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Finite Automata

Here is a finite automaton.
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Formal Definition

For the purposes of this talk a finite automaton is a directed
multigraph where

I every vertex has constant out-degree k, and
I the outgoing arcs of each vertex are labeled by distinct elements of

a fixed k-element set.

We call the vertices states and denote the set of states by Q.
We call the arcs transitions.
Arcs are labeled by letters.
A sequence of letters is called a word.
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Formal Definition

A transition from state p to state q labeled by the letter a is
denoted by the transition function δ, where δ(p, a) = q.
If w = w1w2 · · ·wn is a word we define

δ(q,w) = δ(δ(q,w1w2 · · ·wn−1),wn);

i.e., δ(q,w) is the state reached by starting at q and following the
sequence of arcs labeled w1,w2, . . . ,wn.
If A ⊆ Q is a set of states we define

δ(A,w) =
⋃
q∈A

δ(q,w).
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Synchronizing Automata

An automaton is synchronizing if there exists a word w, called the
reset word, such that δ(q,w) = δ(q′,w) for all pairs of states
q, q′ ∈ Q.
Equivalently, there exists a state p and a word w such that
δ(Q,w) = {p}.
Given an automaton, can we decide if it is synchronizing?
If so, can we find the shortest reset word?
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A Synchronizing Automaton

Reset word: abbbabbba.

1 2

3 4

a,b

b b

b

a

aa

Narad Rampersad (University of Winnipeg) Černý’s Conjecture 6 / 22



Applications

Moore’s Gedanken-experiments (1950’s):
Imagine a satellite orbiting the moon: its behaviour while on the
dark side of the moon cannot be observed. When control is
reestablished, we wish to reset the system to a particular
configuration.
Robotics (Natarajan 1980’s):
Imagine parts arriving on an assembly line with arbitrary
orientations. The parts must be manipulated into a fixed
orientation before proceeding with assembly.
Concept of a synchronizing automaton independently
rediscovered many times.
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Černý’s Conjecture

Conjecture (Černý 1964)
The shortest reset word of any synchronizing automaton with n states
has length at most (n− 1)2.
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Černý’s Construction

Reset word: (abn−1)n−2a (length (n− 1)2).
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The Greedy Algorithm

If M is a synchronizing automaton, there is a sequence of sets
Q = P1,P2, . . . ,Pt, and a sequence of words w1,w2, . . . ,wt−1, such
that

I δ(Pi,wi) = Pi+1, for i = 1, . . . , t − 1;
I |Pi| > |Pi+1|, for i = 1, . . . , t − 1;
I |Pt| = 1.

Then w = w1w2 · · ·wt−1 is a reset word for M.

Algorithm to find reset word w

Set P1 = Q and t = 1.

While |Pt| > 1:
Find a smallest word wt such that |δ(Pt,wt)| < |Pt|.
Set Pt+1 = δ(Pt,wt) and increment t.

Return w = w1w2 · · ·wt−1.
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The Reset Word Found by the Greedy Algorithm

What is the maximum length of w found by the greedy algorithm?
In the worst case, |Pi| − |Pi+1| = 1, so that t = n.
Consider a generic step k: i.e., Pk and wk such that
|δ(Pk,wk)| < |Pk|.
What is the longest that wk can be?
Let wk = a1a2 · · · am+1.
Then we have a sequence of sets Pk = A1,A2, . . . ,Am+2 such that

I δ(Ai, a1) = Ai+1 for i = 1, . . . ,m + 1;
I |Ai| = |Ai+1| for i = 1, . . . ,m;
I |Am+1| > |Am+2|.
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A Bound on the Length of the Reset Word

Observe that for i = 1, . . . ,m + 1,

|δ(Ai, ai · · · am+1)| < |Ai|.

This implies that there exists qi, q′i ∈ Ai such that

δ(qi, ai · · · am+1) = δ(q′i, ai · · · am+1).

To each Ai, associate the set Bi = {qi, q′i}, for i = 1, . . . ,m.
Note that for i = 1, . . . ,m, Bi ⊆ Ai.
Furthermore, for i < j, Bj 6⊆ Ai; otherwise, we would have a shorter
word w′k = a1 · · · ai−1aj · · · am+1 such that |δ(Pk,w′k)| < |Pk|,
contradicting the minimality of wk.
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A Bound on the Length of the Reset Word

Let Ai denote the complement of Ai, i.e., the set Q \ Ai.
We thus have

I Bi ∩ Ai = ∅ for i = 1, . . . ,m;
I Bj ∩ Ai 6= ∅ for i < j.

What is the largest that m can be subject to these constraints?
Let |Q| = n. Then |Ai| = n− k (since |Ai| = k) and |Bi| = 2 for
i = 1, . . . ,m.
We claim that m ≤

(n−k+2
2

)
(we shall prove this later).

