Decidable Properties of Automatic Sequences

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Goal: exploit the decidability of certain logical theories to provide entirely computer generated proofs of certain results in combinatorics on words.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► The first-order theory of ⟨N, +, ×, =⟩ is undecidable (Tarski and Mostowski 1949).
- ► The first-order theory of (ℝ, +, ×, =) is decidable (Tarski 1949).

 The first-order theory of 𝔅_A = ⟨𝔅, +, =⟩ is decidable (Presburger 1929).

- We call the theory of \mathfrak{N}_A Presburger arithmetic.
- Presburger's proof used elimination of quantifiers.
- The decidability of Presburger arithmetic can also be proved using automata.
- Stronger result: we can prove decidability of certain extensions of Presburger arithmetic.

- A corollary of Presburger's proof is that S ⊆ N is definable in Presburger arithmetic if and only if S is a finite union of arithmetic progressions.
- ► Recall: A set S ⊆ N^d is definable in ℜ_A if there is a formula φ with d free variables such that

$$S = \{ (n_1, \ldots, n_d) \in \mathbb{N} : \mathfrak{N}_A \models \phi(n_1, \ldots, n_d) \}.$$

- Let's extend Presburger arithmetic as follows.
- Let $V_k(x)$ denote the largest power of k that divides x.

- e.g., $V_2(80) = 16$.
- by convention $V_k(0) = 1$
- consider the structure $\mathfrak{N}_k = \langle \mathbb{N}, +, =, V_k \rangle$

Theorem (Bruyère 1985)

The first order theory of $\mathfrak{N}_k = \langle \mathbb{N}, +, =, V_k \rangle$ is decidable.

- ► Recall that the only subsets of N definable in 𝔅_A are finite unions of arithmetic progressions.
- \mathfrak{N}_k is richer
- e.g., we can define the powers of 2 in \mathfrak{N}_2 by the formula

$$x = V_2(x).$$

► We now consider a completely different way to define subsets of N.

informally, a finite automaton is a directed, edge-labelled multigraph

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- we call the vertices states and the edges transitions
- ▶ for us each state will have k outgoing transitions labeled with the digits 0, 1, ..., k - 1 (this is the alphabet)
- there is an initial state and a set of final states
- ► an automaton accepts a string of digits b₀b₁ ··· b_{m-1} if there is a path of length m from the initial state to a final state such that for i = 0, ..., m - 1, the i-th transition in the path is labeled b_i

An automaton for the powers of 2

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(Transitions not shown go to an implied "sink" state.)

A subset $S \subseteq \mathbb{N}$ is *k*-automatic if there is some finite automaton that accepts exactly the base-*k* representations of elements of *S*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- How do we define relations?
- ▶ To recognize an element $(x, y) \in \mathbb{N} \times \mathbb{N}$ we extend the alphabet of the automaton to

 $\{0,\ldots,k-1\} \times \{0,\ldots,k-1\}.$

► Then (x, y) is in the set defined by the automaton if the automaton accepts

$$(a_0, b_0)(a_1, b_1) \cdots (a_{m-1}, b_{m-1}),$$

where $a_0a_1 \cdots a_{m-1}$ and $b_0b_1 \cdots b_{m-1}$ are the base-k representations for x and y respectively (possibly padded with leading zeros).

For example, we represent $(11, 5, 16) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ in binary by

$\begin{pmatrix} 0\\0\\1 \end{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \begin{pmatrix} 1\\0\\0 \end{pmatrix} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \begin{pmatrix} 1\\1\\0 \end{pmatrix},$

ヘロト 人間ト 人間ト 人間ト

3

where we have written triples as columns.

This automaton defines the relation x + y = z in base 2. Base-k addition is definable using automata!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let S, T be k-automatic sets. There are standard constructions to obtain automata that define

 $S \cup T$, $S \cap T$, \overline{S} .

・ロト・日本・モト・モート ヨー うへで

Theorem (Büchi-Bruyère)

A set $S \subseteq \mathbb{N}^d$ is k-automatic if and only if it is definable in \mathfrak{N}_k .

- ▶ Idea for \Leftarrow : logical operations \lor, \land, \neg correspond to $\cup, \cap, \overline{}$.
- Quantifiers \exists, \forall are trickier (we use non-determinism).

- Addition is done as shown previously.
- Proof is by structural induction on the formula.
- Let's do an example of \Rightarrow .

