# Repetitions in Words—Part III

#### Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

### Unavoidable regularity

#### van der Waerden's Theorem

If the natural numbers are partitioned into finitely many sets, then one set contains arbitrarily large arithmetic progressions.

### Subsequences

- $\mathbf{w} = w_0 w_1 w_2 \cdots$
- ▶ subsequence: a word  $w_{i_0}w_{i_1}\cdots$ , where  $0 \le i_0 < i_1 < \cdots$ .
- ▶ arithmetic subsequence of difference j: a word  $w_i w_{i+j} w_{i+2j} \cdots$ , where  $i \ge 0$  and  $j \ge 1$ .

### Unavoidable repetitions

#### vdW rephrased

For any infinite word  $\mathbf{w}$  over a finite alphabet A, there exists  $a \in A$  such that for all  $m \ge 1$ ,  $\mathbf{w}$  contains  $a^m$  in a subsequence indexed by an arithmetic progression.

### Repetitions in arithmetic progressions

### Theorem (Carpi 1988)

Let p be a prime and let m be a non-negative integer. There exists an infinite word over a finite alphabet that avoids  $(1+1/p^m)$ -powers in arithmetic progressions of all differences, except those differences that are a multiple of p.

### Squares in arithmetic progressions

#### Corollary

There exists an infinite word over a 4-letter alphabet that contains no squares in any arithmetic progression of odd difference.

#### The construction

Let  $q=p^{m+1}$ . We construct an infinite word with the desired properties over the alphabet

$$\Sigma = \{n : 0 < n < 2q^2 \text{ and } q \nmid n\}.$$

Define  $\mathbf{w}=a_1a_2\cdots$  as follows. For  $n\geq 1$ , write  $n=q^tn'$ , where  $q\nmid n'$ , and define

$$a_n = \begin{cases} n' \bmod q^2, & \text{if } t = 0; \\ q^2 + (n' \bmod q^2), & \text{if } t > 0. \end{cases}$$

### An example of the construction

Take p=2 and m=0 (so that q=2). Then  $\Sigma=\{1,3,5,7\}$  and, writing  $n=2^tn'$ ,

$$a_n = \begin{cases} n' \bmod 4, & \text{if } n \text{ is odd}; \\ 4 + (n' \bmod 4), & \text{if } n \text{ is even}. \end{cases}$$

It follows that

$$\mathbf{w} = 1535173515371735153\cdots$$

contains no squares in arithmetic progressions of odd difference.



Recall:  $\mathbf{w}=a_1a_2\cdots$  and  $q=p^m$ . For  $n\geq 1$ , write  $n=q^tn'$ , where  $q\nmid n'$ . Then

$$a_n = \begin{cases} n' \bmod q^2, & \text{if } t = 0; \\ q^2 + (n' \bmod q^2), & \text{if } t > 0. \end{cases}$$

Suppose w contains a  $(1+1/p^m)$ -power in an arithmetic progression of difference k, where k is not a multiple of p:

$$a_i a_{i+k} \cdots a_{i+(s-1)k} = a_{i+rk} a_{i+(r+1)k} \cdots a_{i+(r+s-1)k}$$

for some integers i, r, s satisfying  $s/r \ge 1/p^m$ .



If  $a_i = a_{i+rk} > q^2$  then q divides both i and i + rk and hence divides rk.

If  $a_i = a_{i+rk} < q^2$ , then  $i \mod q^2 = (i+rk) \mod q^2$ , so that  $q^2$  divides rk.

In either case, since p does not divide k, it must be the case that q divides r.

So we write  $r=q^\ell r'$  for some positive integers  $\ell,r'$  with r' not divisible by q.

Recall that  $s/r \ge 1/p^m$ , so that

$$s \geq q^{\ell}r'/p^{m}$$
$$= pq^{\ell-1}r'$$
$$\geq pq^{\ell-1}.$$

Thus  $\{i, i+k, \dots, i+(s-1)k\}$  forms a complete set of residue classes modulo  $pq^{\ell-1}$ .

There exists  $j \in \{i, i+k, \dots, i+(s-1)k\}$  such that

$$j \equiv q^{\ell-1} \pmod{pq^{\ell-1}}.$$

Write

$$j = apq^{\ell-1} + q^{\ell-1}$$
  
=  $q^{\ell-1}(ap+1)$ ,

for some non-negative integer a.

We also have

$$j + rk = q^{\ell-1}(ap+1) + q^{\ell}r'k$$
  
=  $q^{\ell-1}(ap+1+qr'k)$ .

Also  $a_j = a_{j+rk}$ , and so from the definition of  ${\bf w}$  we have

$$ap + 1 \equiv ap + 1 + qr'k \pmod{q^2},$$

so that  $qr'k \equiv 0 \pmod{q^2}$ .