The total length of the reset word w = w1w2 · · ·wn−1 is then at most

n∑
k=2

(
n− k + 2

2

)
=

n3 − n
6

.
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The Current Status of the Conjecture

This bound of (n3 − n)/6 is the best known upper bound on the
length of a shortest reset word.
Originally conjectured by Fischler and Tannenbaum in 1970 and
(independently) by Pin in 1981.
After hearing Pin’s 1981 talk, Frankl proved the inequality
m ≤

(n−k+2
2

)
mentioned earlier, thus establishing the result.

Recall that Černý’s conjecture is that the optimal upper bound is
(n− 1)2.
The conjecture has been established for certain special cases:
e.g., in 2003 Kari verified the conjecture for synchronizing
automata whose underlying digraphs are Eulerian.
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A Result from Extremal Set Theory

Theorem (Frankl 1982)
Let A1, . . . ,Am be sets of size r and let B1, . . . ,Bm be sets of size s such
that
(a) Ai ∩ Bi = ∅ for i = 1, . . . ,m;
(b) Ai ∩ Bj 6= ∅ if i < j.

Then m ≤
(r+s

s

)
.

Set X =
⋃m

i=1(Ai ∪ Bi).
Choose V ⊆ Rr+1 so that |V| = |X| and the vectors in V are in
general position (i.e., any r + 1 vectors from V are linearly
independent).
Associate to each element of X a corresponding element of V.
From now on, consider the Ai’s and Bi’s to be subsets of V, rather
than X.
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The Proof of Frankl’s Result

Associate to each Bj a polynomial fj in the variables
x = (x1, . . . , xr+1):

fj(x) =
∏
v∈Bj

〈v, x〉.

Since Ai consists of r linearly independent vectors, span Ai has
dimension r.
For each i, choose an element yi in the 1-dimensional orthogonal
space of span Ai.
Then 〈v, yi〉 = 0 iff v ∈ span Ai.
We claim that v ∈ span Ai iff v ∈ Ai.
Suppose v ∈ span Ai but v /∈ Ai.
Then span (Ai ∪ {v}) = span Ai has dimension r, contradicting the
assumption that V consists of vectors in general position.
Thus, 〈v, yi〉 = 0 iff v ∈ Ai.
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The Proof of Frankl’s Result

Recall,
fj(x) =

∏
v∈Bj

〈v, x〉.

Thus, fj(yi) = 0 iff 〈v, yi〉 = 0 for some v ∈ Bj.
Thus, 〈v, yi〉 = 0 for some v ∈ Bj iff (v ∈ Bj and v ∈ Ai) iff Ai ∩ Bj 6= ∅.
By assumption, Ai ∩ Bj 6= ∅ for i < j, and Ai ∩ Bj = ∅ for i = j.
Thus, fj(yi) = 0 for i < j and fj(yi) 6= 0 for i = j.
We wish to show that the fj’s are linearly independent.
Suppose not. Then there is a non-trivial linear relation

c1f1 + · · ·+ cmfm = 0.
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The Proof of Frankl’s Result

Let k be the least index so that ck 6= 0.
Evaluate the fj’s at yk to obtain

c1f1(yk) + · · ·+ ckfk(yk) + · · ·+ cmfm(yk) = 0.

The first k − 1 terms of this sum vanish by our choice of k.
The last m− k terms of this sum vanish since fj(yi) vanishes
whenever i < j.
We thus have ckfk(yk) = 0. But fk(yk) 6= 0, so ck = 0, contrary to our
choice of ck.
We conclude that the fj’s are linearly independent.
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The Proof of Frankl’s Result

We now bound the dimension of the subspace containing the fj’s.
The monomials of the fj’s all have degree s.
The monomials of degree s thus form a basis for this subspace.
How many such monomials are there?
A monomial of degree s is of the form

x`1
1 · · · x

`r+1
r+1 ,

where `1 + · · ·+ `r+1 = s.
The number of solutions to this Diophantine equation in
non-negative integers `1, . . . , `r+1 is

(r+s
s

)
.

The fj’s thus consists of m linearly independent polynomials in a
space of dimension at most

(r+s
s

)
.

It follows that m ≤
(r+s

s

)
, and the proof is complete.
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Applying the Combinatorial Result

When analyzing the greedy algorithm, at step k we had sets Ai
and Bi, where

I |Ai| = n− k for i = 1, . . . ,m;
I |Bi| = 2 for i = 1, . . . ,m;
I Bi ∩ Ai = ∅ for i = 1, . . . ,m;
I Bj ∩ Ai 6= ∅ for i < j.

Frankl’s result gives m ≤
(n−k+2

2

)
.

We then summed these lengths to obtain the upper bound

n∑
k=2

(
n− k + 2

2

)
=

n3 − n
6

on the length of a reset word.
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Summary

Conjecture (Černý 1964)
The shortest reset word of any synchronizing automaton with n states
has length at most (n− 1)2.

We have a matching lower bound of (n− 1)2.
We have an upper bound of (n3 − n)/6.
The conjecture has been proved for several particular classes of
automata.
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Thank you!
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