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

This automaton accepts any number whose binary representation contains an odd number of 1's.

- let's try to define the same set in \mathfrak{N}_2
- \blacktriangleright consider some number n written in binary
- let m be the number obtained from the binary representation of n by turning every second 1 into a 0 (say, from right to left)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Then n has an odd number of 1's if and only if there exists m satisfying:

- ► the smallest powers of 2 appearing in (m)₂ and (n)₂ are equal
- ► the largest powers of 2 appearing in (m)₂ and (n)₂ are equal
- ▶ for every pair of consecutive powers of 2 occurring in (n)₂, one occurs in (m)₂ and the other does not

▶ minor technicality: What if *n* or *m* is 0?

- ▶ the relations \leq and <, as well as any given constant, can be defined in $\langle \mathbb{N},+,=,V_2\rangle$
- ▶ when building our formula in 𝔑₂ we use these symbols as shortcuts for their defining formulas

- ▶ Checking the smallest powers of 2 is easy: $V_2(n) = V_2(m)$
- Let λ₂(x) = y denote the largest power of 2 appearing in
 (x)₂ (by convention λ₂(0) = 1).

• Then $\lambda_2(x) = y$ is defined by

$$[(V_2(y) = y) \land (y \le x)$$

$$\land ((\forall z)((V_2(z) = z) \land (y < z)) \to (x < z))]$$

$$\lor [(x = 0) \land (y = 1)]$$

- ► Checking the largest powers of 2 becomes λ₂(n) = λ₂(m).
- ► To check the "internal 1's" we start by defining a predicate φ₂(x, y) which indicates that y is a power of 2 occurring in the binary expansion of x.

• $\phi_2(x,y)$ is defined by

$$(V_2(y) = y) \land [(\exists z)(\exists t)(x = z + y + t) \land (z < y)$$

$$\land ((y < V_2(t)) \lor (t = 0))]$$

- Using this we can verify the last condition (we omit the details).
- ► Summary: the property that (n)₂ has an odd number of 1's can be defined in 𝔅₂.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- This was an example of automaton \Rightarrow formula conversion.
- To show decidability of \mathfrak{N}_k we convert from formula \Rightarrow automaton.
- Determining if the set defined by an automaton is empty is decidable.
- We can decide if a given formula is satisfiable in M_k by building an automaton accepting all satisfying assignments and then checking if this set is non-empty.

- Hence, the theory \mathfrak{N}_k is decidable.
- A fortiori, we see that \mathfrak{N}_A is decidable.

Recall: goal was to apply the decidability of \mathfrak{N}_k to prove combinatorial properties of certain sequences.

Let

$\mathbf{t} = 0110100110010110\cdots$

be the sequence with a 1 in position n exactly when the above automaton accepts $(n)_2$.

The Thue–Morse sequence

$\mathbf{t} = 0110100110010110\cdots$

has the remarkable combinatorial property that it does not ever contain a repetition of the same block X three times in succession (i.e., XXX).

- Is there an algorithm that can verify for any given k-automatic sequence if the sequence has this property?
- ► If the property can be expressed in 𝔅_k, then by the earlier decidability result, the answer is yes.

Theorem (Charlier, R., Shallit 2011)

If we can express a property of a k-automatic sequence x using quantifiers, logical operations, integer variables, the operations of addition, subtraction, indexing into x, and comparison of integers or elements of x, then this property is decidable.

- A sequence a contains an occurrence of the pattern XXX if and only if there exist integers p ≥ 1 and 0 ≤ m₁ < m₂ < m₃ such that
 a(m₁ + i) = a(m₂ + i) = a(m₃ + i) for all 0 ≤ i < p.
- If a is k-automatic then this property can be defined in 𝔑_k.

 Hence there is an algorithm to decide if a given k-automatic sequence avoids XXX.

- Hamoon Mousavi has implemented this method as a Java application called Walnut.
- Walnut can be found on Jeffrey Shallit's webpage https://cs.uwaterloo.ca/~shallit/papers.html along with many examples of applications of the method.

- previously proving results like this involved an ad hoc argument for each situation
- this method allows for quick, routine verifications of properties of automatic sequences in a wide variety of contexts
- time complexity: theoretically the worst case is a tower of exponentials as high as the number of quantifier alternations in the formula
- ▶ in practice, runs quickly if formula not too complicated.

The End