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Unavoidable regularity

van der Waerden’s Theorem

If the natural numbers are partitioned into finitely many sets,

then one set contains arbitrarily large arithmetic progressions.



Subsequences

I w = w0w1w2 · · ·
I subsequence: a word wi0wi1 · · · , where

0 ≤ i0 < i1 < · · · .
I arithmetic subsequence of difference j: a word

wiwi+jwi+2j · · · , where i ≥ 0 and j ≥ 1.



Unavoidable repetitions

vdW rephrased

For any infinite word w over a finite alphabet A, there exists

a ∈ A such that for all m ≥ 1, w contains am in a

subsequence indexed by an arithmetic progression.



Repetitions in arithmetic progressions

Theorem (Carpi 1988)

Let p be a prime and let m be a non-negative integer. There

exists an infinite word over a finite alphabet that avoids

(1 + 1/pm)-powers in arithmetic progressions of all differences,

except those differences that are a multiple of p.



Squares in arithmetic progressions

Corollary

There exists an infinite word over a 4-letter alphabet that

contains no squares in any arithmetic progression of odd

difference.



The construction

Let q = pm+1. We construct an infinite word with the desired

properties over the alphabet

Σ = {n : 0 < n < 2q2 and q - n}.

Define w = a1a2 · · · as follows. For n ≥ 1, write n = qtn′,

where q - n′, and define

an =




n′ mod q2, if t = 0;

q2 + (n′ mod q2), if t > 0.



An example of the construction

Take p = 2 and m = 0 (so that q = 2). Then Σ = {1, 3, 5, 7}
and, writing n = 2tn′,

an =




n′ mod 4, if n is odd;

4 + (n′ mod 4), if n is even.

It follows that

w = 1535173515371735153 · · ·

contains no squares in arithmetic progressions of odd

difference.



Proof of the construction

Recall: w = a1a2 · · · and q = pm. For n ≥ 1, write n = qtn′,

where q - n′. Then

an =




n′ mod q2, if t = 0;

q2 + (n′ mod q2), if t > 0.

Suppose w contains a (1 + 1/pm)-power in an arithmetic

progression of difference k, where k is not a multiple of p:

aiai+k · · · ai+(s−1)k = ai+rkai+(r+1)k · · · ai+(r+s−1)k

for some integers i, r, s satisfying s/r ≥ 1/pm.



Proof of the construction

If ai = ai+rk > q2 then q divides both i and i+ rk and hence

divides rk.

If ai = ai+rk < q2, then i mod q2 = (i+ rk) mod q2, so that

q2 divides rk.

In either case, since p does not divide k, it must be the case

that q divides r.

So we write r = q`r′ for some positive integers `, r′ with r′ not

divisible by q.



Proof of the construction

Recall that s/r ≥ 1/pm, so that

s ≥ q`r′/pm

= pq`−1r′

≥ pq`−1.

Thus {i, i+ k, . . . , i+ (s− 1)k} forms a complete set of

residue classes modulo pq`−1.

There exists j ∈ {i, i+ k, . . . , i+ (s− 1)k} such that

j ≡ q`−1 (mod pq`−1).



Proof of the construction

Write

j = apq`−1 + q`−1

= q`−1(ap+ 1),

for some non-negative integer a.

We also have

j + rk = q`−1(ap+ 1) + q`r′k

= q`−1(ap+ 1 + qr′k).



Proof of the construction

Also aj = aj+rk, and so from the definition of w we have

ap+ 1 ≡ ap+ 1 + qr′k (mod q2),

so that qr′k ≡ 0 (mod q2).

This implies r′k ≡ 0 (mod q). However, p does not divide k,

and q does not divide r′, so this congruence cannot be

satisfied. This contradiction completes the proof.



The paperfolding word

I again take p = 2 and m = 0

I then w = 1535173515371735153 · · ·
I apply the map 1, 5→ 0, 3, 7→ 1 to get

I f = 0010011000110110001 · · ·
I this is the ordinary paperfolding word



The Toeplitz construction

I Start with an infinite sequence of gaps, denoted ?.

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? · · ·

I Fill every other gap with alternating 0’s and 1’s.

0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 · · ·

I Repeat.

