Černý's Conjecture

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

Narad Rampersad (University of Winnipeg)

Finite Automata

Here is a finite automaton.

- For the purposes of this talk a finite automaton is a directed multigraph where
 - every vertex has constant out-degree k, and
 - the outgoing arcs of each vertex are labeled by distinct elements of a fixed k-element set.
- We call the vertices states and denote the set of states by Q.
- We call the arcs transitions.
- Arcs are labeled by letters.
- A sequence of letters is called a word.

Formal Definition

- A transition from state *p* to state *q* labeled by the letter *a* is denoted by the transition function δ, where δ(*p*, *a*) = *q*.
- If $w = w_1 w_2 \cdots w_n$ is a word we define

$$\delta(q,w) = \delta(\delta(q,w_1w_2\cdots w_{n-1}),w_n);$$

- i.e., $\delta(q, w)$ is the state reached by starting at q and following the sequence of arcs labeled w_1, w_2, \ldots, w_n .
- If $A \subseteq Q$ is a set of states we define

$$\delta(A,w) = \bigcup_{q \in A} \delta(q,w).$$

A (10) A (10)

- An automaton is synchronizing if there exists a word w, called the reset word, such that $\delta(q, w) = \delta(q', w)$ for all pairs of states $q, q' \in Q$.
- Equivalently, there exists a state p and a word w such that $\delta(Q, w) = \{p\}.$
- Given an automaton, can we decide if it is synchronizing?
- If so, can we find the shortest reset word?

く 戸 と く ヨ と く ヨ と

A Synchronizing Automaton

Reset word: abbbabbba.

- Moore's Gedanken-experiments (1950's):
- Imagine a satellite orbiting the moon: its behaviour while on the dark side of the moon cannot be observed. When control is reestablished, we wish to reset the system to a particular configuration.
- Robotics (Natarajan 1980's):
- Imagine parts arriving on an assembly line with arbitrary orientations. The parts must be manipulated into a fixed orientation before proceeding with assembly.
- Concept of a synchronizing automaton independently rediscovered many times.

< 回 > < 回 > < 回 >

Conjecture (Černý 1964)

The shortest reset word of any synchronizing automaton with *n* states has length at most $(n - 1)^2$.

通 ト イ ヨ ト イ ヨ ト

Černý's Construction

Reset word: $(ab^{n-1})^{n-2}a$ (length $(n-1)^2$).

The Greedy Algorithm

 If *M* is a synchronizing automaton, there is a sequence of sets *Q* = *P*₁, *P*₂, ..., *P*_t, and a sequence of words *w*₁, *w*₂, ..., *w*_{t-1}, such that

•
$$\delta(P_i, w_i) = P_{i+1}$$
, for $i = 1, \dots, t-1$;
• $|P_i| > |P_{i+1}|$, for $i = 1, \dots, t-1$;
• $|P_t| = 1$.

• Then $w = w_1 w_2 \cdots w_{t-1}$ is a reset word for *M*.

Algorithm to find reset word w

```
Set P_1 = Q and t = 1.
```

```
While |P_t| > 1:
Find a smallest word w_t such that |\delta(P_t, w_t)| < |P_t|.
Set P_{t+1} = \delta(P_t, w_t) and increment t.
```

Return $w = w_1 w_2 \cdots w_{t-1}$.

The Reset Word Found by the Greedy Algorithm

- What is the maximum length of w found by the greedy algorithm?
- In the worst case, $|P_i| |P_{i+1}| = 1$, so that t = n.
- Consider a generic step k: i.e., P_k and w_k such that $|\delta(P_k, w_k)| < |P_k|$.
- What is the longest that wk can be?

• Let
$$w_k = a_1 a_2 \cdots a_{m+1}$$
.

