Combinatorics on Words and Noncommutative Algebra

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Bounded Burnside Problem

If *G* is a finitely generated group and there is an integer *n* such that $g^n = 1$ for every $g \in G$, then must G be finite?

General Burnside Problem

If *G* is a finitely generated group and every element of *G* has finite order, then must *G* be finite?

KOD KARD KED KED BE YOUR

Counterexamples to Burnside's Problem

- Answer to both questions expected to be "yes"
- \triangleright Counterexample to the General Burnside Problem given by Golod and Shafarevich (1964)
- \triangleright Counterexample to the Bounded Burnside Problem given by Novikov and Adjan (1968)

Kurosh's Problem

If *A* is a finitely generated algebra over a field *F* and every element of *A* is nilpotent, then must *A* be finite dimensional over *F*?

- An algebra A is a vector space that is also a ring.
- A element $a \in A$ is nilpotent if $a^n = 0$ for some *n*.

The free noncommutative algebra

\blacktriangleright *F* a field

- \blacktriangleright Let $T = F\langle x_1, x_2, \ldots x_d \rangle$ be the free noncommutative algebra over *F* generated by the variables x_1, x_2, \ldots, x_d .
- \blacktriangleright The monomials of *T* are words over the alphabet x_1, x_2, \ldots, x_d .
- \triangleright *T* is the set of all *F*-linear combinations of such monomials: e.g.,

$$
c_0x_3x_2x_1x_3 + c_1x_2x_2 + c_2x_3x_2x_1.
$$

Homogeneous elements of *T*

- \triangleright The degree of a monomial is its length as a word.
- \triangleright An element of *T* is homogeneous if its monomials all have the same degree.
- \blacktriangleright Let *S* be a set of homogeneous elements, each of degree at least 2.
- ► Suppose *S* has at most r_i elements of degree *i* for $i > 2$.

KORKARA KERKER DAGA

 \blacktriangleright Let *I* be the two-sided ideal of *T* generated by *S*.

Golod–Shafarevich Theorem

If the coefficients in the power series expansion of

$$
\left(1-dz+\sum_{i\geq 2}r_iz^i\right)^{-1}
$$

KORK ERKER ADAM ADA

are nonnegative, then the quotient algebra *T*/*I* is infinite dimensional over *F*.

A particular case of the G–S theorem

- If S consists of monomials (i.e. words) we can rephrase the result in combinatorial terms.
- \blacktriangleright Let *S* be a set of words over an *d*-letter alphabet, each of length at least 2.

KORK ERKER ADAM ADA

► Suppose *S* has at most r_i words of length *i* for $i \geq 2$.

Theorem

If the power series expansion of

$$
G(z) := \left(1 - dz + \sum_{i \geq 2} r_i z^i\right)^{-1}
$$

has non-negative coefficients, then there are least $[z^n]G(z)$ words of length *n* over a *d*-letter alphabet that contain no word of *S* as a factor.

KOD KARD KED KED BE YOUR

- \triangleright A square is a word of the form *ww*.
- \triangleright A word is squarefree if it contains no square as a factor.

Squarefree words using 3 symbols (Thue 1906)

Iterate the substitution $0 \rightarrow 012$; $1 \rightarrow 02$; $2 \rightarrow 1$:

 $0 \rightarrow 012 \rightarrow 012021 \rightarrow 012021012102 \rightarrow \cdots$

KO KKO K S A B K S B K V S A V K S

These words are squarefree.

Proposition

For $n \geq 0$ there are at least 5^n squarefree words of length n over an alphabet of size 7.

 \blacktriangleright Let *S* be the set of squares over an alphabet of size 7.

KORK ERKER ADAM ADA

For $n \geq 1$ the set *S* contains 7^n squares of length $2n$.

Applying the G–S theorem

\blacktriangleright Define

$$
G(z) := \left(1 - 7z + \sum_{i \ge 1} 7^i z^{2i}\right)^{-1}
$$

= $\left(1 - 7z + \frac{7z^2}{1 - 7z^2}\right)^{-1}$
= $1 + 7z + 42z^2 + 245z^3 + 1372z^4 + 7546z^5 + \cdots$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

▶ One shows by induction that $[zⁿ]G(z) \geq 5ⁿ$ for $n ≥ 0$.

