Decidable properties of automatic sequences

Narad Rampersad

University of Liège

The Thue–Morse sequence

▶ the prototypical 2-automatic sequence:

$$0110100110010110 \cdots$$

generated by iterating the map

$$0 \rightarrow 01, \quad 1 \rightarrow 10$$

Properties of the Thue–Morse sequence

- aperiodic
- uniformly recurrent
- ightharpoonup contains no block of the form xxx
- ▶ contains at most 4n blocks of length n+1 for $n \ge 1$
- ▶ etc.

Decidable properties

- We present algorithms to decide if an automatic sequence
 - is aperiodic
 - is recurrent
 - avoids repetitions
 - etc.
- ▶ We also describe algorithms to calculate its
 - complexity function
 - recurrence function
 - critical exponent
 - etc.

Automatic sequences

► A sequence is *k*-automatic if it is generated by first iterating a *k*-uniform morphism and then renaming some of the symbols.

The characteristic sequence of the powers of 2

▶ Iterate the 2-uniform morphism

$$a \to ab, b \to bc, c \to cc$$

to get the infinite sequence

Now recode by $a, c \rightarrow 0$; $b \rightarrow 1$:

 $01101000100000001000000000000000100 \cdots$

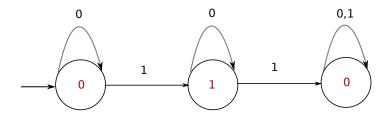
Determining periodicity

- ► Given a *k*-automatic sequence, can we tell if it is ultimately periodic?
- ▶ Honkala (1986) gave an algorithm.
- ➤ This result was often reproved: Muchnik (1991), Fagnot (1997), Allouche, R., and Shallit (2009).
- ▶ Leroux (2005) gave a polynomial time algorithm.

An automaton-based characterization

- ▶ The proof of Allouche et al. is perhaps the simplest.
- ▶ It is based on another characterization of automatic sequences:
- A sequence a is k-automatic if there exists a finite automaton with output that, when given the base-k representation of n as input, outputs the (n + 1)-th term of a.
- ➤ This is the original definition of an automatic sequence; the equivalence with the morphism-based definition is due to Cobham.

An automaton for the powers of 2



A logic-based characterization

- ► Another important characterization (Büchi–Bruyère):
- ▶ Let $V_k(x)$ denote the largest power of k that divides x.
- ▶ A sequence a is k-automatic if it is definable in the logical structure $\langle \mathbb{N}, +, V_k \rangle$.
- ▶ I.e., for each alphabet symbol b, there exists a first-order formula φ_b of $\langle \mathbb{N}, +, V_k \rangle$ such that

$$\mathbf{a}^{-1}(b) = \{ n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models \varphi_b(n) \}.$$

Defining the powers of 2 using logic

► The characteristic sequence a of the powers of 2 has a simple definition in this formulation:

$$\mathbf{a}^{-1}(1) = \{ n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models (V_2(n) = n) \}$$

$$\mathbf{a}^{-1}(0) = \{ n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models \neg (V_2(n) = n) \}$$

Decidability

Theorem (Bruyère 1985)

The first order theory of $\langle \mathbb{N}, +, V_k \rangle$ is decidable.

Putting all these ideas together

Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence \mathbf{x} using quantifiers, logical operations, integer variables, the operations of addition, subtraction, indexing into \mathbf{x} , and comparison of integers or elements of \mathbf{x} , then this property is decidable.

Applying these ideas

- ► We can now apply these ideas to obtain algorithms to determine periodicity, recurrence, etc.
- A sequence \mathbf{a} is ultimately periodic if and only if there exist integers $p \geq 1$ and $n \geq 0$ such that $\mathbf{a}(i) = \mathbf{a}(i+p)$ for all $i \geq n$.
- ► Hence there exists a decision procedure for determining the periodicity of *k*-automatic sequences.

Recurrence

- ▶ An infinite word is recurrent if every factor that occurs at least once in it occurs infinitely often.
- ► Equivalently, for each occurrence of a factor there exists a later occurrence of that factor.
- ▶ Equivalently, for every $n \ge 0$, $r \ge 1$, there exists m > n such that $\mathbf{a}(n+j) = \mathbf{a}(m+j)$ for $0 \le j < r$.

