
Decidable Properties of Automatic

Sequences

Narad Rampersad

Department of Mathematics and Statistics

University of Winnipeg



Goal: exploit the decidability of certain logical theories to

provide entirely computer generated proofs of certain results in

combinatorics on words.



I The first-order theory of 〈N,+,×,=〉 is undecidable

(Tarski and Mostowski 1949).

I The first-order theory of 〈R,+,×,=〉 is decidable (Tarski

1949).

I The first-order theory of NA = 〈N,+,=〉 is decidable

(Presburger 1929).



I We call the theory of NA Presburger arithmetic.

I Presburger’s proof used elimination of quantifiers.

I The decidability of Presburger arithmetic can also be

proved using automata.

I Stronger result: we can prove decidability of certain

extensions of Presburger arithmetic.



I A corollary of Presburger’s proof is that S ⊆ N is

definable in Presburger arithmetic if and only if S is a

finite union of arithmetic progressions.

I Recall: A set S ⊆ Nd is definable in NA if there is a

formula φ with d free variables such that

S = {(n1, . . . , nd) ∈ N : NA |= φ(n1, . . . , nd)}.



I Let’s extend Presburger arithmetic as follows.

I Let Vk(x) denote the largest power of k that divides x.

I e.g., V2(80) = 16.

I by convention Vk(0) = 1

I consider the structure Nk = 〈N,+,=, Vk〉



Theorem (Bruyère 1985)

The first order theory of Nk = 〈N,+,=, Vk〉 is decidable.



I Recall that the only subsets of N definable in NA are

finite unions of arithmetic progressions.

I Nk is richer

I e.g., we can define the powers of 2 in N2 by the formula

x = V2(x).

I We now consider a completely different way to define

subsets of N.



informally, a finite automaton is a directed, edge-labelled

multigraph



I we call the vertices states and the edges transitions

I for us each state will have k outgoing transitions labeled

with the digits 0, 1, . . . , k − 1 (this is the alphabet)

I there is an initial state and a set of final states

I an automaton accepts a string of digits b0b1 · · · bm−1 if

there is a path of length m from the initial state to a final

state such that for i = 0, . . . ,m− 1, the i-th transition in

the path is labeled bi



An automaton for the powers of 2

(): 0*10*

0

(0)

1(1)

(0)

(Transitions not shown go to an implied “sink” state.)



A subset S ⊆ N is k-automatic if there is some finite

automaton that accepts exactly the base-k representations of

elements of S.



I How do we define relations?

I To recognize an element (x, y) ∈ N× N we extend the

alphabet of the automaton to

{0, . . . , k − 1} × {0, . . . , k − 1}.

I Then (x, y) is in the set defined by the automaton if the

automaton accepts

(a0, b0)(a1, b1) · · · (am−1, bm−1),

where a0a1 · · · am−1 and b0b1 · · · bm−1 are the base-k

representations for x and y respectively (possibly padded

with leading zeros).



For example, we represent (11, 5, 16) ∈ N×N×N in binary by
0

0

1



1

0

0



0

1

0



1

0

0



1

1

0

 ,

where we have written triples as columns.



(x,y,z): x+y=z

0

(0,0,0)
(1,0,1)
(0,1,1)

1(0,0,1)
(1,1,0)

(1,0,0)
(0,1,0)
(1,1,1)

This automaton defines the relation x+ y = z in base 2.

Base-k addition is definable using automata!



Let S, T be k-automatic sets. There are standard

constructions to obtain automata that define

S ∪ T, S ∩ T, S.



Theorem (Büchi–Bruyère)

A set S ⊆ Nd is k-automatic if and only if it is definable in Nk.

I Idea for ⇐: logical operations ∨,∧,¬ correspond to

∪,∩, .

I Quantifiers ∃,∀ are trickier (we use non-determinism).

I Addition is done as shown previously.

I Proof is by structural induction on the formula.

I Let’s do an example of ⇒.



(n): T[n]=@1

0

(0)

1(1)
(1)

(0)

This automaton accepts any number whose binary

representation contains an odd number of 1’s.