Goal

Construct an algebra *A* over a field *F* such that:

- \blacktriangleright *A* is finitely generated.
- Every element *a* of *A* is nilpotent (satisfies $a^n = 0$ for some *n*).

KOD KARD KED KED BE YOUR

 \blacktriangleright *A* is infinite dimensional over *F*.

Constructing *A* as a quotient of the free algebra

- \blacktriangleright *F* a countable field
- In Let $T = F\langle x_1, x_2, x_3 \rangle$ be the free algebra over *F*.
- \blacktriangleright Let T' be the ideal of T consisting of all elements without a constant term.

- \blacktriangleright Want: an ideal *I* such that $A = T'/I$.
- **Enumerate the elements of** T' **as** t_1, t_2, \ldots **.**

Defining the ideal *I*

► Choose an integer $m_1 > 2$ and write

$$
t_1^{m_1}=t_{1,2}+t_{1,3}+\cdots+t_{1,k_1},
$$

where each *t*1,*^j* is homogeneous of degree *j*.

 \triangleright Choose another positive integer m_2 so that

$$
t_2^{m_2}=t_{2,k_1+1}+t_{2,k_1+2}+\cdots+t_{2,k_2}.
$$

KORK ERKER ADAM ADA

- \blacktriangleright Continue in this way for t_3, t_4, \ldots .
- \blacktriangleright Let *I* be the ideal generated by the $t_{i,j}$.
- Each element of T'/I is nilpotent.
- An application of the G-S theorem ensures that T'/I is infinite dimensional over *F*.

KO KKO K S A B K S B K V S A V K S

 \blacktriangleright *T'* /*I* is a counterexample to Kurosh's Problem.

KOD KARD KED KED BE YOUR

Goal

Construct a group *G* such that:

- \blacktriangleright *G* is finitely generated.
- \blacktriangleright Every element of *G* has finite order.
- \blacktriangleright *G* is infinite.
- \blacktriangleright Let *F* be the field with *p* elements.
- \blacktriangleright Let *T* and *I* be as defined above.
- \blacktriangleright Let a_1, a_2, a_3 be the elements $x_1 + I$, $x_2 + I$, $x_3 + I$ of T/I .
- \blacktriangleright Let *G* be the multiplicative semigroup in T/I generated by $1 + a_1$, $1 + a_2$, and $1 + a_3$.

- An element of *G* has the form $1 + a$ for some $a \in T'/I$.
- \blacktriangleright *a* is nilpotent, so for sufficiently large *n*, we have $a^{p^n} = 0$.
- In characteristic p we have $(1 + a)^{p^n} = 1 + a^{p^n} = 1$.
- If Thus $1 + a$ has an inverse and G is a group.
- Every element $1 + a$ of G has finite order (a power of p).

- \blacktriangleright Suppose *G* finite.
- \triangleright *F*-linear combinations of elements of *G* form a finite dimensional algebra *B*.
- **►** 1 and $1 + a_i$ are in *G*, so $(1 + a_i) 1 = a_i$ is in *B*.
- \blacktriangleright 1, a_1, a_2, a_3 generate T/I , which was previously shown to be infinite dimensional.

KORK ERKER ADAM ADA

- \blacktriangleright *B* is thus infinite dimensional, a contradiction.
- \blacktriangleright We conclude *G* is infinite.
- A an algebra over a field *F* with generators x_1, x_2, \ldots, x_d
- \triangleright *V* the vector space spanned by x_1, x_2, \ldots, x_d
- \blacktriangleright Vⁿ the vector space spanned by monomials of degree *n*

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\blacktriangleright A_n := F + V + V^2 + \cdots + V^n
$$

$$
\blacktriangleright A = \bigcup_{n \geq 0} A_n
$$

- \blacktriangleright growth function of *A*: $d_V(n) := \dim_F(A_n)$.
- A has exponential growth: $d_V(n) \geq t^n$ for some $t > 1$.