This implies  $r'k \equiv 0 \pmod{q}$ . However, p does not divide k, and q does not divide r', so this congruence cannot be satisfied. This contradiction completes the proof.

# The paperfolding word

- again take p=2 and m=0
- then  $\mathbf{w} = 1535173515371735153 \cdots$
- ▶ apply the map  $1, 5 \rightarrow 0$ ,  $3, 7 \rightarrow 1$  to get
- $\mathbf{f} = 0010011000110110001 \cdots$
- this is the ordinary paperfolding word

### The Toeplitz construction

► Start with an infinite sequence of gaps, denoted ?.

```
? ? ? ? ? ? ? ? ? ? ? ? ? ? ...
```

► Fill every other gap with alternating 0's and 1's.

$$0\ ?\ 1\ ?\ 0\ ?\ 1\ ?\ 0\ ?\ 1\ ?\ 0\ ?\ 1\ \cdots$$

Repeat.

$$0 \ 0 \ 1 \ ? \ 0 \ 1 \ 1 \ ? \ 0 \ 0 \ 1 \ ? \ 0 \ 1 \ 1 \ \cdots$$

 $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ ? \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ \cdots$ 



# Paperfolding words

▶ In the limit one obtains the ordinary paperfolding word:

$$0010011000110110 \cdots$$

▶ At each step, one may choose to fill in the gaps by either

$$0101010101 \cdots$$

or

$$1010101010\cdots$$
.

Different choices result in different paperfolding words.



### Repetitions in paperfolding words

### Theorem (Allouche and Bousquet-Mélou 1994)

If  ${\bf f}$  is a paperfolding word and ww is a non-empty factor of  ${\bf f}$ , then  $|w|\in\{1,3,5\}.$ 

#### 2-dimensional words

- ► A 2-dimensional word w is a 2D array of symbols.
- $w_{m,n}$ : the symbol of w at position (m,n).
- ▶ A word x is a line of w if there exists  $i_1$ ,  $i_2$ ,  $j_1$ ,  $j_2$ , such that
  - ▶  $gcd(j_1, j_2) = 1$  and
  - for  $t \ge 0$ , we have  $x_t = w_{i_1+j_1t, i_2+j_2t}$ .

# Avoiding repetitions in higher dimensions

### Theorem (Carpi 1988)

There exists a 2-dimensional word w over a 16-letter alphabet such that every line of w is squarefree.

### Constructing the 2D-word

- ▶ Let  $\mathbf{u} = u_0 u_1 u_2 \cdots$  and  $\mathbf{v} = v_0 v_1 v_2 \cdots$  be infinite words over a 4-letter alphabet A that avoid squares in all arithmetic progressions of odd difference.
- ▶ Define w over the alphabet  $A \times A$  by  $w_{m,n} = (u_m, v_n)$ .

### Lines through the 2D-word

Consider an arbitrary line

$$\mathbf{x} = (w_{i_1+j_1t, i_2+j_2t})_{t \ge 0},$$
  
=  $((u_{i_1+j_1t}, v_{i_2+j_2t}))_{t \ge 0},$ 

for some  $i_1, i_2, j_1, j_2$ , with  $gcd(j_1, j_2) = 1$ .

- ightharpoonup Without loss of generality, we may assume  $j_1$  is odd.
- ▶ Then  $(u_{i_1+j_1t})_{t\geq 0}$  is an arithmetic subsequence of odd difference of  $\mathbf{u}$  and hence is squarefree.
- x is therefore also squarefree.

### Abelian repetitions

```
Erdős 1961 abelian square: a word xx' such that x' is a
                 permutation of x (like reappear)
Evdokimov 1968 abelian squares avoidable over 25 letters
 Pleasants 1970 abelian squares avoidable over 5 letters
    Justin 1972 abelian 5-powers avoidable over 2 letters
  Dekking 1979 abelian 4-powers avoidable over 2 letters
                 abelian cubes avoidable over 3 letters
  Keränen 1992 abelian squares avoidable over 4 letters
```

# The adjacency matrix of a morphism

Given a morphism  $\varphi: \Sigma^* \to \Sigma^*$  for some finite set  $\Sigma = \{a_1, a_2, \dots, a_d\}$ , we define the adjacency matrix  $M = M(\varphi)$  as follows:

$$M = (m_{i,j})_{1 \le i,j \le d}$$

where  $m_{i,j}$  is the number of occurrences of  $a_i$  in  $\varphi(a_j)$ , i.e.,  $m_{i,j} = |\varphi(a_j)|_{a_i}$ .