• Then we have a sequence of sets $P_k = A_1, A_2, \dots, A_{m+2}$ such that

•
$$\delta(A_i, a_1) = A_{i+1}$$
 for $i = 1, ..., m+1$;

•
$$|A_i| = |A_{i+1}|$$
 for $i = 1, ..., m$;

•
$$|A_{m+1}| > |A_{m+2}|.$$

同下 イヨト イヨト

A Bound on the Length of the Reset Word

• Observe that for
$$i = 1, \ldots, m + 1$$
,

$$|\delta(A_i, a_i \cdots a_{m+1})| < |A_i|.$$

• This implies that there exists $q_i, q'_i \in A_i$ such that

$$\delta(q_i, a_i \cdots a_{m+1}) = \delta(q'_i, a_i \cdots a_{m+1}).$$

- To each A_i , associate the set $B_i = \{q_i, q'_i\}$, for i = 1, ..., m.
- Note that for $i = 1, \ldots, m, B_i \subseteq A_i$.
- Furthermore, for *i* < *j*, *B_j* ⊈ *A_i*; otherwise, we would have a shorter word w'_k = a₁ ··· a_{i-1}a_j ··· a_{m+1} such that |δ(P_k, w'_k)| < |P_k|, contradicting the minimality of w_k.

A Bound on the Length of the Reset Word

- Let $\overline{A_i}$ denote the complement of A_i , i.e., the set $Q \setminus A_i$.
- We thus have
 - $B_i \cap \overline{A_i} = \emptyset$ for $i = 1, \ldots, m$;
 - $B_j \cap \overline{A_i} \neq \emptyset$ for i < j.
- What is the largest that *m* can be subject to these constraints?
- Let |Q| = n. Then $|\overline{A_i}| = n k$ (since $|A_i| = k$) and $|B_i| = 2$ for i = 1, ..., m.
- We claim that $m \le \binom{n-k+2}{2}$ (we shall prove this later).
- The total length of the reset word $w = w_1 w_2 \cdots w_{n-1}$ is then at most

$$\sum_{k=2}^{n} \binom{n-k+2}{2} = \frac{n^3 - n}{6}.$$

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

The Current Status of the Conjecture

- This bound of $(n^3 n)/6$ is the best known upper bound on the length of a shortest reset word.
- Originally conjectured by Fischler and Tannenbaum in 1970 and (independently) by Pin in 1981.
- After hearing Pin's 1981 talk, Frankl proved the inequality $m \le \binom{n-k+2}{2}$ mentioned earlier, thus establishing the result.
- Recall that Černý's conjecture is that the optimal upper bound is $(n-1)^2$.
- The conjecture has been established for certain special cases: e.g., in 2003 Kari verified the conjecture for synchronizing automata whose underlying digraphs are Eulerian.

< 日 > < 同 > < 回 > < 回 > < □ > <

A Result from Extremal Set Theory

Theorem (Frankl 1982)

Let A_1, \ldots, A_m be sets of size r and let B_1, \ldots, B_m be sets of size s such that

(a) $A_i \cap B_i = \emptyset$ for i = 1, ..., m; (b) $A_i \cap B_j \neq \emptyset$ if i < j. Then $m \leq \binom{r+s}{s}$.

- Set $X = \bigcup_{i=1}^{m} (A_i \cup B_i)$.
- Choose V ⊆ ℝ^{r+1} so that |V| = |X| and the vectors in V are in general position (i.e., any r + 1 vectors from V are linearly independent).
- Associate to each element of *X* a corresponding element of *V*.
- From now on, consider the *A_i*'s and *B_i*'s to be subsets of *V*, rather than *X*.

- Associate to each B_j a polynomial f_j in the variables $x = (x_1, \dots, x_{r+1})$: $f_j(x) = \prod_{v \in B_j} \langle v, x \rangle.$
- Since *A_i* consists of *r* linearly independent vectors, span *A_i* has dimension *r*.
- For each *i*, choose an element *y_i* in the 1-dimensional orthogonal space of span *A_i*.

• Then
$$\langle v, y_i \rangle = 0$$
 iff $v \in \operatorname{span} A_i$.

