Repetitions in Words—Part IV

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Another method for showing exponential growth

- \triangleright A special case of a theorem of Golod and Shafarevich 1964.
- In Let S be a set of words over an m-letter alphabet, each of length at least 2.
- ► Suppose S has at most c_i words of length i for $i > 2$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem

If the power series expansion of

$$
G(x) := \left(1 - mx + \sum_{i \ge 2} c_i x^i\right)^{-1}
$$

has non-negative coefficients, then there are least $[x^n]G(x)$ words of length n over a m -letter alphabet that contain no word of S as a factor.

- \blacktriangleright Let $F(x) := \sum_{i \geq 0} a_i x^i,$ where a_i is the number of words of length i over an m-letter alphabet that avoid S .
- \triangleright We show

$$
F \ge G(x) = \left(1 - mx + \sum_{i \ge 2} c_i x^i\right)^{-1} = \sum_{i \ge 0} b_i x^i.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 $\blacktriangleright\;F\geq G$ means $a_i\geq b_i$ for all $i\geq 0$

Proof

- For $k \geq 1$, there are $m^k a_k$ words w of length k over an m-letter alphabet that contain a word in S as a factor.
- \blacktriangleright (a) $w=w'a$, where a is a single letter and w' is a word of length $k - 1$ containing a word in S as a factor
- ► (b) $w = xy$, where x is a word of length $k j$ that avoids S and $y \in S$ is a word of length j.

KORK (FRAGE) EL POLO

- ► at most $(m^{k-1} a_{k-1})m$ words of the form (a)
- ► at most $\sum_j a_{k-j} c_j$ words w of the form (b)

Proof

So

$$
m^{k} - a_{k} \le (m^{k-1} - a_{k-1})m + \sum_{j} a_{k-j}c_{j}.
$$

Rearrange:

$$
a_k - a_{k-1}m + \sum_j a_{k-j}c_j \ge 0, \quad k \ge 1.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Proof

\blacktriangleright Define

$$
H(x) := F(x) \left(1 - mx + \sum_{j \ge 2} c_j x^j \right)
$$

=
$$
\left(\sum_{i \ge 0} a_i x^i \right) \left(1 - mx + \sum_{j \ge 2} c_j x^j \right).
$$

► for $k \geq 1$, we have

$$
[x^{k}]H(x) = a_{k} - a_{k-1}m + \sum_{j} a_{k-j}c_{j}.
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

► we have shown $a_k - a_{k-1} m + \sum_j a_{k-j} c_j \geq 0$

$$
\text{ so } [x^k]H(x) \ge 0 \text{ for } k \ge 1.
$$

- ► Since $[x^0]H(x) = 1$, the inequality $H \ge 1$ holds and $H - 1$ has non-negative coefficients.
- \triangleright Then $F = HG = (H 1)G + G > G$, as required.

KORKAR KERKER E VOOR

Enumeration of squarefree words

- \triangleright With almost no work, we can show that there are at least 5^n squarefree words of length n over an alphabet of size $7.$
- In Let S be the set of squares over an alphabet of size 7.
- For $n \geq 1$ the set S contains 7^n squares of length $2n$.

Applying the power series criterion

\blacktriangleright Define

$$
G(z) := \left(1 - 7z + \sum_{i \ge 1} 7^i z^{2i}\right)^{-1}
$$

= $\left(1 - 7z + \frac{7z^2}{1 - 7z^2}\right)^{-1}$
= $1 + 7z + 42z^2 + 245z^3 + 1372z^4 + 7546z^5 + \cdots$

It is easy to show that $[z^n]G(z) \geq 5^n$ for $n \geq 0$.

- \triangleright Squares (xx) and cubes (xx) are patterns with one variable.
- \blacktriangleright Patterns can have several variables.
- \triangleright 01122011 is an instance of the pattern $xyyx$.
- \triangleright Given a pattern, is it avoidable over a finite alphabet?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Bell and Goh 2007)

Let $k > 2$ and $m > 4$ be integers with $(k, m) \neq (2, 4)$. Let p be a pattern containing k distinct variables, each occurring at least twice in $p.$ Then for $n\geq 0,$ there are at least λ^n words of length n over an m-letter alphabet that avoid the pattern p , where

$$
\lambda = \lambda(k, m) := m \left(1 + \frac{1}{(m-2)^k} \right)^{-1}
$$

.

