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Formal definition

I Here a finite automaton is a directed multigraph where

I every vertex has constant out-degree k , and
I the outgoing arcs of each vertex are labeled by distinct

elements of a fixed k-element set.



Terminology

I We call the vertices states and denote the set of states
by Q.

I We call the arcs transitions.
I Arcs are labeled by letters.
I A sequence of letters is called a word.



The transition function

I The transition function δ(p, a) = q denotes a transition
from p to q labeled by a.

I If w = w1w2 · · ·wn is a word then δ(q,w) is the state
reached by starting at q and following the sequence of
arcs labeled w1,w2, . . . ,wn.

I If A ⊆ Q then

δ(A,w) =
⋃

q∈A

δ(q,w).



Synchronizing automata

I A word w such that δ(q,w) = δ(q′,w) for all q, q′ ∈ Q
is a reset word.

I An automaton with a reset word is synchronizing.
I Equivalently, there exists a state p and a word w such

that δ(Q,w) = {p}.
I Given an automaton, can we decide if it is

synchronizing?
I If so, can we find the shortest reset word?



A synchronizing automaton

Reset word: abbbabbba.
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Applications

I Moore’s Gedanken-experiments (1950’s):
I Imagine a satellite orbiting the moon.
I Its behaviour while on the dark side of the moon cannot

be observed.
I When control is reestablished, we wish to reset the

system to a particular configuration.



Applications

I Robotics (Natarajan 1980’s):
I Imagine parts arriving on an assembly line with

arbitrary orientations.
I The parts must be manipulated into a fixed orientation

before proceeding with assembly.



Černý’s Conjecture

Černý’s Conjecture (1964)

The shortest reset word of any synchronizing automaton
with n states has length at most (n− 1)2.



Černý’s construction

Reset word: (abn−1)n−2a (length (n− 1)2).
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Partial results

I E.g., Kari (2003) verified the conjecture for
synchronizing automata whose underlying digraphs are
Eulerian.

I Conjecture verified for several other classes of
synchronizing automata.

I Steinberg (preprint) unified and simplified many of
these proofs.



Best known upper bound

I M is a synchronizing automaton:
I There are sets Q = P1,P2, . . . ,Pt , and words

w1,w2, . . . ,wt−1, such that
I δ(Pi,wi) = Pi+1, for i = 1, . . . , t − 1;
I |Pi| > |Pi+1|, for i = 1, . . . , t − 1;
I |Pt | = 1.

I w = w1w2 · · ·wt−1 is a reset word for M.



An example

Reset word: a bbba bbba.
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The greedy algorithm

Algorithm to find reset word w
Set P1 = Q and t = 1.

While |Pt | > 1:
Find a smallest word wt such that |δ(Pt ,wt)| < |Pt |.
Set Pt+1 = δ(Pt ,wt) and increment t .

Return w = w1w2 · · ·wt−1.



Length of the reset word found

I What is the maximum length of w found by the greedy
algorithm?

I In the worst case, |Pi| − |Pi+1| = 1, so that t = n.
I Consider a generic step k : i.e., Pk and wk such that
|δ(Pk ,wk )| < |Pk |.

I What is the longest that wk can be?



Length of the reset word found

I Let wk = a1a2 · · · am+1 (the a’s letters).
I There are sets Pk = A1,A2, . . . ,Am+2 such that

I δ(Ai, a1) = Ai+1 for i = 1, . . . ,m + 1;
I |Ai| = |Ai+1| for i = 1, . . . ,m;
I |Am+1| > |Am+2|.



Length of the reset word found

I For i = 1, . . . ,m + 1,

|δ(Ai, ai · · · am+1)| < |Ai|.

I Thus there exists qi, q′i ∈ Ai such that

δ(qi, ai · · · am+1) = δ(q′i, ai · · · am+1).

I To each Ai, associate the set Bi = {qi, q′i}.



Length of the reset word found

I Note that Bi ⊆ Ai.
I Furthermore, for i < j , Bj 6⊆ Ai.
I Otherwise, we would have a shorter word

w ′k = a1 · · · ai−1aj · · · am+1 such that |δ(Pk ,w ′k )| < |Pk |.