0 0 1 ? 0 1 1 ? 0 0 1 ? 0 1 1 · · ·

0 0 1 0 0 1 1 ? 0 0 1 1 0 1 1 · · ·



Paperfolding words

I In the limit one obtains the ordinary paperfolding word:

0010011000110110 · · ·

I At each step, one may choose to fill in the gaps by either

0101010101 · · ·

or

1010101010 · · · .

I Different choices result in different paperfolding words.



Repetitions in paperfolding words

Theorem (Allouche and Bousquet-Mélou 1994)

If f is a paperfolding word and ww is a non-empty factor of f ,

then |w| ∈ {1, 3, 5}.



2-dimensional words

I A 2-dimensional word w is a 2D array of symbols.

I wm,n: the symbol of w at position (m,n).

I A word x is a line of w if there exists i1, i2, j1, j2, such

that

I gcd(j1, j2) = 1 and

I for t ≥ 0, we have xt = wi1+j1t,i2+j2t.



Avoiding repetitions in higher dimensions

Theorem (Carpi 1988)

There exists a 2-dimensional word w over a 16-letter alphabet

such that every line of w is squarefree.



Constructing the 2D-word

I Let u = u0u1u2 · · · and v = v0v1v2 · · · be infinite words

over a 4-letter alphabet A that avoid squares in all

arithmetic progressions of odd difference.

I Define w over the alphabet A× A by wm,n = (um, vn).



Lines through the 2D-word

I Consider an arbitrary line

x = (wi1+j1t,i2+j2t)t≥0,

= ( (ui1+j1t, vi2+j2t) )t≥0,

for some i1, i2, j1, j2, with gcd(j1, j2) = 1.

I Without loss of generality, we may assume j1 is odd.

I Then (ui1+j1t)t≥0 is an arithmetic subsequence of odd

difference of u and hence is squarefree.

I x is therefore also squarefree.



Abelian repetitions

Erdős 1961 abelian square: a word xx′ such that x′ is a

permutation of x (like reappear)

Evdokimov 1968 abelian squares avoidable over 25 letters

Pleasants 1970 abelian squares avoidable over 5 letters

Justin 1972 abelian 5-powers avoidable over 2 letters

Dekking 1979 abelian 4-powers avoidable over 2 letters

abelian cubes avoidable over 3 letters

Keränen 1992 abelian squares avoidable over 4 letters



The adjacency matrix of a morphism

Given a morphism ϕ : Σ∗ → Σ∗ for some finite set

Σ = {a1, a2, . . . , ad}, we define the adjacency matrix

M = M(ϕ) as follows:

M = (mi,j)1≤i,j≤d

where mi,j is the number of occurrences of ai in ϕ(aj), i.e.,

mi,j = |ϕ(aj)|ai .



An example

ϕ : a→ ab

b→ cc

c→ bb.
M(ϕ) =




a b c

a 1 0 0

b 1 0 2

c 0 2 0






Properties of M

I Define ψ : Σ∗ → Zd by

ψ(w) = [|w|a1 , |w|a2 , . . . , |w|ad ]T .

I Then

ψ(ϕ(w)) = M(ϕ)ψ(w).

I By induction M(ϕ)n = M(ϕn), and hence

ψ(ϕn(w)) = (M(ϕ))nψ(w).



Dekking’s construction

I Define a map:

a→ aaab, b→ abb.

I The limit of the sequence

a→ aaab→ aaabaaabaaababb→ · · ·

contains no abelian 4-power.



Dekking’s method

I the idea is to map letters to elements of Z/nZ for some n

I abelian repetitions correspond to certain arithmetic

progressions in Z/nZ

I show no such arithmetic progressions exist



Some definitions

I Let ϕ : Σ∗ → Σ∗ be a morphism.

I Call the words ϕ(a), for a ∈ Σ, blocks.

I If ϕ(a) = vv′, v′ 6= ε, then v is a left subblock and v′ a

right subblock.

I Let G be a finite abelian group (written additively).

I A ⊆ G is progression-free of order n if for all a ∈ A,

a, a+ g, a+ 2g, . . . a+ (n− 1)g ∈ A implies g = 0.



