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Another method for showing exponential growth

I A special case of a theorem of Golod and Shafarevich

1964.

I Let S be a set of words over an m-letter alphabet, each

of length at least 2.

I Suppose S has at most ci words of length i for i ≥ 2.



A power series criterion

Theorem

If the power series expansion of

G(x) :=

(
1−mx+

∑
i≥2

cix
i

)−1

has non-negative coefficients, then there are least [xn]G(x)

words of length n over a m-letter alphabet that contain no

word of S as a factor.



Proof

I Let F (x) :=
∑

i≥0 aix
i, where ai is the number of words

of length i over an m-letter alphabet that avoid S.

I We show

F ≥ G(x) =

(
1−mx+

∑
i≥2

cix
i

)−1
=
∑
i≥0

bix
i.

I F ≥ G means ai ≥ bi for all i ≥ 0



Proof

I For k ≥ 1, there are mk − ak words w of length k over an

m-letter alphabet that contain a word in S as a factor.

I (a) w = w′a, where a is a single letter and w′ is a word of

length k − 1 containing a word in S as a factor

I (b) w = xy, where x is a word of length k− j that avoids

S and y ∈ S is a word of length j.

I at most (mk−1 − ak−1)m words of the form (a)

I at most
∑

j ak−jcj words w of the form (b)



Proof

So

mk − ak ≤ (mk−1 − ak−1)m+
∑
j

ak−jcj.

Rearrange:

ak − ak−1m+
∑
j

ak−jcj ≥ 0, k ≥ 1.



Proof

I Define

H(x) := F (x)

(
1−mx+

∑
j≥2

cjx
j

)

=

(∑
i≥0

aix
i

)(
1−mx+

∑
j≥2

cjx
j

)
.

I for k ≥ 1, we have

[xk]H(x) = ak − ak−1m+
∑
j

ak−jcj.



Proof

I we have shown ak − ak−1m+
∑

j ak−jcj ≥ 0

I so [xk]H(x) ≥ 0 for k ≥ 1.

I Since [x0]H(x) = 1, the inequality H ≥ 1 holds and

H − 1 has non-negative coefficients.

I Then F = HG = (H − 1)G+G ≥ G, as required.



Enumeration of squarefree words

I With almost no work, we can show that there are at least

5n squarefree words of length n over an alphabet of size 7.

I Let S be the set of squares over an alphabet of size 7.

I For n ≥ 1 the set S contains 7n squares of length 2n.



Applying the power series criterion

I Define

G(z) :=

(
1− 7z +

∑
i≥1

7iz2i

)−1

=

(
1− 7z +

7z2

1− 7z2

)−1
= 1 + 7z + 42z2 + 245z3 + 1372z4 + 7546z5 + · · · .

I It is easy to show that [zn]G(z) ≥ 5n for n ≥ 0.



Patterns

I Squares (xx) and cubes (xxx) are patterns with one

variable.

I Patterns can have several variables.

I 01122011 is an instance of the pattern xyyx.

I Given a pattern, is it avoidable over a finite alphabet?



Exponential growth of words avoiding patterns

Theorem (Bell and Goh 2007)

Let k ≥ 2 and m ≥ 4 be integers with (k,m) 6= (2, 4). Let p

be a pattern containing k distinct variables, each occurring at

least twice in p. Then for n ≥ 0, there are at least λn words of

length n over an m-letter alphabet that avoid the pattern p,

where

λ = λ(k,m) := m

(
1 +

1

(m− 2)k

)−1
.



Some special cases

Corollary

Let p be a pattern in which every variable occurs at least twice.

There is an infinite word over a 4-letter alphabet that avoids p.



Some special cases

Corollary

All patterns with k variables and length at least 2k are

avoidable over a 4-letter alphabet.



Proof of Theorem

Lemma

Let k ≥ 1 be a integer and let p be a pattern over the set of

variables ∆ = {x1, . . . , xk}. Suppose that for 1 ≤ i ≤ k, the

variable xi occurs ai ≥ 1 times in p. Let m ≥ 2 be an integer

and let Σ be an m-letter alphabet. Then for n ≥ 1, the

number of words of length n over Σ that are instances of the

pattern p is at most [xn]C(x), where

C(x) :=
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikxa1i1+···+akik .