I let’s try to define the same set in N2

I consider some number n written in binary

I let m be the number obtained from the binary

representation of n by turning every second 1 into a 0

(say, from right to left)

I e.g.,

(n)2 = 1 0 1 1 0 1 0 1 1 0 1

(m)2 = 1 0 0 1 0 0 0 1 0 0 1



Then n has an odd number of 1’s if and only if there exists m

satisfying:

I the smallest powers of 2 appearing in (m)2 and (n)2 are

equal

I the largest powers of 2 appearing in (m)2 and (n)2 are

equal

I for every pair of consecutive powers of 2 occurring in

(n)2, one occurs in (m)2 and the other does not

I minor technicality: What if n or m is 0?



I the relations ≤ and <, as well as any given constant, can

be defined in 〈N,+,=, V2〉

I when building our formula in N2 we use these symbols as

shortcuts for their defining formulas



I Checking the smallest powers of 2 is easy: V2(n) = V2(m)

I Let λ2(x) = y denote the largest power of 2 appearing in

(x)2 (by convention λ2(0) = 1).

I Then λ2(x) = y is defined by

[(V2(y) = y) ∧ (y ≤ x)

∧ ((∀z)((V2(z) = z) ∧ (y < z))→ (x < z))]

∨[(x = 0) ∧ (y = 1)]



I Checking the largest powers of 2 becomes

λ2(n) = λ2(m).

I To check the “internal 1’s” we start by defining a

predicate φ2(x, y) which indicates that y is a power of 2

occurring in the binary expansion of x.



I φ2(x, y) is defined by

(V2(y) = y) ∧ [(∃z)(∃t)(x = z + y + t) ∧ (z < y)

∧ ((y < V2(t)) ∨ (t = 0))]

I Using this we can verify the last condition (we omit the

details).

I Summary: the property that (n)2 has an odd number of

1’s can be defined in N2.



I This was an example of automaton⇒ formula conversion.

I To show decidability of Nk we convert from formula ⇒
automaton.

I Determining if the set defined by an automaton is empty

is decidable.

I We can decide if a given formula is satisfiable in Nk by

building an automaton accepting all satisfying

assignments and then checking if this set is non-empty.

I Hence, the theory Nk is decidable.

I A fortiori, we see that NA is decidable.



Recall: goal was to apply the decidability of Nk to prove

combinatorial properties of certain sequences.

(n): T[n]=@1

0

(0)

1(1)
(1)

(0)

Let

t = 0110100110010110 · · ·

be the sequence with a 1 in position n exactly when the above

automaton accepts (n)2.



I The Thue–Morse sequence

t = 0110100110010110 · · ·

has the remarkable combinatorial property that it does

not ever contain a repetition of the same block X three

times in succession (i.e., XXX).

I Is there an algorithm that can verify for any given

k-automatic sequence if the sequence has this property?

I If the property can be expressed in Nk, then by the earlier

decidability result, the answer is yes.



Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence x using

quantifiers, logical operations, integer variables, the operations

of addition, subtraction, indexing into x, and comparison of

integers or elements of x, then this property is decidable.



I A sequence a contains an occurrence of the pattern

XXX if and only if there exist integers p ≥ 1 and

0 ≤ m1 < m2 < m3 such that

a(m1 + i) = a(m2 + i) = a(m3 + i) for all 0 ≤ i < p.

I If a is k-automatic then this property can be defined in

Nk.

I Hence there is an algorithm to decide if a given

k-automatic sequence avoids XXX.



I Hamoon Mousavi has implemented this method as a Java

application called Walnut.

I Walnut can be found on Jeffrey Shallit’s webpage

https://cs.uwaterloo.ca/~shallit/papers.html

along with many examples of applications of the method.

https://cs.uwaterloo.ca/~shallit/papers.html


I previously proving results like this involved an ad hoc

argument for each situation

I this method allows for quick, routine verifications of

properties of automatic sequences in a wide variety of

contexts

I time complexity: theoretically the worst case is a tower of

exponentials as high as the number of quantifier

alternations in the formula

I in practice, runs quickly if formula not too complicated.



The End