Some special cases

Corollary

Let p be a pattern in which every variable occurs at least twice. There is an infinite word over a 4-letter alphabet that avoids p .

KORKA SERKER ORA

Some special cases

Corollary

All patterns with k variables and length at least 2^k are avoidable over a 4-letter alphabet.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Lemma

Let $k \geq 1$ be a integer and let p be a pattern over the set of variables $\Delta = \{x_1, \ldots, x_k\}$. Suppose that for $1 \leq i \leq k$, the variable x_i occurs $a_i \geq 1$ times in p. Let $m \geq 2$ be an integer and let Σ be an m-letter alphabet. Then for $n \geq 1$, the number of words of length n over Σ that are instances of the pattern p is at most $[x^n]C(x)$, where

$$
C(x) := \sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} x^{a_1 i_1 + \cdots + a_k i_k}.
$$

In Let $k \ge 2$ and $m \ge 4$ be integers with $(k, m) \ne (2, 4)$. \blacktriangleright Let $\begin{pmatrix} 1 & 1 \end{pmatrix}^{-1}$

$$
\lambda = \lambda(k, m) := m \left(1 + \frac{1}{(m-2)^k} \right)
$$

.

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

 \triangleright We have $\lambda \geq m - 1/2$.

Let a_1, \ldots, a_k be integers, each at least 2. Let

$$
C(x) := \sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} x^{a_1 i_1 + \cdots + a_k i_k},
$$

and let

$$
B(x) := \sum_{i \ge 0} b_i x^i = (1 - mx + C(x))^{-1}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

To prove the theorem, we show $b_n \geq \lambda b_{n-1}$ for all $n \geq 0$.

- \blacktriangleright The proof is by induction on n.
- \blacktriangleright When $n = 0$, we have $b_0 = 1$ and $b_1 = m$.
- ► Since $m > \lambda$, the inequality $b_1 \geq \lambda b_0$ holds.
- ► Suppose that for all $j < n$, we have $b_j \geq \lambda b_{j-1}$.
- ► Since $B = (1 mx + C)^{-1}$, we have $B(1 mx + C) = 1$.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Hence $[x^n]B(1 - mx + C) = 0$ for $n \ge 1$.

However,

$$
B(1 - mx + C) =
$$

$$
\left(\sum_{i\geq 0} b_i x^i\right) \left(1 - mx + \sum_{i_1 \geq 1} \cdots \sum_{i_k \geq 1} m^{i_1 + \cdots + i_k} x^{a_1 i_1 + \cdots + a_k i_k}\right),
$$
so

$$
[x^{n}]B(1 - mx + C) =
$$

$$
b_{n} - b_{n-1}m + \sum_{i_{1} \geq 1} \cdots \sum_{i_{k} \geq 1} m^{i_{1} + \cdots + i_{k}} b_{n - (a_{1}i_{1} + \cdots + a_{k}i_{k})} = 0.
$$

Rearranging, we obtain

$$
b_n = \lambda b_{n-1} + (m - \lambda) b_{n-1} - \sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} b_{n - (a_1 i_1 + \cdots + a_k i_k)}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

To show $b_n \geq \lambda b_{n-1}$ it therefore suffices to show

$$
(m - \lambda)b_{n-1} - \sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} b_{n - (a_1 i_1 + \cdots + a_k i_k)} \ge 0.
$$

Since $b_j \geq \lambda b_{j-1}$ for all $j < n$, we have $b_{n-i} \leq b_{n-1}/\lambda^{i-1}$ for $1 \leq i \leq n$. Hence

$$
\sum_{i_1 \geq 1} \cdots \sum_{i_k \geq 1} m^{i_1 + \cdots + i_k} b_{n - (a_1 i_1 + \cdots + a_k i_k)}
$$
\n
$$
\leq \sum_{i_1 \geq 1} \cdots \sum_{i_k \geq 1} m^{i_1 + \cdots + i_k} \frac{\lambda b_{n-1}}{\lambda^{a_1 i_1 + \cdots + a_k i_k}}
$$
\n
$$
= \lambda b_{n-1} \sum_{i_1 \geq 1} \cdots \sum_{i_k \geq 1} \frac{m^{i_1 + \cdots + i_k}}{\lambda^{a_1 i_1 + \cdots + a_k i_k}}
$$
\n
$$
= \lambda b_{n-1} \sum_{i_1 \geq 1} \frac{m^{i_1}}{\lambda^{a_1 i_1}} \cdots \sum_{i_k \geq 1} \frac{m^{i_k}}{\lambda^{a_k i_k}}.
$$

