Černý's Conjecture

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

Narad Rampersad (University of Winnipeg) [Cerný's Conjecture](#page-21-0) \sim 1/22

4 ロ ト ィ *同* ト

-41

 \mathbb{B} is a \mathbb{B} is

Þ

Finite Automata

Here is a finite automaton.

- For the purposes of this talk a finite automaton is a directed multigraph where
	- \blacktriangleright every vertex has constant out-degree k , and
	- \blacktriangleright the outgoing arcs of each vertex are labeled by distinct elements of a fixed *k*-element set.
- We call the vertices states and denote the set of states by *Q*.
- We call the arcs transitions.
- Arcs are labeled by letters.
- A sequence of letters is called a word.

Formal Definition

- A transition from state *p* to state *q* labeled by the letter *a* is denoted by the transition function δ , where $\delta(p, a) = q$.
- If $w = w_1w_2 \cdots w_n$ is a word we define

$$
\delta(q, w) = \delta(\delta(q, w_1w_2 \cdots w_{n-1}), w_n);
$$

- i.e., δ(*q*, *w*) is the state reached by starting at *q* and following the sequence of arcs labeled w_1, w_2, \ldots, w_n .
- If $A \subseteq Q$ is a set of states we define

$$
\delta(A, w) = \bigcup_{q \in A} \delta(q, w).
$$

イロメ イ押メ イヨメ イヨメー

- \bullet An automaton is synchronizing if there exists a word w , called the reset word, such that $\delta(q, w) = \delta(q', w)$ for all pairs of states $q, q' \in Q$.
- Equivalently, there exists a state *p* and a word *w* such that $\delta(Q, w) = \{p\}.$
- **•** Given an automaton, can we decide if it is synchronizing?
- If so, can we find the shortest reset word?

4 何 ト 4 重 ト 4 重 トー

A Synchronizing Automaton

Reset word: *abbbabbba*.

- Moore's Gedanken-experiments (1950's):
- **•** Imagine a satellite orbiting the moon: its behaviour while on the dark side of the moon cannot be observed. When control is reestablished, we wish to reset the system to a particular configuration.
- Robotics (Natarajan 1980's):
- Imagine parts arriving on an assembly line with arbitrary orientations. The parts must be manipulated into a fixed orientation before proceeding with assembly.
- Concept of a synchronizing automaton independently rediscovered many times.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Conjecture (Černý 1964)

The shortest reset word of any synchronizing automaton with n states has length at most $(n-1)^2$.

Černý's Construction

Reset word: (*abn*−¹) *n*^{−2}*a* (length (*n* − 1)²).

The Greedy Algorithm

If *M* is a synchronizing automaton, there is a sequence of sets $\mathcal{Q} = P_1, P_2, \ldots, P_t$, and a sequence of words $w_1, w_2, \ldots, w_{t-1}$, such that

$$
\delta(P_i, w_i) = P_{i+1}, \text{ for } i = 1, ..., t-1; \n|P_i| > |P_{i+1}|, \text{ for } i = 1, ..., t-1; \n|P_t| = 1.
$$

• Then $w = w_1w_2 \cdots w_{t-1}$ is a reset word for M.

Algorithm to find reset word *w*

```
Set P_1 = Q and t = 1.
```

```
While \left|P_{t}\right|>1:
Find a smallest word w_t such that |\delta(P_t, w_t)| < |P_t|.Set P_{t+1} = \delta(P_t, w_t) and increment t.
```
 $Return w = w_1w_2 \cdots w_{t-1}$.

4 0 8 4 4 9 8 4 9 8 4 9 8

The Reset Word Found by the Greedy Algorithm

- What is the maximum length of *w* found by the greedy algorithm?
- In the worst case, $|P_i| |P_{i+1}| = 1$, so that $t = n$.
- Consider a generic step k : i.e., P_k and w_k such that $|\delta(P_k, w_k)| < |P_k|.$
- What is the longest that *w^k* can be?

• Let
$$
w_k = a_1 a_2 \cdots a_{m+1}
$$
.