Uniform recurrence

- An infinite word is uniformly recurrent if every factor that occurs at least once occurs infinitely often with bounded gaps between consecutive occurrences.
- ▶ Equivalently, for every $r \ge 1$ there exists t > 0 such that for every $n \ge 0$ there exists $m \ge 0$ with n < m < n + t such that $\mathbf{a}(n+i) = \mathbf{a}(m+i)$ for $0 \le i < r$.

Deciding recurrence

▶ We obtain another proof of the following result:

Theorem (Nicolas and Pritykin 2009)

There is an algorithm to decide if a k-automatic sequence is recurrent or uniformly recurrent.

The k-kernel

- We now look at enumeration results.
- ▶ Recall that we have three equivalent characterizations of k-automatic sequences: uniform morphisms, automata, and logic.
- ▶ The k-kernel of a sequence $(a(n))_{n\geq 0}$ is the set

$$\{(a(k^e n + c))_{n \ge 0} : e \ge 0, 0 \le c < k^e\}.$$

► A sequence is *k*-automatic if and only if its *k*-kernel is finite (Eilenberg).

k-regular sequences

- ▶ With this definition we can generalize the notion of k-automatic to the class of sequences over infinite alphabets.
- ▶ A sequence $(a(n))_{n\geq 0}$ is k-regular if the module generated by the set

$$\{(a(k^e n + c))_{n \ge 0} : e \ge 0, \ 0 \le c < k^e\}$$

is finitely generated.

Factor complexity

- ► The following result generalizes slightly a result of Mossé (1996).
- ► Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (Charlier, R., Shallit 2011)

Let $\mathbf x$ be a k-automatic sequence. Let b(n) be the number of distinct factors of length n in $\mathbf x$. Then $(b(n))_{n\geq 0}$ is a k-regular sequence.

Palindrome complexity

- ► The following result generalizes a result of Allouche, Baake, Cassaigne and Damanik (2003).
- ► Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (Charlier, R., Shallit 2011)

Let ${\bf x}$ be a k-automatic sequence. Let c(n) be the number of distinct palindromes of length n in ${\bf x}$. Then $(c(n))_{n\geq 0}$ is a k-regular sequence.

Other numeration systems

- ► The previous results hold in a slightly more general setting.
- ► The automaton-based formulation of *k*-automatic sequences used numeration in base *k*.
- We can also consider other non-standard numeration systems.

Positional numeration systems

- ▶ A positional numeration system is an increasing sequence of integers $U = (U_n)_{n \ge 0}$ such that
 - $U_0=1$ and
 - $C_U := \sup_{n>0} \lceil U_{n+1}/U_n \rceil < \infty.$
- ▶ It is linear if it satisfies a linear recurrence over \mathbb{Z} .

Greedy representations

▶ A greedy representation of a non-negative integer n is a word $w = w_{\ell-1} \cdots w_0$ over $\{0, 1, \dots, C_U - 1\}$ such that

$$\sum_{i=0}^{\ell-1} w_i U_i = n,$$

and for all j

$$\sum_{i=0}^{j-1} w_i U_i < U_j.$$

▶ $(n)_U$ denotes the greedy representation of n with $w_{\ell-1} \neq 0$.

U-automatic sequences

An infinite sequence \mathbf{x} is U-automatic if it is computable by a finite automaton taking as input the U-representation $(n)_U$ of n, and having $\mathbf{x}(n)$ as the output associated with the last state encountered.

The Fibonacci word

- Let U = (1, 2, 3, 5, 8, 13, ...) be the sequence of Fibonacci numbers.
- lacktriangle Greedy U-representations do not contain 11.
- ▶ The well-known Fibonacci word

 $0100101001001010010100100101001 \cdots$

generated by the morphism $0 \to 01$, $1 \to 0$ is U-automatic.

▶ The (n+1)-th term is 1 exactly when the U-representation of n ends with a 1.

Pisot systems

- ▶ A Pisot number is a real algebraic integer greater than one such that all of its algebraic conjugates have absolute value less than one.
- ▶ A Pisot system is a linear numeration system whose characteristic polynomial is the minimal polynomial of a Pisot number.

