode by a,c — 0; b — 1:

01101000100000001000000000000000100 - - -



Determining periodicity

» Given a k-automatic sequence, can we tell if it is

ultimately periodic?
» Honkala (1986) gave an algorithm.

» This result was often reproved: Muchnik (1991), Fagnot
(1997), Allouche, R., and Shallit (2009).

» Leroux (2005) gave a polynomial time algorithm.



An automaton-based characterization

» The proof of Allouche et al. is perhaps the simplest.

» It is based on another characterization of automatic

sequences:

» A sequence a is k-automatic if there exists a finite
automaton with output that, when given the base-k
representation of n as input, outputs the (n + 1)-th term

of a.

» This is the original definition of an automatic sequence;
the equivalence with the morphism-based definition is due

to Cobham.



An automaton for the powers of 2




A logic-based characterization

» Another important characterization (Biichi-Bruyére):
» Let Vi(z) denote the largest power of k that divides .

» A sequence a is k-automatic if it is definable in the

logical structure (N, +, Vj).

» |l.e., for each alphabet symbol b, there exists a first-order

formula ¢, of (N, +, Vj) such that

at(b)={neN:(N,+ V) | wn)}



Defining the powers of 2 using logic

» The characteristic sequence a of the powers of 2 has a

simple definition in this formulation:

a'(l) = {neN:(N+ )k () =n)}
a'(0) = {neN:(N+ W)k (V) =n)}



Decidability

Theorem (Bruyere 1985)

The first order theory of (N, +, V) is decidable.



Putting all these ideas together

Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence X using
quantifiers, logical operations, integer variables, the operations
of addition, subtraction, indexing into x, and comparison of

integers or elements of x, then this property is decidable.



Applying these ideas

» We can now apply these ideas to obtain algorithms to

determine periodicity, recurrence, etc.

» A sequence a is ultimately periodic if and only if there
exist integers p > 1 and n > 0 such that a(i) = a(i + p)
for all i > n.

» Hence there exists a decision procedure for determining

the periodicity of k-automatic sequences.



Recurrence

» An infinite word is recurrent if every factor that occurs at

least once in it occurs infinitely often.

» Equivalently, for each occurrence of a factor there exists a

later occurrence of that factor.

» Equivalently, for every n > 0, » > 1, there exists m > n

such that a(n+j) =a(m+j) for 0 < j <.



Uniform recurrence

» An infinite word is uniformly recurrent if every factor that
occurs at least once occurs infinitely often with bounded

gaps between consecutive occurrences.

» Equivalently, for every » > 1 there exists t > 0 such that
for every n > 0 there exists m > 0 withn <m <n+t
such that a(n +14) =a(m+1) for 0 <i < r.



Deciding recurrence

» We obtain another proof of the following result:

Theorem (Nicolas and Pritykin 2009)

There is an algorithm to decide if a k-automatic sequence is

recurrent or uniformly recurrent.



The k-kernel

We now look at enumeration results.

v

v

Recall that we have three equivalent characterizations of
k-automatic sequences: uniform morphisms, automata,

and logic.

v

The k-kernel of a sequence (a(n)),>o is the set

{(a(En+¢))p>0 : €>0, 0<c<Ek}.

v

A sequence is k-automatic if and only if its k-kernel is
finite (Eilenberg).



k-regular sequences

» With this definition we can generalize the notion of
k-automatic to the class of sequences over infinite

alphabets.

» A sequence (a(n)),>o is k-regular if the module

generated by the set
{(a(En+¢))p>0 : €20, 0<c <k}

is finitely generated.



Factor complexity

» The following result generalizes slightly a result of Mossé
(1996).
» Carpi and D’Alonzo (2010) proved a slightly more general

result.

Theorem (Charlier, R., Shallit 2011)

Let x be a k-automatic sequence. Let b(n) be the number of
distinct factors of length n in x. Then (b(n)),>¢ is a k-regular

sequence.



Palindrome complexity

» The following result generalizes a result of Allouche,
Baake, Cassaigne and Damanik (2003).

» Carpi and D’Alonzo (2010) proved a slightly more general

result.

Theorem (Charlier, R., Shallit 2011)

Let x be a k-automatic sequence. Let ¢(n) be the number of
distinct palindromes of length n in x. Then (¢(n)),>0 is a

k-regular sequence.



Other numeration systems

» The previous results hold in a slightly more general
setting.

» The automaton-based formulation of k-automatic
sequences used numeration in base k.

» We can also consider other non-standard numeration

systems.



Positional numeration systems

» A positional numeration system is an increasing sequence
of integers U = (Up,)n>0 such that
» Uy=1 and
» Cy = sup[Up41/Uy]| < 0.
n>0

» |t is linear if it satisfies a linear recurrence over Z.