ϕ-injectivity

I Let f : Σ∗ → G be a morphism: i.e., f(ε) = 0 and

f(a1a2 · · · ai) =
∑

1≤j≤i
f(aj).

I Let v1v
′
1, v2v

′
2, . . . , vnv

′
n be blocks.

I f is ϕ-injective if

f(v1) = f(v2) = · · · = f(vn)

implies either v1 = v2 = · · · = vn or v′1 = v′2 = · · · = v′n.



The main criterion

Suppose that

(a) The adjacency matrix of ϕ is invertible.

(b) f(ϕ(a)) = 0 for all a ∈ Σ;

(c) the set A = {g ∈ G : g = f(v), v a left subblock of ϕ}
is progression-free of order n+ 1;

(d) f is ϕ-injective.

If ϕ is prolongable on a, and ϕω(a) avoids abelian n-powers

x1x2 · · ·xn where |xi| ≤ max
a∈Σ
|ϕ(a)|, then ϕω(a) is abelian

n-power-free.



Proof
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v3 v′
3 v4 v′

4v1 v′
1 v2 v′

2

C1 C2 C3

x =

Figure 2. An abelian cube and the corresponding blocks

Since each Bi is a permutation of every other Bi, it follows that each Bi

contains exactly the same number of every letter, and so

(29) f(B1) = f(B2) = · · · = f(Bn).

On the other hand, from condition (b) of the Lemma, we know that f(ϕ(a)) =
0 for every a ∈ Σ. Writing Bi = v′

iyivi+1 for some yi that is the image of
a word under ϕ, we get f(Bi) = f(v′

i) + f(vi+1). Since f(viv
′
i) = 0, we

get f(Bi) = −f(vi) + f(vi+1). From Eq. (29) we get that the f(vi) form
an (n + 1)-term arithmetic progression with difference f(Bi). But then by
hypothesis (c), we get f(v1) = f(v2) = · · · = f(vn+1). Hence by hypothesis
(d), it follows that either v1 = v2 = · · · = vn+1 or v′

1 = v′
2 = · · · = v′

n+1.
In the former case, we can “slide” the abelian n’th power to the left by |v1|
symbols and still get an abelian n’th power; in the latter case we can slide
it to the right by |v′

1| symbols and still get an abelian n’th power. Now
our abelian n’th power is aligned at both ends with blocks of ϕ, so there
is an abelian n’th power C1C2 · · · Cn where each Ci is composed of blocks;
again see Figure 2. Let Di be such that Ci = ϕ(Di). Since x = ϕ(x),
it follows that D1D2 · · · Dn occurs in x. Now ψ(Ci) = Mψ(Di), where
M is the matrix of ϕ. Since M is invertible, there is only one possi-
bility for ψ(Di). Since ψ(C1) = ψ(C2) = · · · = ψ(Cn), it follows that
ψ(D1) = ψ(D2) = · · · = ψ(Dn). Hence D1 · · · Dn is a shorter abelian n’th
power, contradicting the minimality of B1B2 · · · Bn. !

Corollary 45. There is a sequence on two symbols that avoids abelian 4th
powers.

Proof. Let Σ = {0, 1} and define ϕ(0) = 011, ϕ(1) = 0001. We can check
that there are no abelian 4th powers x1x2x3x4 in ϕω(0) for |x1| ≤ 4 by
enumerating all subwords of length ≤ 16.

The matrix of ϕ is

(
1 3
2 1

)
. which has determinant −5. Choose G =

Z/(5) and define f by f(0) = 1, f(1) = 2. Then f(ϕ(a)) = 0 for a ∈ {0, 1}.
Furthermore A = {0, 1, 2, 3}, which is progression free of order 5.

Thus ϕω(0) is abelian 4th-power-free. !

Corollary 46. There is a sequence on 3 symbols that avoids abelian cubes.

Let x = ϕω(a). Suppose B1B2 · · ·Bn is an abelian n-power

occurring in x with |Bi| is minimal. By hypothesis,

|Bi| > maxa∈Σ |ϕ(a)|.
Consider the factorization of x into blocks. Then each Bi

starts inside some block ϕ(a).
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Since each Bi is a permutation of every other Bi, it follows that each Bi

contains exactly the same number of every letter, and so

(29) f(B1) = f(B2) = · · · = f(Bn).

On the other hand, from condition (b) of the Lemma, we know that f(ϕ(a)) =
0 for every a ∈ Σ. Writing Bi = v′

iyivi+1 for some yi that is the image of
a word under ϕ, we get f(Bi) = f(v′

i) + f(vi+1). Since f(viv
′
i) = 0, we

get f(Bi) = −f(vi) + f(vi+1). From Eq. (29) we get that the f(vi) form
an (n + 1)-term arithmetic progression with difference f(Bi). But then by
hypothesis (c), we get f(v1) = f(v2) = · · · = f(vn+1). Hence by hypothesis
(d), it follows that either v1 = v2 = · · · = vn+1 or v′

1 = v′
2 = · · · = v′

n+1.
In the former case, we can “slide” the abelian n’th power to the left by |v1|
symbols and still get an abelian n’th power; in the latter case we can slide
it to the right by |v′

1| symbols and still get an abelian n’th power. Now
our abelian n’th power is aligned at both ends with blocks of ϕ, so there
is an abelian n’th power C1C2 · · · Cn where each Ci is composed of blocks;
again see Figure 2. Let Di be such that Ci = ϕ(Di). Since x = ϕ(x),
it follows that D1D2 · · · Dn occurs in x. Now ψ(Ci) = Mψ(Di), where
M is the matrix of ϕ. Since M is invertible, there is only one possi-
bility for ψ(Di). Since ψ(C1) = ψ(C2) = · · · = ψ(Cn), it follows that
ψ(D1) = ψ(D2) = · · · = ψ(Dn). Hence D1 · · · Dn is a shorter abelian n’th
power, contradicting the minimality of B1B2 · · · Bn. !

Corollary 45. There is a sequence on two symbols that avoids abelian 4th
powers.

Proof. Let Σ = {0, 1} and define ϕ(0) = 011, ϕ(1) = 0001. We can check
that there are no abelian 4th powers x1x2x3x4 in ϕω(0) for |x1| ≤ 4 by
enumerating all subwords of length ≤ 16.

The matrix of ϕ is

(
1 3
2 1

)
. which has determinant −5. Choose G =

Z/(5) and define f by f(0) = 1, f(1) = 2. Then f(ϕ(a)) = 0 for a ∈ {0, 1}.
Furthermore A = {0, 1, 2, 3}, which is progression free of order 5.

Thus ϕω(0) is abelian 4th-power-free. !

Corollary 46. There is a sequence on 3 symbols that avoids abelian cubes.

I Since each Bi contains exactly the same number of every

letter, we have f(B1) = f(B2) = · · · = f(Bn).

I By hypothesis f(ϕ(a)) = 0 for every a ∈ Σ.

I Hence f(Bi) = f(v′i) + f(vi+1).
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Since each Bi is a permutation of every other Bi, it follows that each Bi

contains exactly the same number of every letter, and so

(29) f(B1) = f(B2) = · · · = f(Bn).

On the other hand, from condition (b) of the Lemma, we know that f(ϕ(a)) =
0 for every a ∈ Σ. Writing Bi = v′

iyivi+1 for some yi that is the image of
a word under ϕ, we get f(Bi) = f(v′

i) + f(vi+1). Since f(viv
′
i) = 0, we

get f(Bi) = −f(vi) + f(vi+1). From Eq. (29) we get that the f(vi) form
an (n + 1)-term arithmetic progression with difference f(Bi). But then by
hypothesis (c), we get f(v1) = f(v2) = · · · = f(vn+1). Hence by hypothesis
(d), it follows that either v1 = v2 = · · · = vn+1 or v′

1 = v′
2 = · · · = v′

n+1.
In the former case, we can “slide” the abelian n’th power to the left by |v1|
symbols and still get an abelian n’th power; in the latter case we can slide
it to the right by |v′

1| symbols and still get an abelian n’th power. Now
our abelian n’th power is aligned at both ends with blocks of ϕ, so there
is an abelian n’th power C1C2 · · · Cn where each Ci is composed of blocks;
again see Figure 2. Let Di be such that Ci = ϕ(Di). Since x = ϕ(x),
it follows that D1D2 · · · Dn occurs in x. Now ψ(Ci) = Mψ(Di), where
M is the matrix of ϕ. Since M is invertible, there is only one possi-
bility for ψ(Di). Since ψ(C1) = ψ(C2) = · · · = ψ(Cn), it follows that
ψ(D1) = ψ(D2) = · · · = ψ(Dn). Hence D1 · · · Dn is a shorter abelian n’th
power, contradicting the minimality of B1B2 · · · Bn. !

Corollary 45. There is a sequence on two symbols that avoids abelian 4th
powers.

Proof. Let Σ = {0, 1} and define ϕ(0) = 011, ϕ(1) = 0001. We can check
that there are no abelian 4th powers x1x2x3x4 in ϕω(0) for |x1| ≤ 4 by
enumerating all subwords of length ≤ 16.

The matrix of ϕ is

(
1 3
2 1

)
. which has determinant −5. Choose G =

Z/(5) and define f by f(0) = 1, f(1) = 2. Then f(ϕ(a)) = 0 for a ∈ {0, 1}.
Furthermore A = {0, 1, 2, 3}, which is progression free of order 5.

Thus ϕω(0) is abelian 4th-power-free. !

Corollary 46. There is a sequence on 3 symbols that avoids abelian cubes.

I Since f(viv
′
i) = 0, we get f(Bi) = −f(vi) + f(vi+1).

I Thus the f(vi) form an (n+ 1)-term arithmetic

progression with difference f(Bi).

I This forces f(v1) = f(v2) = · · · = f(vn+1).

I ϕ-injectivity forces either v1 = v2 = · · · = vn+1 or

v′1 = v′2 = · · · = v′n+1
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Since each Bi is a permutation of every other Bi, it follows that each Bi

contains exactly the same number of every letter, and so

(29) f(B1) = f(B2) = · · · = f(Bn).

On the other hand, from condition (b) of the Lemma, we know that f(ϕ(a)) =
0 for every a ∈ Σ. Writing Bi = v′

iyivi+1 for some yi that is the image of
a word under ϕ, we get f(Bi) = f(v′

i) + f(vi+1). Since f(viv
′
i) = 0, we

get f(Bi) = −f(vi) + f(vi+1). From Eq. (29) we get that the f(vi) form
an (n + 1)-term arithmetic progression with difference f(Bi). But then by
hypothesis (c), we get f(v1) = f(v2) = · · · = f(vn+1). Hence by hypothesis
(d), it follows that either v1 = v2 = · · · = vn+1 or v′

1 = v′
2 = · · · = v′

n+1.
In the former case, we can “slide” the abelian n’th power to the left by |v1|
symbols and still get an abelian n’th power; in the latter case we can slide
it to the right by |v′

1| symbols and still get an abelian n’th power. Now
our abelian n’th power is aligned at both ends with blocks of ϕ, so there
is an abelian n’th power C1C2 · · · Cn where each Ci is composed of blocks;
again see Figure 2. Let Di be such that Ci = ϕ(Di). Since x = ϕ(x),
it follows that D1D2 · · · Dn occurs in x. Now ψ(Ci) = Mψ(Di), where
M is the matrix of ϕ. Since M is invertible, there is only one possi-
bility for ψ(Di). Since ψ(C1) = ψ(C2) = · · · = ψ(Cn), it follows that
ψ(D1) = ψ(D2) = · · · = ψ(Dn). Hence D1 · · · Dn is a shorter abelian n’th
power, contradicting the minimality of B1B2 · · · Bn. !

Corollary 45. There is a sequence on two symbols that avoids abelian 4th
powers.

Proof. Let Σ = {0, 1} and define ϕ(0) = 011, ϕ(1) = 0001. We can check
that there are no abelian 4th powers x1x2x3x4 in ϕω(0) for |x1| ≤ 4 by
enumerating all subwords of length ≤ 16.

The matrix of ϕ is

(
1 3
2 1

)
. which has determinant −5. Choose G =

Z/(5) and define f by f(0) = 1, f(1) = 2. Then f(ϕ(a)) = 0 for a ∈ {0, 1}.
Furthermore A = {0, 1, 2, 3}, which is progression free of order 5.

Thus ϕω(0) is abelian 4th-power-free. !

Corollary 46. There is a sequence on 3 symbols that avoids abelian cubes.

In the first case, we “slide” the abelian n-power to the left by

|v1| symbols to get another n-power C1C2 · · ·Cn, which is

aligned with blocks of ϕ. In the second case we slide to the

right.
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Since each Bi is a permutation of every other Bi, it follows that each Bi

contains exactly the same number of every letter, and so

(29) f(B1) = f(B2) = · · · = f(Bn).

On the other hand, from condition (b) of the Lemma, we know that f(ϕ(a)) =
0 for every a ∈ Σ. Writing Bi = v′

iyivi+1 for some yi that is the image of
a word under ϕ, we get f(Bi) = f(v′

i) + f(vi+1). Since f(viv
′
i) = 0, we

get f(Bi) = −f(vi) + f(vi+1). From Eq. (29) we get that the f(vi) form
an (n + 1)-term arithmetic progression with difference f(Bi). But then by
hypothesis (c), we get f(v1) = f(v2) = · · · = f(vn+1). Hence by hypothesis
(d), it follows that either v1 = v2 = · · · = vn+1 or v′

1 = v′
2 = · · · = v′

n+1.
In the former case, we can “slide” the abelian n’th power to the left by |v1|
symbols and still get an abelian n’th power; in the latter case we can slide
it to the right by |v′

1| symbols and still get an abelian n’th power. Now
our abelian n’th power is aligned at both ends with blocks of ϕ, so there
is an abelian n’th power C1C2 · · · Cn where each Ci is composed of blocks;
again see Figure 2. Let Di be such that Ci = ϕ(Di). Since x = ϕ(x),
it follows that D1D2 · · · Dn occurs in x. Now ψ(Ci) = Mψ(Di), where
M is the matrix of ϕ. Since M is invertible, there is only one possi-
bility for ψ(Di). Since ψ(C1) = ψ(C2) = · · · = ψ(Cn), it follows that
ψ(D1) = ψ(D2) = · · · = ψ(Dn). Hence D1 · · · Dn is a shorter abelian n’th
power, contradicting the minimality of B1B2 · · · Bn. !

Corollary 45. There is a sequence on two symbols that avoids abelian 4th
powers.

Proof. Let Σ = {0, 1} and define ϕ(0) = 011, ϕ(1) = 0001. We can check
that there are no abelian 4th powers x1x2x3x4 in ϕω(0) for |x1| ≤ 4 by
enumerating all subwords of length ≤ 16.

The matrix of ϕ is

(
1 3
2 1

)
. which has determinant −5. Choose G =

Z/(5) and define f by f(0) = 1, f(1) = 2. Then f(ϕ(a)) = 0 for a ∈ {0, 1}.
Furthermore A = {0, 1, 2, 3}, which is progression free of order 5.

Thus ϕω(0) is abelian 4th-power-free. !

Corollary 46. There is a sequence on 3 symbols that avoids abelian cubes.

I Let Di be such that Ci = ϕ(Di).

I Since x = ϕ(x), D1D2 · · ·Dn is a factor of x.

I Now ψ(Ci) = Mψ(Di), where M is the matrix of ϕ.

I Since M is invertible and ψ(C1) = ψ(C2) = · · · = ψ(Cn),

we have ψ(D1) = ψ(D2) = · · · = ψ(Dn).

I D1 · · ·Dn is a shorter abelian n-power, contradiction.



Avoiding abelian 4-powers

I We check that the morphism ϕ

a→ aaab, b→ abb

verifies the criterion we just proved.

I The matrix of ϕ is

(
3 1

1 2

)
, which is invertible.

I Take G = Z/5Z.

I Define f : {a, b}∗ → G by f(a) = 1 and f(b) = 2.

I f(aaab) = f(abb) = 0



Avoiding abelian 4-powers

I A = {0, 1, 2, 3} is progression free of order 5

I f is ϕ-injective

I ϕω(a) has no short abelian 4-powers

I by previous criterion, ϕω(a) avoids abelian 4-powers



Avoiding abelian cubes

Define ϑ by ϑ(a) = aabc, ϑ(b) = bbc, and ϑ(c) = acc. The

same method shows that ϑω(a) avoids abelian cubes.



The End
(Happy Birthday Elise!)