Recognizability of addition

Theorem (Frougny and Solomyak 1996)

Addition is recognizable in all Pisot systems U, i.e., it can be performed by a finite letter-to-letter transducer reading U-representations with least significant digit first.

An equivalent logical formulation

Theorem (Bruyère and Hansel 1997)

Let U be a Pisot system. A sequence is U-automatic if and only if it is U-definable, i.e., it is expressible as a predicate of $\langle \mathbb{N}, +, V_U \rangle$, where $V_U(n)$ is the smallest U_i occurring in $(n)_U$ with a nonzero coefficient.

Passing to this more general setting

- ightharpoonup By virtue of these results, all of our previous reasoning applies to U-automatic sequences when U is a Pisot system.
- ▶ Hence, there exist algorithms to decide periodicity, recurrence, etc. for sequences defined in such systems.
- ▶ Next we return again to the base-*k* setting.

Linear recurrence

- ▶ An infinite word w is linearly recurrent if it is recurrent and there exists a constant R such that for each factor u of w, the distance between consecutive occurrences of u in w is at most R|u|.
- ► Given an automatic sequence, can we decide if it is linearly recurrent?
- ightharpoonup Can we compute the constant R?

Representing pairs of integers

- ▶ the binary representation of 12 is 1100
- \blacktriangleright the binary representation of 37 is 100101
- we represent the pair (12, 37) by

$$[0, 1], [0, 0], [1, 0], [1, 1], [0, 0], [0, 1]$$

- \blacktriangleright the sequence of first components gives 001100
- ▶ the sequence of second components gives 100101
- we denote the representation of (x,y) in base k by $(x,y)_k$

A technical result

Theorem (Shallit 2011)

Let $X \subseteq \mathbb{N}^2$ and let $k \ge 2$. Suppose that

$$\{(x,y)_k : (x,y) \in X\}$$

is accepted by a finite automaton. The quantity

$$\sup\{x/y:(x,y)\in X\}$$

is either rational or infinite and can be effectively computed.

Linear recurrence

- For a k-automatic sequence a, one can construct a finite automaton to accept the set X of all pairs $(n,l)_k$ such that:
 - there exists $i \geq 0$ such that for all j, $0 \leq j < l$ we have $\mathbf{a}(i+j) = \mathbf{a}(i+n+j)$, and
 - ▶ there exists no t, 0 < t < n such that for all j, $0 \le j < l$ we have $\mathbf{a}(i+j) = \mathbf{a}(i+t+j)$.
- ▶ The constant of linear recurrence is

$$\sup\{x/y:(x,y)\in X\}.$$

Decidability of linear recurrence

Theorem (Shallit 2011)

Given a k-automatic sequence, there is an algorithm to decide if it is linearly recurrent, and if so, to compute its recurrence constant.

Critical exponent

- ▶ A word w with period p has an exponent |w|/p.
- ightharpoonup The exponent of w is its largest exponent.
- ► The critical exponent of an infinite word is the supremum of the exponents of its finite factors.
- ▶ The Thue–Morse word has critical exponent 2.
- ▶ The Fibonacci word has critical exponent $2 + \varphi$.

An expression for the critical exponent

- Krieger showed that the critical exponent of the fixed point of a uniform morphism is either rational or infinite.
- For a sequence a, let X be the set of all pairs (q, p) such that there exists a factor of a of length q with period p.
- ▶ If a is k-automatic, we can construct a finite automaton to accept $\{(q,p)_k: (q,p) \in X\}$.
- ▶ The critical exponent is $\sup\{q/p: (q,p) \in X\}$.

Calculating the critical exponent

Theorem (Shallit 2011)

Given a k-automatic sequence, its critical exponent is either rational or infinite and can be effectively computed.

What remains to be done

- Recall: automatic sequences are generated by uniform morphisms (with some possible recoding of the alphabet)
- ► The general case consists of morphic sequences: those generated by possibly non-uniform morphisms (again with a final recoding of the alphabet).
- Our techniques do not seem to apply in this setting.
- Some partial results are known (typically for purely morphic sequences).
- ► Finding decision procedures for periodicity, etc. in the general setting remains an open problem.

The End