KOD KOD KED KED E VAN

▶ *A* has polynomial growth: $d_V(n)$ ≤ cn^r for some non-negative integers *c*,*r*.

Growth of the free algebra

Example

 \blacktriangleright The free noncommutative algebra $F(x_1, \ldots, x_d)$:

$$
d_V(n) = \sum_{i=0}^{n} d^i = d^{n+1} - 1
$$
 (exponential).

 \blacktriangleright The free commutative algebra $F[x_1, \ldots, x_d]$:

$$
d_V(n) = \sum_{i=0}^n \binom{d+i-1}{i} = \binom{d+n}{n} \le 2n^d \quad \text{(polynomial)}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

► Gelfand–Kirillov dimension of an algebra A:

$$
GKdim(A) := \limsup_{n \to \infty} \log_n d_V(n)
$$

- If $d_V(n)$ is exponential, then GKdim(*A*) = ∞ .
- If $d_V(n) \le cn^r$, then GKdim(*A*) $\le r$.
- If *A* is finite dimensional, then $GKdim(A) = 0$; otherwise, $GKdim(A) > 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Bergman's Gap Theorem

There is no algebra A with $1 < \text{GKdim}(A) < 2$.

Borho–Kraft; Warfield

For every real number $r \geq 2$, there is an algebra A with $GKdim(A) = r$.

KORK ERKER ADAM ADA

- ► *I* a two-sided ideal generated by monomials
- **If** monomial algebra: an algebra $A := F\langle x_1, \ldots, x_d \rangle / I$
- \blacktriangleright The monomials of A of degree *n* are simply the words of length *n* that do not contain a generator of *I* as a factor.

Fact

For any finitely generated algebra *A* there is a monomial algebra *B* with the same growth function (hence the same GK dimension).

KORK ERKER ADAM ADA

Complexity of sets of words

- \triangleright A set *L* of words is factorial if whenever *x* is a word in *L*, every factor of *x* is also in *L*.
- \triangleright The complexity function of *L* is the function $f(n)$ that counts the number of words of length *n* in *L*.

Theorem

Let L be a factorial set of words. If for some length n_0 we have $f(n_0) = n_0$, then there is a constant *C* such that $f(n) \leq C$ for all $n\geq 2n_0.$ Moreover, $C\leq (n_0+1)^2/4,$ and this bound is tight.

KOD KOD KED KED E VOOR

- \triangleright Due independently to Kobayashi and Kobayashi (1993); Ellingsen and Farkas (1994); Balogh and Bollobás (2005).
- ► Either $f(n)$ bounded by a constant, or $f(n) \ge n+1$ for all *n*.

KORKARA KERKER DAGA

 \triangleright Bergman's gap theorem a consequence of this observation.

Complexity of infinite words

- \blacktriangleright w an infinite word
- \blacktriangleright *L* the set of finite factors of w
- \blacktriangleright $f(n)$ the complexity function of *L*
- If $f(n) \leq C$, then w is eventually periodic.
- If $f(n) = n + 1$ for all *n*, the word w is called Sturmian.
- \triangleright Sturmian words are aperiodic words of minimal complexity.

KORK ERKER ADAM ADA

 \blacktriangleright First studied in depth by Morse and Hedlund (1940)

The Fibonacci word

Iterate the substitution $0 \rightarrow 01$; $1 \rightarrow 0$:

0 → 01 → 010 → 01001 → 01001010 → 0100101001001 → · · ·

The infinite word obtained in the limit has $n + 1$ factors of length n for all n .

We have seen applications of word combinatorics to:

- \blacktriangleright Burnside's Problem in group theory
- \blacktriangleright Kurosh's Problem in ring theory
- \blacktriangleright Growths of algebras

Other applications:

 \triangleright PI-algebras (algebras satisfying a polynomial identity)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- \blacktriangleright Shirshov's Theorem
- \blacktriangleright etc.

The End

Kロトメ部トメミトメミト ミニのQC