• Then we have a sequence of sets $P_k = A_1, A_2, \ldots, A_{m+2}$ such that

•
$$
\delta(A_i, a_1) = A_{i+1}
$$
 for $i = 1, ..., m + 1$;

$$
\blacktriangleright |A_i| = |A_{i+1}| \text{ for } i = 1, ..., m;
$$

$$
\blacktriangleright |A_{m+1}| > |A_{m+2}|.
$$

イロト イ押ト イヨト イヨトー

A Bound on the Length of the Reset Word

Observe that for
$$
i = 1, ..., m + 1
$$
,

$$
|\delta(A_i,a_i\cdots a_{m+1})|<|A_i|.
$$

This implies that there exists $q_i, q'_i \in A_i$ such that

$$
\delta(q_i, a_i \cdots a_{m+1}) = \delta(q'_i, a_i \cdots a_{m+1}).
$$

- To each A_i , associate the set $B_i = \{q_i, q'_i\}$, for $i = 1, \ldots, m$.
- Note that for $i = 1, \ldots, m$, $B_i \subseteq A_i$.
- Furthermore, for $i < j$, $B_j \not\subseteq A_i$; otherwise, we would have a shorter $\mathsf{word} \ w'_k = a_1 \cdots a_{i-1} a_j \cdots a_{m+1} \ \mathsf{such} \ \mathsf{that} \ |\delta(P_k, w'_k)| < |P_k|,$ contradicting the minimality of *wk*.

4 0 8 4 6 8 4 9 8 4 9 8 1

A Bound on the Length of the Reset Word

- Let A_i denote the complement of A_i , i.e., the set $Q \setminus A_i$.
- We thus have
	- \blacktriangleright *B*_{*i*} \cap $\overline{A_i}$ = \emptyset for $i = 1, ..., m$;
	- \triangleright *B_i* ∩ $\overline{A_i}$ \neq \emptyset for *i* < *j*.
- What is the largest that *m* can be subject to these constraints?
- Let $|Q| = n$. Then $|A_i| = n k$ (since $|A_i| = k$) and $|B_i| = 2$ for $i = 1, \ldots, m$.
- We claim that $m \leq \binom{n-k+2}{2}$ $\binom{k+2}{2}$ (we shall prove this later).
- The total length of the reset word $w = w_1w_2 \cdots w_{n-1}$ is then at most

$$
\sum_{k=2}^{n} {n-k+2 \choose 2} = \frac{n^3 - n}{6}.
$$

イロト イ押 トイラ トイラトー

The Current Status of the Conjecture

- This bound of $(n^3 n)/6$ is the best known upper bound on the length of a shortest reset word.
- Originally conjectured by Fischler and Tannenbaum in 1970 and (independently) by Pin in 1981.
- After hearing Pin's 1981 talk, Frankl proved the inequality $m \leq {n-k+2 \choose 2}$ $\binom{k+2}{2}$ mentioned earlier, thus establishing the result.
- Recall that Černý's conjecture is that the optimal upper bound is $(n-1)^2$.
- The conjecture has been established for certain special cases: e.g., in 2003 Kari verified the conjecture for synchronizing automata whose underlying digraphs are Eulerian.

イロト イ押 トイラ トイラトー

A Result from Extremal Set Theory

Theorem (Frankl 1982)

Let A_1, \ldots, A_m *be sets of size r* and let B_1, \ldots, B_m *be sets of size s such that*

 (A) $A_i \cap B_i = \emptyset$ for $i = 1, \ldots, m$; (b) $A_i \cap B_i \neq \emptyset$ *if* $i < j$. *Then* $m \leq {r+s \choose s}$ *s .*

• Set
$$
X = \bigcup_{i=1}^{m} (A_i \cup B_i)
$$
.

- Choose $V \subseteq \mathbb{R}^{r+1}$ so that $|V| = |X|$ and the vectors in *V* are in general position (i.e., any $r + 1$ vectors from V are linearly independent).
- Associate to each element of *X* a corresponding element of *V*.
- From now on, consider the A_i 's and B_i 's to be subsets of V, rather than *X*. 4 0 8 4 6 8 4 9 8 4 9 8 1

- Associate to each \mathcal{B}_j a polynomial f_j in the variables $x = (x_1, \ldots, x_{r+1})$: $f_j(x) = \prod \langle v, x \rangle.$
- Since *Aⁱ* consists of *r* linearly independent vectors, span *Aⁱ* has dimension *r*.

v∈*B^j*

For each i , choose an element y_i in the 1-dimensional orthogonal space of span *Aⁱ* .