Greedy representations

» A greedy representation of a non-negative integer n is a

word w = wy_1 - - wq over {0,1,...,Cy — 1} such that
-1
sz‘Uz =n,
i=0

and for all j

j—1
szUz < Uj.
=0
» (n)y denotes the greedy representation of n with
Wp—1 7’é 0.



U-automatic sequences

» An infinite sequence x is [/-automatic if it is computable
by a finite automaton taking as input the
U-representation (n)y of n, and having x(n) as the

output associated with the last state encountered.



The Fibonacci word

v

Let U = (1,2,3,5,8,13,...) be the sequence of

Fibonacci numbers.

v

Greedy U-representations do not contain 11.

The well-known Fibonacci word

v

0100101001001010010100100101001 - - -

generated by the morphism 0 — 01, 1 — O is

U-automatic.

v

The (n + 1)-th term is 1 exactly when the

U-representation of n ends with a 1.



Pisot systems

» A Pisot number is a real algebraic integer greater than
one such that all of its algebraic conjugates have absolute

value less than one.

» A Pisot system is a linear numeration system whose
characteristic polynomial is the minimal polynomial of a

Pisot number.



Recognizability of addition

Theorem (Frougny and Solomyak 1996)

Addition is recognizable in all Pisot systems U, i.e., it can be
performed by a finite letter-to-letter transducer reading

U-representations with least significant digit first.



An equivalent logical formulation

Theorem (Bruyere and Hansel 1997)

Let U be a Pisot system. A sequence is U-automatic if and
only if it is UU-definable, i.e., it is expressible as a predicate of

(N, +, Viy), where Vi7(n) is the smallest U; occurring in (n)y

with a nonzero coefficient.



Passing to this more general setting

» By virtue of these results, all of our previous reasoning
applies to U-automatic sequences when U is a Pisot

system.

» Hence, there exist algorithms to decide periodicity,

recurrence, etc. for sequences defined in such systems.

» Next we return again to the base-k setting.



Linear recurrence

» An infinite word w is linearly recurrent if it is recurrent
and there exists a constant R such that for each factor u
of w, the distance between consecutive occurrences of «

in w is at most R|ul.

» Given an automatic sequence, can we decide if it is

linearly recurrent?

» Can we compute the constant R?



Representing pairs of integers

» the binary representation of 12 is 1100
» the binary representation of 37 is 100101

» we represent the pair (12,37) by
[07 1]’ [07 0]7 [17 0]7 [1’ 1]7 [07 0]7 [07 1]

» the sequence of first components gives 001100
» the sequence of second components gives 100101

» we denote the representation of (z,y) in base k by (z,y)



A technical result

Theorem (Shallit 2011)

Let X C N? and let k > 2. Suppose that
{(Iay)k : (ZL',:I/) € X}
is accepted by a finite automaton. The quantity

sup{z/y : (v,y) € X}

is either rational or infinite and can be effectively computed.



Linear recurrence

» For a k-automatic sequence a, one can construct a finite

automaton to accept the set X of all pairs (n,[); such

that:
» there exists 7 > 0 such that for all 7, 0 < j <[ we have

a(i+j)=a(i+n+j), and
» there exists no t, 0 <t < n such that forall j, 0 <5 <1
we have a(i+j) =a(i +t + 7).

» The constant of linear recurrence is

sup{z/y : (z,y) € X}.



Decidability of linear recurrence

Theorem (Shallit 2011)

Given a k-automatic sequence, there is an algorithm to decide
if it is linearly recurrent, and if so, to compute its recurrence

constant.



Critical exponent

v

A word w with period p has an exponent |w|/p.

v

The exponent of w is its largest exponent.

v

The critical exponent of an infinite word is the supremum

of the exponents of its finite factors.

v

The Thue—Morse word has critical exponent 2.

v

The Fibonacci word has critical exponent 2 4 ¢.



An expression for the critical exponent

» Krieger showed that the critical exponent of the fixed

point of a uniform morphism is either rational or infinite.

» For a sequence a, let X be the set of all pairs (¢, p) such

that there exists a factor of a of length ¢ with period p.

» If a is k-automatic, we can construct a finite automaton

to accept {(q,p)x : (¢,p) € X}.
» The critical exponent is sup{q/p: (¢,p) € X}.



Calculating the critical exponent

Theorem (Shallit 2011)

Given a k-automatic sequence, its critical exponent is either

rational or infinite and can be effectively computed.



What

remains to be done

Recall: automatic sequences are generated by uniform

morphisms (with some possible recoding of the alphabet)

The general case consists of morphic sequences: those
generated by possibly non-uniform morphisms (again with

a final recoding of the alphabet).
Our techniques do not seem to apply in this setting.

Some partial results are known (typically for purely

morphic sequences).

Finding decision procedures for periodicity, etc. in the

general setting remains an open problem.



The End