### An example

$$\varphi: a \to ab$$
 
$$b \to cc$$
 
$$c \to bb.$$

$$M(\varphi) = \begin{pmatrix} a & b & c \\ a & 1 & 0 & 0 \\ 1 & 0 & 2 \\ c & 0 & 2 & 0 \end{pmatrix}$$

### Properties of M

ightharpoonup Define  $\psi:\Sigma^* o \mathbb{Z}^d$  by

$$\psi(w) = [|w|_{a_1}, |w|_{a_2}, \dots, |w|_{a_d}]^T.$$

▶ Then

$$\psi(\varphi(w)) = M(\varphi)\psi(w).$$

▶ By induction  $M(\varphi)^n = M(\varphi^n)$ , and hence

$$\psi(\varphi^n(w)) = (M(\varphi))^n \psi(w).$$



# Dekking's construction

▶ Define a map:

$$a \rightarrow aaab, \quad b \rightarrow abb.$$

▶ The limit of the sequence

$$a \rightarrow aaab \rightarrow aaabaaabaaababb \rightarrow \cdots$$

contains no abelian 4-power.

### Dekking's method

- ▶ the idea is to map letters to elements of  $\mathbb{Z}/n\mathbb{Z}$  for some n
- ▶ abelian repetitions correspond to certain arithmetic progressions in  $\mathbb{Z}/n\mathbb{Z}$
- show no such arithmetic progressions exist

### Some definitions

- Let  $\varphi: \Sigma^* \to \Sigma^*$  be a morphism.
- ▶ Call the words  $\varphi(a)$ , for  $a \in \Sigma$ , blocks.
- ▶ If  $\varphi(a) = vv'$ ,  $v' \neq \epsilon$ , then v is a left subblock and v' a right subblock.
- ▶ Let G be a finite abelian group (written additively).
- ▶  $A \subseteq G$  is progression-free of order n if for all  $a \in A$ ,  $a, a + g, a + 2g, \dots a + (n 1)g \in A$  implies g = 0.



### $\varphi$ -injectivity

- Let  $f: \Sigma^* \to G$  be a morphism: i.e.,  $f(\epsilon) = 0$  and  $f(a_1 a_2 \cdots a_i) = \sum_{1 \leq j \leq i} f(a_j).$
- Let  $v_1v_1', v_2v_2', \ldots, v_nv_n'$  be blocks.
- f is  $\varphi$ -injective if

$$f(v_1) = f(v_2) = \dots = f(v_n)$$

implies either  $v_1 = v_2 = \cdots = v_n$  or  $v_1' = v_2' = \cdots = v_n'$ .



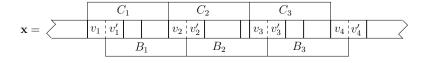
#### The main criterion

#### Suppose that

- (a) The adjacency matrix of  $\varphi$  is invertible.
- (b)  $f(\varphi(a)) = 0$  for all  $a \in \Sigma$ ;
- (c) the set  $A=\{g\in G\ :\ g=f(v),\ v\ \text{a left subblock of }\varphi\}$  is progression-free of order n+1;
- (d) f is  $\varphi$ -injective.

If  $\varphi$  is prolongable on a, and  $\varphi^{\omega}(a)$  avoids abelian n-powers  $x_1x_2\cdots x_n$  where  $|x_i|\leq \max_{a\in\Sigma}|\varphi(a)|$ , then  $\varphi^{\omega}(a)$  is abelian n-power-free.

### Proof



Let  $\mathbf{x} = \varphi^{\omega}(a)$ . Suppose  $B_1 B_2 \cdots B_n$  is an abelian n-power occurring in  $\mathbf{x}$  with  $|B_i|$  is minimal. By hypothesis,  $|B_i| > \max_{a \in \Sigma} |\varphi(a)|$ .

Consider the factorization of  $\mathbf{x}$  into blocks. Then each  $B_i$  starts inside some block  $\varphi(a)$ .

|                 | $C_1$           |       |       | $C_2$  |       |  |              | $C_3$ |    |       |        |   |  |
|-----------------|-----------------|-------|-------|--------|-------|--|--------------|-------|----|-------|--------|---|--|
| $\mathbf{x} = $ | $v_1 \mid v_1'$ |       | $v_2$ | $v_2'$ |       |  | $v_3 \mid v$ | ,′3   |    | $v_4$ | $v_4'$ |   |  |
|                 |                 | $B_1$ |       |        | $B_2$ |  |              | Е     | 83 |       |        | • |  |

- Since each  $B_i$  contains exactly the same number of every letter, we have  $f(B_1) = f(B_2) = \cdots = f(B_n)$ .
- ▶ By hypothesis  $f(\varphi(a)) = 0$  for every  $a \in \Sigma$ .
- Hence  $f(B_i) = f(v_i') + f(v_{i+1})$ .