• Then
$$
\langle v, y_i \rangle = 0
$$
 iff $v \in \text{span } A_i$.

- We claim that $v \in \mathsf{span}\: A_i$ iff $v \in A_i.$
- Suppose $v \in \text{span } A_i$ but $v \notin A_i$.
- Then span $(A_i \cup \{v\})$ = span A_i has dimension *r*, contradicting the assumption that *V* consists of vectors in general position.

• Thus,
$$
\langle v, y_i \rangle = 0
$$
 iff $v \in A_i$.

в

イロト イ押 トイラ トイラトー

• Recall.

$$
f_j(x) = \prod_{v \in B_j} \langle v, x \rangle.
$$

- Thus, $f_j(y_i) = 0$ iff $\langle v, y_i \rangle = 0$ for some $v \in B_j$.
- Thus, $\langle v, y_i \rangle = 0$ for some $v \in B_j$ iff ($v \in B_j$ and $v \in A_i$) iff $A_i \cap B_j \neq \emptyset$.
- **■** By assumption, $A_i \cap B_i \neq \emptyset$ for $i < j$, and $A_i \cap B_i = \emptyset$ for $i = j$.
- Thus, $f_i(y_i) = 0$ for $i < j$ and $f_i(y_i) \neq 0$ for $i = j$.
- We wish to show that the f_j 's are linearly independent.
- Suppose not. Then there is a non-trivial linear relation

$$
c_1f_1+\cdots+c_mf_m=0.
$$

в

イロト イ押ト イヨト イヨト

- Let *k* be the least index so that $c_k \neq 0$.
- Evaluate the f_j 's at y_k to obtain

$$
c_1f_1(y_k)+\cdots+c_kf_k(y_k)+\cdots+c_mf_m(y_k)=0.
$$

- The first *k* − 1 terms of this sum vanish by our choice of *k*.
- The last *m* − *k* terms of this sum vanish since *fj*(*yi*) vanishes whenever $i < j$.
- We thus have $c_k f_k(y_k) = 0$. But $f_k(y_k) \neq 0$, so $c_k = 0$, contrary to our choice of *ck*.
- We conclude that the f_j 's are linearly independent.

イロト イ押ト イヨト イヨト

- We now bound the dimension of the subspace containing the f_j 's.
- The monomials of the f_j 's all have degree $s.$
- The monomials of degree *s* thus form a basis for this subspace.
- How many such monomials are there?
- A monomial of degree *s* is of the form

$$
x_1^{\ell_1}\cdots x_{r+1}^{\ell_{r+1}},
$$

where $\ell_1 + \cdots + \ell_{r+1} = s$.

- The number of solutions to this Diophantine equation in non-negative integers $\ell_1, \ldots, \ell_{r+1}$ is $\binom{r+s}{s}$ *s* .
- The *f^j* 's thus consists of *m* linearly independent polynomials in a space of dimension at most $\binom{r+s}{s}$ *s* .
- It follows that $m \leq {r+s \choose s}$ s^{+s}_{s}), and the proof is complete.

イロト イ押 トイラ トイラトー

Applying the Combinatorial Result

• When analyzing the greedy algorithm, at step k we had sets $\overline{A_i}$ and B_i , where

$$
\blacktriangleright |\overline{A_i}| = n - k \text{ for } i = 1, \ldots, m;
$$

$$
\blacktriangleright |B_i| = 2 \text{ for } i = 1, \ldots, m;
$$

$$
\blacktriangleright \ B_i \cap \overline{A_i} = \emptyset \text{ for } i = 1, \ldots, m;
$$

$$
\blacktriangleright \ B_j \cap \overline{A_i} \neq \emptyset \text{ for } i < j.
$$

- Frankl's result gives $m \leq {n-k+2 \choose 2}$ $\binom{k+2}{2}$.
- We then summed these lengths to obtain the upper bound

$$
\sum_{k=2}^{n} {n-k+2 \choose 2} = \frac{n^3 - n}{6}
$$

on the length of a reset word.

イタト イミト イミトー

Conjecture (Cerný 1964)

The shortest reset word of any synchronizing automaton with n states has length at most $(n-1)^2$.

- We have a matching lower bound of $(n-1)^2$.
- We have an upper bound of $(n^3 n)/6$.
- The conjecture has been proved for several particular classes of automata.

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Thank you!

4 0 8

す倒す すぼす すぼすい

重