I Let k ≥ 2 and m ≥ 4 be integers with (k,m) 6= (2, 4).

I Let

λ = λ(k,m) := m

(
1 +

1

(m− 2)k

)−1
.

I We have λ ≥ m− 1/2.



Let a1, . . . , ak be integers, each at least 2. Let

C(x) :=
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikxa1i1+···+akik ,

and let

B(x) :=
∑
i≥0

bix
i = (1−mx+ C(x))−1.

To prove the theorem, we show bn ≥ λbn−1 for all n ≥ 0.



I The proof is by induction on n.

I When n = 0, we have b0 = 1 and b1 = m.

I Since m > λ, the inequality b1 ≥ λb0 holds.

I Suppose that for all j < n, we have bj ≥ λbj−1.

I Since B = (1−mx+C)−1, we have B(1−mx+C) = 1.

I Hence [xn]B(1−mx+ C) = 0 for n ≥ 1.



However,

B(1−mx+ C) =(∑
i≥0

bix
i

)(
1−mx+

∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikxa1i1+···+akik

)
,

so

[xn]B(1−mx+ C) =

bn − bn−1m+
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik) = 0.

Rearranging, we obtain

bn = λbn−1+(m−λ)bn−1−
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik).



To show bn ≥ λbn−1 it therefore suffices to show

(m− λ)bn−1 −
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik) ≥ 0.

Since bj ≥ λbj−1 for all j < n, we have bn−i ≤ bn−1/λ
i−1 for

1 ≤ i ≤ n. Hence∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik)

≤
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ik
λbn−1

λa1i1+···+akik

= λbn−1
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ik

λa1i1+···+akik

= λbn−1
∑
i1≥1

mi1

λa1i1
· · ·
∑
ik≥1

mik

λakik
.



Since ai ≥ 2 for 1 ≤ i ≤ k, we have

λbn−1
∑
i1≥1

mi1

λa1i1
· · ·
∑
ik≥1

mik

λakik

≤ λbn−1
∑
i1≥1

mi1

λ2i1
· · ·
∑
ik≥1

mik

λ2ik

= λbn−1

(∑
i≥1

mi

λ2i

)k

.



Since λ ≥ m− 1/2, we have m/λ2 ≤ m/(m− 1/2)2 < 1.

Thus

λbn−1

(∑
i≥1

mi

λ2i

)k

= λbn−1

(
m/λ2

1−m/λ2

)k

= λbn−1

(
m

λ2 −m

)k

.



We have thus shown∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik) ≤ λbn−1

(
m

λ2 −m

)k

.

We are trying to show

(m− λ)bn−1 −
∑
i1≥1

· · ·
∑
ik≥1

mi1+···+ikbn−(a1i1+···+akik) ≥ 0.

Clearly, it now suffices to show

m− λ ≥ λ

(
m

λ2 −m

)k

.



Again, since λ ≥ m− 1/2, we have

λ

(
m

λ2 −m

)k

≤ λ

(
m

(m− 1/2)2 −m

)k

= λ

(
m

m2 − 2m+ 1/4

)k

≤ λ

(
m

m2 − 2m

)k

= λ/(m− 2)k. (1)



On the other hand,

λ = m

(
1 +

1

(m− 2)k

)−1
,

whence

λ

(
1 +

1

(m− 2)k

)
= m,

and so

λ/(m− 2)k = m− λ. (2)



(1) and (2) establish

m− λ ≥ λ

(
m

λ2 −m

)k

.

We conclude that bn ≥ λbn−1, which completes the proof.