Length of the reset word found

I Let Ai denote the complement of Ai, i.e., the set Q \ Ai.
I We thus have

I Bi ∩ Ai = ∅ for i = 1, . . . ,m;
I Bj ∩ Ai 6= ∅ for i < j .

I What is the largest that m can be subject to these
constraints?



A result from extremal set theory

Theorem (Frankl 1982)

Let A1, . . . ,Am be sets of size r and let B1, . . . ,Bm be sets of
size s such that

(a) Ai ∩ Bi = ∅ for i = 1, . . . ,m;

(b) Ai ∩ Bj 6= ∅ if i < j .

Then m ≤
(r+s

s

)
.



A bound on the length of the reset word

I Let |Q| = n. Then |Ai| = n− k (since |Ai| = k) and
|Bi| = 2 for i = 1, . . . ,m.

I By Frankl’s result, m ≤
(n−k+2

2
)
.

I Total length of the reset word at most
n∑

k=2

(
n− k + 2

2

)
= n3 − n

6 .



Running time of the algorithm

I Originally conjectured by Fischler and Tannenbaum
(1970) and (independently) by Pin (1981).

I After hearing Pin’s 1981 talk, Frankl proved the
necessary combinatorial result (independently
rediscovered by Klyachko, Rystsov, and Spivak (1987)).

I Eppstein (1990) showed how to implement the greedy
algorithm in O(n3 + kn2) time.

I Greedy algorithm does not find a shortest reset word.



Finding a reset word of a given length

SYNCWORD
Given an automaton A and a positive integer k , does A have
a reset word of length at most k?

I Clearly in NP since it suffices to “guess” a reset word
of length at most min{(n3 − n)/6, k}.

I Eppstein showed it is NP-complete.



Finding a shortest reset word

MIN-SYNCWORD
Given an automaton A and a positive integer k , does A have
a shortest reset word of length k?

I Olschewski and Ummels (preprint) showed it is
DP-complete.



The class DP

I DP consists of all languages L such that L = L1 \ L2 for
some languages L1, L2 in NP.

I A DP-complete problem is both NP-hard and
coNP-hard.

I The canonical DP-complete problem is:

SAT-UNSAT
Given CNF formulae φ and ψ, is φ satisfiable and ψ
unsatisfiable?



DP-completeness

I MIN-SYNCWORD clearly in DP, since it is the difference
of SYNCWORD and

{(A, k) : k > 0 and (A, k − 1) ∈ SYNCWORD}.

I To show DP-hardness, reduce from SAT-UNSAT.



Approximating the shortest reset word

Thereom (Berlinkov (preprint))

Unless P = NP, there is no polynomial-time algorithm to
approximate the minimum length of a reset word for a given
automaton within a constant factor.



Synchronizing colouring

I Start with a strongly connected directed multigraph G
where every vertex has constant out-degree k .

I Is it possible to assign labels to the arcs so that G
becomes synchronizing?

I If so, then G has a synchronizing colouring.



The road colouring problem

I Can graphs with synchronizing colourings be
characterized?

I A graph is aperiodic if the gcd of the lengths of all of
its cycles is 1.

I It is not hard to show that aperiodicity is a necessary
condition.

I Adler and Weiss (1970) conjectured that it is also a
sufficient condition.



The resolution of the problem

Theorem (Trahtman 2007)

Let G be a strongly connected directed multigraph where
every vertex has constant out-degree k . Then G has a
synchronizing coloring if and only if the the gcd of the
lengths of all of its cycles is 1.



For further reading

I The literature on synchronizing automata is huge. For
more information, see:

I Volkov’s 2008 survey:
http://csseminar.kadm.usu.ru/tarragona_volkov2008.pdf

I Jean-Eric Pin’s webpage:
http://www.liafa.jussieu.fr/~jep/Problemes/Cerny.html

I Avraham Trahtman’s webpage:
http://u.cs.biu.ac.il/~trakht/syn.html

http://csseminar.kadm.usu.ru/tarragona_volkov2008.pdf
http://www.liafa.jussieu.fr/~jep/Problemes/Cerny.html
http://u.cs.biu.ac.il/~trakht/syn.html


The End