Since $a_i \geq 2$ for $1 \leq i \leq k$, we have

$$
\lambda b_{n-1} \sum_{i_1 \geq 1} \frac{m^{i_1}}{\lambda^{a_1 i_1}} \cdots \sum_{i_k \geq 1} \frac{m^{i_k}}{\lambda^{a_k i_k}}
$$

$$
\leq \lambda b_{n-1} \sum_{i_1 \geq 1} \frac{m^{i_1}}{\lambda^{2i_1}} \cdots \sum_{i_k \geq 1} \frac{m^{i_k}}{\lambda^{2i_k}}
$$

$$
= \lambda b_{n-1} \left(\sum_{i \geq 1} \frac{m^i}{\lambda^{2i}} \right)^k.
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Since $\lambda \ge m - 1/2$, we have $m/\lambda^2 \le m/(m - 1/2)^2 < 1$. Thus

$$
\lambda b_{n-1} \left(\sum_{i \ge 1} \frac{m^i}{\lambda^{2i}} \right)^k = \lambda b_{n-1} \left(\frac{m/\lambda^2}{1 - m/\lambda^2} \right)^k = \lambda b_{n-1} \left(\frac{m}{\lambda^2 - m} \right)^k
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

We have thus shown

$$
\sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} b_{n - (a_1 i_1 + \cdots + a_k i_k)} \le \lambda b_{n-1} \left(\frac{m}{\lambda^2 - m}\right)^k
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

We are trying to show

$$
(m - \lambda)b_{n-1} - \sum_{i_1 \ge 1} \cdots \sum_{i_k \ge 1} m^{i_1 + \cdots + i_k} b_{n - (a_1 i_1 + \cdots + a_k i_k)} \ge 0.
$$

Clearly, it now suffices to show

$$
m - \lambda \ge \lambda \left(\frac{m}{\lambda^2 - m}\right)^k.
$$

Again, since $\lambda \geq m - 1/2$, we have

$$
\lambda \left(\frac{m}{\lambda^2 - m}\right)^k \leq \lambda \left(\frac{m}{(m - 1/2)^2 - m}\right)^k
$$

$$
= \lambda \left(\frac{m}{m^2 - 2m + 1/4}\right)^k
$$

$$
\leq \lambda \left(\frac{m}{m^2 - 2m}\right)^k
$$

$$
= \lambda/(m - 2)^k. \tag{1}
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

On the other hand,

$$
\lambda = m \left(1 + \frac{1}{(m-2)^k} \right)^{-1},
$$

whence

$$
\lambda \left(1 + \frac{1}{(m-2)^k} \right) = m,
$$

and so

$$
\lambda/(m-2)^k = m - \lambda. \tag{2}
$$

KOX KOX KEX KEX E 1990

[\(1\)](#page-23-0) and [\(2\)](#page-24-0) establish

$$
m - \lambda \ge \lambda \left(\frac{m}{\lambda^2 - m}\right)^k.
$$

We conclude that $b_n \geq \lambda b_{n-1}$, which completes the proof.

Theorem (Bell and Goh 2007)

Let $k > 2$ and $m > 4$ be integers with $(k, m) \neq (2, 4)$. Let p be a pattern containing k distinct variables, each occurring at least twice in $p.$ Then for $n\geq 0,$ there are at least λ^n words of length n over an m-letter alphabet that avoid the pattern p , where

$$
\lambda = \lambda(k, m) := m \left(1 + \frac{1}{(m-2)^k} \right)^{-1}
$$

.