Exponential growth of words avoiding patterns

Theorem (Bell and Goh 2007)

Let k ≥ 2 and m ≥ 4 be integers with (k,m) 6= (2, 4). Let p

be a pattern containing k distinct variables, each occurring at

least twice in p. Then for n ≥ 0, there are at least λn words of

length n over an m-letter alphabet that avoid the pattern p,

where

λ = λ(k,m) := m

(
1 +

1

(m− 2)k

)−1
.



Decidable properties

I Are there algorithms to decide if an infinite word

I is aperiodic?

I is recurrent?

I avoids repetitions?

I etc.

I Are there algorithms to compute its

I complexity function?

I recurrence function?

I critical exponent?

I etc.



Automatic sequences

I A sequence is k-automatic if it is generated by first

iterating a k-uniform morphism and then renaming some

of the symbols.



The Thue–Morse sequence

I the prototypical 2-automatic sequence:

0110100110010110 · · ·

I generated by iterating the map

0→ 01, 1→ 10



The characteristic sequence of the powers of 2

I Iterate the 2-uniform morphism

a→ ab, b→ bc, c→ cc

to get the infinite sequence

abbcbcccbcccccccbcccccccccccccccbcc · · · .

I Now recode by a, c→ 0; b→ 1:

01101000100000001000000000000000100 · · · .



Determining periodicity

I Given a k-automatic sequence, can we tell if it is

ultimately periodic?

I Honkala (1986) gave an algorithm.

I This result was often reproved: Muchnik (1991), Fagnot

(1997), Allouche, R., and Shallit (2009).

I Leroux (2005) gave a polynomial time algorithm.



An automaton-based characterization

I The proof of Allouche et al. is perhaps the simplest.

I It is based on another characterization of automatic

sequences:

I A sequence a is k-automatic if there exists a finite

automaton with output that, when given the base-k

representation of n as input, outputs the (n+ 1)-th term

of a.

I This is the original definition of an automatic sequence;

the equivalence with the morphism-based definition is due

to Cobham.



An automaton for the powers of 2

0 0

1 1

0 1 0

0,1



A logic-based characterization

I Another important characterization (Büchi–Bruyère):

I Let Vk(x) denote the largest power of k that divides x.

I A sequence a is k-automatic if it is definable in the

logical structure 〈N,+, Vk〉.

I I.e., for each alphabet symbol b, there exists a first-order

formula ϕb of 〈N,+, Vk〉 such that

a−1(b) = {n ∈ N : 〈N,+, Vk〉 |= ϕb(n)}.



Defining the powers of 2 using logic

I The characteristic sequence a of the powers of 2 has a

simple definition in this formulation:

a−1(1) = {n ∈ N : 〈N,+, Vk〉 |= (V2(n) = n)}

a−1(0) = {n ∈ N : 〈N,+, Vk〉 |= ¬(V2(n) = n)}



Decidability

Theorem (Bruyère 1985)

The first order theory of 〈N,+, Vk〉 is decidable.



Applying these ideas

I We can now apply these ideas to obtain algorithms to

determine periodicity, recurrence, etc.

I A sequence a is ultimately periodic if and only if there

exist integers p ≥ 1 and n ≥ 0 such that a(i) = a(i+ p)

for all i ≥ n.

I Hence there exists a decision procedure for determining

the periodicity of k-automatic sequences.



Critical exponent

I A word w with period p has an exponent |w|/p.

I The exponent of w is its largest exponent.

I The critical exponent of an infinite word is the supremum

of the exponents of its finite factors.

I The Thue–Morse word has critical exponent 2.

I The Fibonacci word has critical exponent 2 + ϕ.



An expression for the critical exponent

I Krieger showed that the critical exponent of the fixed

point of a uniform morphism is either rational or infinite.

I For a sequence a, let X be the set of all pairs (q, p) such

that there exists a factor of a of length q with period p.

I If a is k-automatic, we can construct a finite automaton

to accept {(q, p)k : (q, p) ∈ X}.

I The critical exponent is sup{q/p : (q, p) ∈ X}.



Calculating the critical exponent

Theorem (Shallit 2011)

Given a k-automatic sequence, its critical exponent is either

rational or infinite and can be effectively computed.



The End


