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Another method for showing exponential growth

» A special case of a theorem of Golod and Shafarevich
1964.

» Let S be a set of words over an m-letter alphabet, each

of length at least 2.

» Suppose S has at most ¢; words of length ¢ for ¢ > 2.



A power series criterion

Theorem

If the power series expansion of

G(z) = (1 —mz + Z cixi)

i>2

has non-negative coefficients, then there are least [2"|G(x)
words of length n over a m-letter alphabet that contain no

word of S as a factor.



Proof

» Let F(z) := Y, a;x", where a; is the number of words

of length ¢ over an m-letter alphabet that avoid S.
» We show
-1
F>G(x) = (1 — mx + cha:l> = Zblaf
i>2 i>0

» > G means a; > b; for all i >0



Proof

v

For k > 1, there are m* — a;, words w of length k over an

m-letter alphabet that contain a word in S as a factor.

» (a) w = w'a, where a is a single letter and w’ is a word of

length k& — 1 containing a word in S as a factor

v

(b) w = zy, where x is a word of length & — j that avoids
S and y € S is a word of length ;.

v

at most (m*~! — a;_1)m words of the form (a)

v

at most ) ax—;c; words w of the form (b)



Proof

So

k—1
mP —ap < (MF —ap_))m + E A—jCj.
J

Rearrange:

ap — Ap_1m + Zak,jcj > O, k > 1.
J



» Define
H(z) = F() <1 —mr + chxj)
7>2
< (o) (o)
i>0 jz2

» for kK > 1, we have

(@M H (2) = 0y — apam + Y anje;.

J



Proof

» we have shown a;, — ap_1m + Zj ag—jc; >0

» so [z¥]H(z) >0 for k > 1.

» Since [2']H(z) = 1, the inequality H > 1 holds and
H — 1 has non-negative coefficients.

» Then F= HG = (H — 1)G 4+ G > G, as required.



Enumeration of squarefree words

» With almost no work, we can show that there are at least

5" squarefree words of length n over an alphabet of size 7.
» Let S be the set of squares over an alphabet of size 7.

» For n > 1 the set S contains 7" squares of length 2n.



Applying the power series criterion

» Define

G(z) = (1 — Tz + Z 7iz2i> 7

i>1

722 !
= [1—
( 7z + 1= 722)

= 147244222 +2452% +13722* + 75462° + - - - .

» It is easy to show that [2"|G(z) > 5™ for n > 0.



Patterns

v

Squares (zx) and cubes (zxx) are patterns with one

variable.

Patterns can have several variables.

v

v

01122011 is an instance of the pattern xyyzx.

v

Given a pattern, is it avoidable over a finite alphabet?



Exponential growth of words avoiding patterns

Theorem (Bell and Goh 2007)

Let £ > 2 and m > 4 be integers with (k,m) # (2,4). Let p
be a pattern containing k distinct variables, each occurring at
least twice in p. Then for n > 0, there are at least A" words of
length n over an m-letter alphabet that avoid the pattern p,

where

X = A(k, m) ::m(1+;)k)_l.

(m —2



Some special cases

Corollary

Let p be a pattern in which every variable occurs at least twice.

There is an infinite word over a 4-letter alphabet that avoids p.



Some special cases

Corollary

All patterns with k variables and length at least 2% are

avoidable over a 4-letter alphabet.



Proof of Theorem

Lemma

Let £ > 1 be a integer and let p be a pattern over the set of
variables A = {xy,..., 21 }. Suppose that for 1 <i < k, the
variable x; occurs a; > 1 times in p. Let m > 2 be an integer
and let X be an m-letter alphabet. Then for n > 1, the
number of words of length n over X that are instances of the

pattern p is at most [2"|C(x), where

C(x) := Z e Z it parint e tagiy

i12>1 ip>1



» Let k£ > 2 and m > 4 be integers with (k,m) # (2,4).

> Let

A= Ak, m) ::m(1+ﬁ)l.

» We have A > m — 1/2.



Let aq,...,a;, be integers, each at least 2. Let

C(;C) = Z cee Z mi1+"'+ikxa1i1+---+akik’
i12>1 ip>1
and let
B(z) = Zbixi =(1—mzx+ C(x))—l,

>0

To prove the theorem, we show b,, > Ab,,_; for all n > 0.



v

v

v

v

v

v

The proof is by induction on n.

When n = 0, we have by = 1 and b; = m.

Since m > ), the inequality b; > Aby holds.

Suppose that for all j < n, we have b; > A\b;_;.

Since B=(1—mxz+C)~!, we have B(1—-mz+C) = 1.
Hence [2"]B(1 — mx 4+ C) =0 for n > 1.