|                        | $C_1$ |        |   |                |       | C      | 2     |  | C     | 3      |       |   |       |        |               |
|------------------------|-------|--------|---|----------------|-------|--------|-------|--|-------|--------|-------|---|-------|--------|---------------|
| $\mathbf{x} = \langle$ | $v_1$ | $v_1'$ |   |                | $v_2$ | $v_2'$ |       |  | $v_3$ | $v_3'$ |       |   | $v_4$ | $v_4'$ | $\overline{}$ |
|                        |       |        | Е | $\mathbf{S}_1$ |       |        | $B_2$ |  |       |        | $B_3$ | 3 |       |        |               |

- ▶ Since  $f(v_i v_i') = 0$ , we get  $f(B_i) = -f(v_i) + f(v_{i+1})$ .
- ▶ Thus the  $f(v_i)$  form an (n+1)-term arithmetic progression with difference  $f(B_i)$ .
- ▶ This forces  $f(v_1) = f(v_2) = \cdots = f(v_{n+1})$ .
- ightharpoonup arphi-injectivity forces either  $v_1=v_2=\cdots=v_{n+1}$  or  $v_1'=v_2'=\cdots=v_{n+1}'$



|                 | $C_1$ |        |   |                | $C_2$ |        |       |  |       | C      | 3     |   |       |        |        |
|-----------------|-------|--------|---|----------------|-------|--------|-------|--|-------|--------|-------|---|-------|--------|--------|
| $\mathbf{x} = $ | $v_1$ | $v_1'$ |   |                | $v_2$ | $v_2'$ |       |  | $v_3$ | $v_3'$ |       |   | $v_4$ | $v_4'$ | $\geq$ |
|                 |       |        | Е | $\mathbf{S}_1$ |       |        | $B_2$ |  |       |        | $B_3$ | 3 |       |        | _      |

In the first case, we "slide" the abelian n-power to the left by  $|v_1|$  symbols to get another n-power  $C_1C_2\cdots C_n$ , which is aligned with blocks of  $\varphi$ . In the second case we slide to the right.

|                        |   | $C_1$ |        |   |                | $C_2$ |        |       |  |       | C      | '3        |   |       |        |        |
|------------------------|---|-------|--------|---|----------------|-------|--------|-------|--|-------|--------|-----------|---|-------|--------|--------|
| $\mathbf{x} = \langle$ | > | $v_1$ | $v_1'$ |   |                | $v_2$ | $v_2'$ |       |  | $v_3$ | $v_3'$ |           |   | $v_4$ | $v_4'$ | $\geq$ |
|                        |   |       |        | Е | $\mathbf{S}_1$ |       |        | $B_2$ |  |       |        | $B_{\xi}$ | 3 |       |        | _      |

- ▶ Let  $D_i$  be such that  $C_i = \varphi(D_i)$ .
- ▶ Since  $\mathbf{x} = \varphi(\mathbf{x})$ ,  $D_1 D_2 \cdots D_n$  is a factor of  $\mathbf{x}$ .
- ▶ Now  $\psi(C_i) = M\psi(D_i)$ , where M is the matrix of  $\varphi$ .
- ▶ Since M is invertible and  $\psi(C_1) = \psi(C_2) = \cdots = \psi(C_n)$ , we have  $\psi(D_1) = \psi(D_2) = \cdots = \psi(D_n)$ .
- ▶  $D_1 \cdots D_n$  is a shorter abelian *n*-power, contradiction.

# Avoiding abelian 4-powers

lacktriangle We check that the morphism arphi

$$a \rightarrow aaab, \quad b \rightarrow abb$$

verifies the criterion we just proved.

- ▶ The matrix of  $\varphi$  is  $\begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$ , which is invertible.
- ▶ Take  $G = \mathbb{Z}/5\mathbb{Z}$ .
- ▶ Define  $f: \{a, b\}^* \to G$  by f(a) = 1 and f(b) = 2.
- f(aaab) = f(abb) = 0

### Avoiding abelian 4-powers

- $A = \{0, 1, 2, 3\}$  is progression free of order 5
- f is  $\varphi$ -injective
- $ightharpoonup arphi^{\omega}(a)$  has no short abelian 4-powers
- by previous criterion,  $\varphi^{\omega}(a)$  avoids abelian 4-powers

# Avoiding abelian cubes

Define  $\vartheta$  by  $\vartheta(a)=aabc$ ,  $\vartheta(b)=bbc$ , and  $\vartheta(c)=acc$ . The same method shows that  $\vartheta^\omega(a)$  avoids abelian cubes.

# The End

(Happy Birthday Elise!)