- We claim that $v \in \text{span } A_i$ iff $v \in A_i$.
- Suppose $v \in \operatorname{span} A_i$ but $v \notin A_i$.
- Then span (A_i ∪ {v}) = span A_i has dimension r, contradicting the assumption that V consists of vectors in general position.

• Thus,
$$\langle v, y_i \rangle = 0$$
 iff $v \in A_i$.

< 日 > < 同 > < 回 > < 回 > < □ > <

Recall,

$$f_j(x) = \prod_{v \in B_j} \langle v, x \rangle.$$

- Thus, $f_j(y_i) = 0$ iff $\langle v, y_i \rangle = 0$ for some $v \in B_j$.
- Thus, $\langle v, y_i \rangle = 0$ for some $v \in B_j$ iff $(v \in B_j \text{ and } v \in A_i)$ iff $A_i \cap B_j \neq \emptyset$.
- By assumption, $A_i \cap B_j \neq \emptyset$ for i < j, and $A_i \cap B_j = \emptyset$ for i = j.
- Thus, $f_j(y_i) = 0$ for i < j and $f_j(y_i) \neq 0$ for i = j.
- We wish to show that the f_i 's are linearly independent.
- Suppose not. Then there is a non-trivial linear relation

$$c_1f_1+\cdots+c_mf_m=0.$$

3

- Let *k* be the least index so that $c_k \neq 0$.
- Evaluate the f_j 's at y_k to obtain

$$c_1f_1(y_k) + \cdots + c_kf_k(y_k) + \cdots + c_mf_m(y_k) = 0.$$

- The first k 1 terms of this sum vanish by our choice of k.
- The last *m* − *k* terms of this sum vanish since *f_j*(*y_i*) vanishes whenever *i* < *j*.
- We thus have c_kf_k(y_k) = 0. But f_k(y_k) ≠ 0, so c_k = 0, contrary to our choice of c_k.
- We conclude that the f_i 's are linearly independent.

く 戸 と く ヨ と く ヨ と …

- We now bound the dimension of the subspace containing the *f*_j's.
- The monomials of the *f*_{*j*}'s all have degree *s*.
- The monomials of degree *s* thus form a basis for this subspace.
- How many such monomials are there?
- A monomial of degree s is of the form

$$x_1^{\ell_1} \cdots x_{r+1}^{\ell_{r+1}},$$

where $\ell_1 + \cdots + \ell_{r+1} = s$.

- The number of solutions to this Diophantine equation in non-negative integers *l*₁,..., *l*_{r+1} is (^{r+s}_s).
- The f_j's thus consists of m linearly independent polynomials in a space of dimension at most (^{r+s}_s).
- It follows that $m \leq \binom{r+s}{s}$, and the proof is complete.

・ 何 ト ・ ヨ ト ・ ヨ ト

Applying the Combinatorial Result

• When analyzing the greedy algorithm, at step *k* we had sets $\overline{A_i}$ and B_i , where

•
$$|\overline{A_i}| = n - k$$
 for $i = 1, \dots, m$;

•
$$|B_i| = 2$$
 for $i = 1, ..., m$;

•
$$B_i \cap A_i = \emptyset$$
 for $i = 1, \ldots, m$;

•
$$B_j \cap \overline{A_i} \neq \emptyset$$
 for $i < j$.

- Frankl's result gives $m \leq \binom{n-k+2}{2}$.
- We then summed these lengths to obtain the upper bound

$$\sum_{k=2}^{n} \binom{n-k+2}{2} = \frac{n^3 - n}{6}$$

on the length of a reset word.

周 ト イ ヨ ト イ ヨ ト

Conjecture (Černý 1964)

The shortest reset word of any synchronizing automaton with *n* states has length at most $(n - 1)^2$.

- We have a matching lower bound of $(n-1)^2$.
- We have an upper bound of $(n^3 n)/6$.
- The conjecture has been proved for several particular classes of automata.

Thank you!

2

・ 回 ト ・ ヨ ト ・ ヨ ト