However,
B(l1—mx+C) =

(Z bzml) (1 —mx + Z ce Z mil+"'+ikma1i1+'"+akik) :

i>0 i1>1 1p>1
so
[z"|B(1 —mz + C) =
by — by_1m + Z “e Z M D (i bagiy) = 0-
i1>1 1p>1

Rearranging, we obtain

b, = /\bn—1+(m_>\)bn—1_z ... Z M ani)-

i1>1 =1



To show b,, > \b,,_; it therefore suffices to show
(m —A)b,—1 — Z s Z milerHkbn,(alilJr...Jrakik) > 0.
1121 121

Since b; > \b;_; for all j < n, we have b,_; < b,_1/\" for
1 <i < n. Hence

. e m 1 bn*(alil‘i’"“‘rak’ik)

i>1 >l

E E mzl—i- i Vn—1 )\bn 1
)\a121+ Hagik

i1>1 ip>1

IN

7«1+ i

= Ab,_1 Z Z et rani,

Z1>l Zk>1

= Ab,_1 Z N )\am

1121 i >1



Since a; > 2 for 1 < i < k, we have

Abn_l Z )?\Zliill

m
Z Okt

1121 i >1
< mi mk
= n—1 Z \2i1 Z \2ik
121 i1

N\ k
— Mbyy ZT_? .

i>1



Since A > m — 1/2, we have m/\* < m/(m —1/2)? < 1.
Thus

mi\" m/X2 \" m \"
V| 25 ) = A (m) = A (m) |

i>1



We have thus shown

k
Z cee Z mitt kbn—(a1¢1+~-'+akik) < Abn ()\2 — m> '

i1>1 ig>1

We are trying to show

(m — A)b_1 — Z . Z m“+'"+i’“bn_(a1i1+-~~+akik) > 0.

i1>1 =1

Clearly, it now suffices to show

k
m



Again, since A > m — 1/2, we have

A(Af—lm)k = A(<m—17§

)




On the other hand,

whence

and so



(1) and (2) establish

k
m
m—)\z)\()\2_m> .

We conclude that b, > \b,,_1, which completes the proof.




Exponential growth of words avoiding patterns

Theorem (Bell and Goh 2007)

Let £ > 2 and m > 4 be integers with (k,m) # (2,4). Let p
be a pattern containing k distinct variables, each occurring at
least twice in p. Then for n > 0, there are at least A" words of
length n over an m-letter alphabet that avoid the pattern p,

where

X = A(k, m) ::m(1+;)k)_l.

(m —2



Decidable properties

» Are there algorithms to decide if an infinite word
» is aperiodic?
» is recurrent?
» avoids repetitions?
> etc.
» Are there algorithms to compute its
» complexity function?
» recurrence function?
» critical exponent?

> etc.



Automatic sequences

» A sequence is k-automatic if it is generated by first
iterating a k-uniform morphism and then renaming some

of the symbols.



The Thue—Morse sequence

» the prototypical 2-automatic sequence:

0110100110010110 - - -

» generated by iterating the map

0—01, 1—10



The characteristic sequence of the powers of 2

» lterate the 2-uniform morphism
a — ab,b — bc,c — cc
to get the infinite sequence
abbcbeecbeccececbecceccccecceeeebec - - -
» Now recode by a,c — 0; b — 1:

01101000100000001000000000000000100 - - -



Determining periodicity

» Given a k-automatic sequence, can we tell if it is
ultimately periodic?

» Honkala (1986) gave an algorithm.

» This result was often reproved: Muchnik (1991), Fagnot
(1997), Allouche, R., and Shallit (2009).

» Leroux (2005) gave a polynomial time algorithm.



An automaton-based characterization

» The proof of Allouche et al. is perhaps the simplest.

» It is based on another characterization of automatic

sequences:

» A sequence a is k-automatic if there exists a finite
automaton with output that, when given the base-k
representation of n as input, outputs the (n + 1)-th term

of a.

» This is the original definition of an automatic sequence;
the equivalence with the morphism-based definition is due

to Cobham.



An automaton for the powers of 2




A logic-based characterization

v

Another important characterization (Biichi-Bruyére):

v

Let Vi(z) denote the largest power of k that divides x.

v

A sequence a is k-automatic if it is definable in the

logical structure (N, +, Vj).

v

l.e., for each alphabet symbol b, there exists a first-order

formula ¢, of (N, +, Vj) such that

at(b)={neN:(N,+ V) | wn)}.



Defining the powers of 2 using logic

» The characteristic sequence a of the powers of 2 has a

simple definition in this formulation:

a'(l) = {neN:(N+ W)k (n) =n)}
a'(0) = {neN:(N+ W)k (V) =n)



Decidability

Theorem (Bruyere 1985)

The first order theory of (N, +, V) is decidable.



Applying these ideas

» We can now apply these ideas to obtain algorithms to

determine periodicity, recurrence, etc.

» A sequence a is ultimately periodic if and only if there
exist integers p > 1 and n > 0 such that a(i) = a(i + p)
for all i > n.

» Hence there exists a decision procedure for determining

the periodicity of k-automatic sequences.



Critical exponent

v

A word w with period p has an exponent |w|/p.

v

The exponent of w is its largest exponent.

v

The critical exponent of an infinite word is the supremum

of the exponents of its finite factors.

v

The Thue—Morse word has critical exponent 2.

v

The Fibonacci word has critical exponent 2 4 ¢.



An expression for the critical exponent

» Krieger showed that the critical exponent of the fixed

point of a uniform morphism is either rational or infinite.

» For a sequence a, let X be the set of all pairs (g, p) such

that there exists a factor of a of length ¢ with period p.

» If a is k-automatic, we can construct a finite automaton

to accept {(q,p)x : (¢,p) € X}.
» The critical exponent is sup{q/p: (¢,p) € X}.



Calculating the critical exponent

Theorem (Shallit 2011)

Given a k-automatic sequence, its critical exponent is either

rational or infinite and can be effectively computed.



The End