Decidable properties

 \triangleright Are there algorithms to decide if an infinite word

- \blacktriangleright is aperiodic?
- \blacktriangleright is recurrent?
- \blacktriangleright avoids repetitions?
- \blacktriangleright etc.
- \triangleright Are there algorithms to compute its
	- \blacktriangleright complexity function?
	- \blacktriangleright recurrence function?
	- \blacktriangleright critical exponent?
	- \blacktriangleright etc.

Automatic sequences

A sequence is k -automatic if it is generated by first iterating a k -uniform morphism and then renaming some of the symbols.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright the prototypical 2-automatic sequence:

 $0110100110010110...$

 \blacktriangleright generated by iterating the map

 $0 \rightarrow 01, 1 \rightarrow 10$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The characteristic sequence of the powers of 2

Iterate the 2-uniform morphism

$$
a \to ab, b \to bc, c \to cc
$$

to get the infinite sequence

abbcbcccbcccccccbcccccccccccccccbcc · · · .

Now recode by $a, c \rightarrow 0$; $b \rightarrow 1$:

 $0110100010000000100000000000000000100 \cdots$

Determining periodicity

- \triangleright Given a k-automatic sequence, can we tell if it is ultimately periodic?
- \blacktriangleright Honkala (1986) gave an algorithm.
- \blacktriangleright This result was often reproved: Muchnik (1991), Fagnot (1997), Allouche, R., and Shallit (2009).

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright Leroux (2005) gave a polynomial time algorithm.

An automaton-based characterization

- \triangleright The proof of Allouche et al. is perhaps the simplest.
- \blacktriangleright It is based on another characterization of automatic sequences:
- A sequence a is k -automatic if there exists a finite automaton with output that, when given the base- k representation of n as input, outputs the $(n + 1)$ -th term of a.
- \triangleright This is the original definition of an automatic sequence; the equivalence with the morphism-based definition is due to Cobham.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

An automaton for the powers of 2

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

A logic-based characterization

- \triangleright Another important characterization (Büchi–Bruyère):
- In Let $V_k(x)$ denote the largest power of k that divides x.
- A sequence a is k-automatic if it is definable in the logical structure $\langle \mathbb{N}, +, V_k \rangle$.
- I.e., for each alphabet symbol b, there exists a first-order formula φ_b of $\langle \mathbb{N}, +, V_k \rangle$ such that

$$
\mathbf{a}^{-1}(b) = \{n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models \varphi_b(n)\}.
$$

KID KA KERKER E VOOR

Defining the powers of 2 using logic

 \blacktriangleright The characteristic sequence a of the powers of 2 has a simple definition in this formulation:

$$
\mathbf{a}^{-1}(1) = \{ n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models (V_2(n) = n) \}
$$

$$
\mathbf{a}^{-1}(0) = \{ n \in \mathbb{N} : \langle \mathbb{N}, +, V_k \rangle \models \neg(V_2(n) = n) \}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem (Bruyère 1985)

The first order theory of $\langle \mathbb{N}, +, V_k \rangle$ is decidable.

- \triangleright We can now apply these ideas to obtain algorithms to determine periodicity, recurrence, etc.
- \triangleright A sequence a is ultimately periodic if and only if there exist integers $p > 1$ and $n > 0$ such that $a(i) = a(i + p)$ for all $i > n$.
- \blacktriangleright Hence there exists a decision procedure for determining the periodicity of k -automatic sequences.

KORKAR KERKER EL VOLO

- A word w with period p has an exponent $|w|/p$.
- \triangleright The exponent of w is its largest exponent.
- \triangleright The critical exponent of an infinite word is the supremum of the exponents of its finite factors.

- \blacktriangleright The Thue–Morse word has critical exponent 2.
- ► The Fibonacci word has critical exponent $2 + \varphi$.

An expression for the critical exponent

- \triangleright Krieger showed that the critical exponent of the fixed point of a uniform morphism is either rational or infinite.
- For a sequence a, let X be the set of all pairs (q, p) such that there exists a factor of a of length q with period p .
- If a is k-automatic, we can construct a finite automaton to accept $\{(q, p)_k : (q, p) \in X\}.$

KID KA KERKER E VOOR

► The critical exponent is $\sup\{q/p : (q, p) \in X\}.$

Calculating the critical exponent

Theorem (Shallit 2011)

Given a k -automatic sequence, its critical exponent is either rational or infinite and can be effectively computed.

The End

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @