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Fractional repetitions

» We denote squares by zx = 22 and cubes by zzz = 23.
» What would z7/* or 2% mean?

» ingoing = x7/* for x = ingo

» outshout = 2%/ for # = outsh

» If w = x" for some rational 7, then w is a r-power.

» An r"-power is a word x* where s > 7.



Avoiding fractional repetitions

» What fractional powers can be avoided on a given
alphabet?

» If r > 7/4, then r-powers are avoidable over a 3-letter
alphabet (Dejean 1972).

» repetition threshold:

RT(k) = inf {r € Q: there is an infinite word over a

k-letter alphabet that avoids r-powers}



A more precise question

Let o > 1 be a real number.

v

Suppose that for every ¢ > 0 there exists an infinite word

v

avoiding (a + €)-powers.

Is there a single word that avoids a"-powers?

v

» We use a compactness argument from topology.



Some topology

A topological space T consists of a set X together with a

collection S of subsets of X (the open sets) such that

(a) @ and X are both in S;

(b) The union of any collection of sets in S is again in S;

(c) The intersection of any finite collection of sets in S is
again in S.

The complements of the open sets are the closed sets.



Compactness

» An open cover of a set Y is a collection of open sets

O CSsuchthatY C | J O.
0eo
» A topological space T'= (X, S) is compact if every open

cover of X has a finite subcover.
» Equivalently, if C is a collection of closed sets such that
every finite intersection of sets from C is nonempty, then

the intersection of all sets in C is also nonempty.



A topology on infinite words

» There is a natural topology on >“, the space of one-sided

infinite words over a finite alphabet X.

» The open sets have the form L>*, where L. C >* is any

language of finite words.

» This topological space is compact.



Applying the compactness argument

» Let J be a real number.

» Let Wy (5) denote the set of all infinite words over
Y ={0,1,...,k — 1} avoiding [-powers.

» Wi (P) is closed: it is the complement of the open set
LY¥, where L is the language of all finite words

containing a [3-power.



Applying the compactness argument

» Suppose Wy (a+€) # () for all e.

» If o < 3, then Wi(a) C Wi(5).

» The intersection of any finite number of the Wy (« + €)
equals Wi (a+ €'), where €’ is the smallest of the ¢, and is

therefore nonempty.

» By compactness W = ﬂ Wi(a + €) is nonempty.
e>0
» Any word w € W is a"-power-free.



Dejean’s Conjecture (1972)

RT(k)

7/4,
7/5,

kk./(k)_ 1)7



The ternary alphabet

v

Dejean proved that RT'(3) = 7/4 using the morphism

h(0) = 0120212012102120210
h(1) = 1201020120210201021
h(2) = 2012101201021012102

v

his a (7/4)*-power-free morphism

v

it maps (7/4)"-power-free words to (7/4)*-power-free

words

v

by iterating ~ on 0, we obtain an infinite word with the

desired property



Morphic constructions for larger alphabets

» Can a similar construction exist for larger alphabets?
» Brandenburg (1983): No.
» For each integer k > 2, define
7/4, if k=3
ar =47/5, if k=4
L ifk #£3,4.
» Dejean’s Conjecture is that RT'(k) = .



No o -power-free morphisms

Theorem

Let ;. be an alphabet of size £ > 4. There exists no growing

a,‘:-power—free morphism from ¥ to ;.

growing morphism refers to a morphism h such that h(a) # €

for all @ € ¥ and |h(a)| > 1 for at least one letter a € ¥



Implications of Brandenburg's result

» We cannot hope to prove Dejean’s Conjecture by

producing a; -free morphisms.

» It could be the case that there exist morphisms A that are
not a; -free but still generate an infinite o -free word by

iteration.

» Still, this is strong evidence that a new idea is needed in

order to attack Dejean’s Conjecture for larger alphabets.

» new idea provided by Pansiot



Pansiot's approach

» Alphabet size k&

» A word of length at least k + 2 must contain a factor

with exponent at least k/(k — 1).

» If a word avoids (k/(k — 1))*-powers, every block of
length k& — 1 consists of k — 1 different letters.



The Pansiot encoding

» The letter following a block y of length £ — 1 is either
» the first letter of y; or

» the unique letter that does not occur in y.

» Pansiot encoding: encode first case with a 0; second case

with a 1.

» Can uniquely reconstruct the original word from the

Pansiot encoding.



The Pansiot encoding

Example (k=6)
Word:
123451632415

Pansiot encoding:

0101101.

We reconstruct the original word from the prefix 12345 and
the code 0101101.
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The Pansiot encoding

Example (k=6)
Word:
123451632415

Pansiot encoding:

0101101.

We reconstruct the original word from the prefix 12345 and
the code 0101101.



Constructing the Pansiot encoding

v

Proving Dejean’s conjecture for k = 4: need an infinite

(7/5)*-power-free word w

v

Instead, find the binary Pansiot encoding of w

» Binary encoding: iterate 0 — 101101; 1 — 10:

1—10— 10101101 — 1010110110101101101010110110 — - - -

Decode:

v

w = 12342143241342314321 - - -



A map into the symmetric group

» Moulin Ollagnier proved the conjecture for 5 < k < 11.

» His observation: a word w = ajas - - - ax_1 containing no

repeated letter can be associated with a permutation:

1 2 3 -+ k=1 k
a; ag as --- Qp—1 b

» b is the unique letter that does not occur in w.



A map into the symmetric group

» Moving from one (k — 1)-letter block to the next
(k — 1)-letter block by a “0" in the Pansiot encoding

corresponds to multiplication on the right by

123 -+ k—1 k
Og = .
2 3 4 --- 1 k
» Moving from one block to the next by a “1" corresponds

to multiplication on the right by

123 -+ k—1k
o1 = .
23 4 - k 1



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

1 23456
123456

Permutation:



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

1 2 3 4 5 6
g9 —
234516

Permutation:



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

1 23 456
0Op01 =
34516 2

Permutation:



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

1 23456
000100 =
4 516 3 2

Permutation:



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

1 2 3 456
00010001 =
5 1 6 3 2 4

Permutation:



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

Permutation:
1 23 45 6)

0001000101 =
(1 6 3245



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

Permutation:
1 2 3 45 6
6 3 2 41 5

00010001010() = <



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

Permutation:
1 23 45 6
324156

00010001010001 = (



A map into the symmetric group

Example (k=6)
Word:
123451632415

Pansiot encoding:
0101101

Permutation:
1 23 45 6
324156

00010001010001 = (



A map into the symmetric group

» Define map 1) from the binary Pansiot codewords to the

symmetric group Sy by

0 — og

1 — 01,
and if y = yoy1 - - - ye is a word over {0, 1}, then

Y = OyoOyy = Oy,



Kernel repetitions

v

Alphabet size £

» w a word over an k-letter alphabet

v

x the binary Pansiot encoding of w

v

Write = pe with e also a prefix of x; p non-empty.

v

Call p the period and e the excess.

v

If [e] > k — 1 and v(p) is the identity permutation, z is a

kernel repetition.

v

w then has exponent (|pe| + &k —1)/|p|.



Kernel repetitions
Example (k=4)

Word: w = 1234134123413

Pansiot encoding: xr = 1100011 110
p e
1 2 3 4
Permutation: —
¥(p) (1 5 3 4>

x is a kernel repetition; w has exponent

(Ipel + k — 1)/|p| = (10 + 4 — 1)/7 = 13/7.



Moulin Ollagnier’'s approach

» Generate an infinite Pansiot encoding x by iterating a
binary morphism f.
» x encodes a word w over an n-letter alphabet.

» X must not contain a kernel repetition £ = pe with
(Ipe| + & —1)/|p[ > RT (k).



The algebraic condition

v

f maps 0 — f(0); 1 — f(1).

algebraic condition for f: for some permutation T,

v

G(fO) =71 0) -7, W(fQ) =7"y(1) T

v

Ensures that f maps kernel repetitions to kernel

repetitions

v

Long kernel repetitions are the images under f of shorter

kernel repetitions (more or less).



Checking the candidate word

» Check finitely many kernel repetitions in x: verify none
have (|pe| +k —1)/|p| > RT (k).
» Check that w does not contain other forbidden

repetitions that do not arise from kernel repetitions in x.

» These have length at most (k — 1)2>—only finitely many

to check.



Searching by computer

» Moulin Ollagnier found by computer search binary

morphisms to generate x for 5 < k < 11.
» For k =5:

0 — 010101101101010110110
1 — 101010101101101101101.



The final resolution of the conjecture

» Combined work of: Dejean (1972), Pansiot (1984),
Moulin Ollagnier (1992), Currie and Mohammad-Noori
(2007), Carpi (2007), Currie and Rampersad (2009), Rao
(2009)

» Major breakthrough: Carpi's proof of the conjecture for
k>33



A quantitative version of Dejean’s Theorem

Conjecture (Shur)

Let pi be the real number such that the number of
RT(k)*-free words of length n over a k-letter alphabet grows
like (px)™. Then py tends to a limit & ~ 1.242 as k tends to
infinity.



A highly non-repetitive word

Theorem (Beck 1981)

For any € > 0, there exist N, and an infinite binary word w
such that any two identical factors of w of length n > N, are

separated by a distance at least (2 — ¢)".

» Proof is non-constructive—uses the probabilistic method
(Lovasz Local Lemma).
» No constructive proof known (but see Carpi and D'Alonzo

2009).



The probabilistic method

» we want to show the existence of an object (word)

avoiding certain “bad” events (here, repetitions)

» choose a word at random and show that with positive

probability, it avoids repetitions

» this would be easy if the presence of repetitions were

independent events
» but repetitions can overlap

» we use the Lovasz local lemma



A dependency graph

Given a set S of probability events, we construct a dependency
digraph D = (S, E'), where the event X is mutually
independent of the events {Y" : (X,Y) ¢ E}.



The Lovasz local lemma

Let Ay, A, ..., A; be events in a probability space, with a
dependency digraph D = (S, E). Suppose there exist real
numbers x1,xs, ..., x; with 0 < x; < 1 for 1 < i <t such that

(i,J)eE

for 1 <¢ <'t. Then the probability that none of the events

Ay, As, ..., A; occur is at least

I] -

1<i<t



Probabilistic argument for squarefree words

We use this method to prove the existence of an infinite
squarefree word over a finite alphabet.
Let A, , be the event that there exists a square of length 2r

beginning at position ¢ of a word of length n, i.e., that

AiQiq1 - Qir—1 = Qg Qg1 * Qi 2r—1-

Then the event A;, is mutually independent of the set of all
events A; s wheni+2r —1<jori>j+2s—1.

In the dependency digraph, (i,r) is connected to (7, s) by an
edge in each directionif t +2r —1 > jand i < j+ 2s — 1.



As in the statement of the lemma, we now associate a real

number z;, with each event A;,. We then have

[T -0 = 11 (1 —2js)

((i:1),(,5)) EE R Sy
1<s<n/2

Z H(l _ $j78)2r+28_1'



Take logs to get
S log(l—ay,) = (2 + 25+ 1) log(1 — ).
(i), (3:5) EE s>1

Now we choose the x; . This is somewhat of a black art:

choosing z; ; = a~* for some « often works.



Suppose that we can find real numbers ¢ < —1 and « < 1 such

that log(1 — ) > ca. Then we set z; ; = o~° and we have

2(27" +2s5—1)log(1l — ;)

s>1
> 2(27“ +2s—1)ca™®
s>1
= (2r— 1)02 a4 QCZ sa”®

s>1 s>1
(2r —1)c 2ca
+ 5
a—1 (a—1)




Now if our events take place over an alphabet of size k, then
Pr(A;,) =k™", so if

2r —1 2
(2r )c+ cov

logPr(A;,) = —rlogk < —rloga + ,
gPr(Ai,) g 8 a=1 Tao1p

the conditions of the local lemma will be satisfied.

We conclude that with positive probability none of the events
A, occur; i.e., there exists a squarefree word of length n over
an alphabet of size k.

If « =6.23, c = —1.091, and k& > 13, the inequality is

satisified and we have our result.



The End



