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Burnside’s Problem

Bounded Burnside Problem

If G is a finitely generated group and there is an integer n such

that gn = 1 for every g ∈ G, then must G be finite?

General Burnside Problem

If G is a finitely generated group and every element of G has

finite order, then must G be finite?



Counterexamples to Burnside’s Problem

I Answer to both questions expected to be “yes”

I Counterexample to the General Burnside Problem given by

Golod and Shafarevich (1964)

I Counterexample to the Bounded Burnside Problem given

by Novikov and Adjan (1968)



Kurosh’s Problem

Kurosh’s Problem

If A is a finitely generated algebra over a field F and every

element of A is nilpotent, then must A be finite dimensional over

F?

I An algebra A is a vector space that is also a ring.

I A element a ∈ A is nilpotent if an = 0 for some n.



The free noncommutative algebra

I F a field

I Let T = F〈x1, x2, . . . xd〉 be the free noncommutative algebra

over F generated by the variables x1, x2, . . . , xd.

I The monomials of T are words over the alphabet

x1, x2, . . . , xd.

I T is the set of all F-linear combinations of such monomials:

e.g.,

c0x3x2x1x3 + c1x2x2 + c2x3x2x1.



Homogeneous elements of T

I The degree of a monomial is its length as a word.

I An element of T is homogeneous if its monomials all have

the same degree.

I Let S be a set of homogeneous elements, each of degree

at least 2.

I Suppose S has at most ri elements of degree i for i ≥ 2.

I Let I be the two-sided ideal of T generated by S.



The Golod–Shafarevich construction

Golod–Shafarevich Theorem

If the coefficients in the power series expansion of1− dz +
∑
i≥2

rizi

−1

are nonnegative, then the quotient algebra T/I is infinite

dimensional over F.



A particular case of the G–S theorem

I If S consists of monomials (i.e. words) we can rephrase the

result in combinatorial terms.

I Let S be a set of words over an d-letter alphabet, each of

length at least 2.

I Suppose S has at most ri words of length i for i ≥ 2.



A combinatorial reformulation

Theorem

If the power series expansion of

G(z) :=

1− dz +
∑
i≥2

rizi

−1

has non-negative coefficients, then there are least [zn]G(z)

words of length n over a d-letter alphabet that contain no word

of S as a factor.



Squarefree words

I A square is a word of the form ww.

I A word is squarefree if it contains no square as a factor.

Squarefree words using 3 symbols (Thue 1906)

Iterate the substitution 0→ 012; 1→ 02; 2→ 1:

0→ 012→ 012021→ 012021012102→ · · ·

These words are squarefree.



Enumeration of squarefree words

Proposition

For n ≥ 0 there are at least 5n squarefree words of length n over

an alphabet of size 7.

I Let S be the set of squares over an alphabet of size 7.

I For n ≥ 1 the set S contains 7n squares of length 2n.



Applying the G–S theorem

I Define

G(z) :=

1− 7z +
∑
i≥1

7iz2i

−1

=
(

1− 7z +
7z2

1− 7z2

)−1

= 1 + 7z + 42z2 + 245z3 + 1372z4 + 7546z5 + · · · .

I One shows by induction that [zn]G(z) ≥ 5n for n ≥ 0.



Counterexample to Kurosh’s Problem

Goal

Construct an algebra A over a field F such that:

I A is finitely generated.

I Every element a of A is nilpotent (satisfies an = 0 for some

n).

I A is infinite dimensional over F.



Constructing A as a quotient of the free algebra

I F a countable field

I Let T = F〈x1, x2, x3〉 be the free algebra over F.

I Let T ′ be the ideal of T consisting of all elements without a

constant term.

I Want: an ideal I such that A = T ′/I.

I Enumerate the elements of T ′ as t1, t2, . . ..



Defining the ideal I

I Choose an integer m1 ≥ 2 and write

tm1
1 = t1,2 + t1,3 + · · ·+ t1,k1 ,

where each t1,j is homogeneous of degree j.

I Choose another positive integer m2 so that

tm2
2 = t2,k1+1 + t2,k1+2 + · · ·+ t2,k2 .

I Continue in this way for t3, t4, . . ..

I Let I be the ideal generated by the ti,j.



The quotient T ′/I

I Each element of T ′/I is nilpotent.

I An application of the G–S theorem ensures that T ′/I is

infinite dimensional over F.

I T ′/I is a counterexample to Kurosh’s Problem.



Counterexample to the General Burnside Problem

Goal

Construct a group G such that:

I G is finitely generated.

I Every element of G has finite order.

I G is infinite.



Constructing G from T/I

I Let F be the field with p elements.

I Let T and I be as defined above.

I Let a1, a2, a3 be the elements x1 + I, x2 + I, x3 + I of T/I.

I Let G be the multiplicative semigroup in T/I generated by

1 + a1, 1 + a2, and 1 + a3.



Showing G is a group

I An element of G has the form 1 + a for some a ∈ T ′/I.

I a is nilpotent, so for sufficiently large n, we have apn
= 0.

I In characteristic p we have (1 + a)pn
= 1 + apn

= 1.

I Thus 1 + a has an inverse and G is a group.

I Every element 1 + a of G has finite order (a power of p).



Showing G is infinite

I Suppose G finite.

I F-linear combinations of elements of G form a finite

dimensional algebra B.

I 1 and 1 + ai are in G, so (1 + ai)− 1 = ai is in B.

I 1, a1, a2, a3 generate T/I, which was previously shown to be

infinite dimensional.

I B is thus infinite dimensional, a contradiction.

I We conclude G is infinite.



Growth of algebras

I A an algebra over a field F with generators x1, x2, . . . , xd

I V the vector space spanned by x1, x2, . . . , xd

I Vn the vector space spanned by monomials of degree n

I An := F + V + V2 + · · ·+ Vn

I A =
⋃
n≥0

An



Types of growth

I growth function of A: dV(n) := dimF(An).

I A has exponential growth: dV(n) ≥ tn for some t > 1.

I A has polynomial growth: dV(n) ≤ cnr for some

non-negative integers c, r.



Growth of the free algebra

Example

I The free noncommutative algebra F〈x1, . . . , xd〉:

dV(n) =
n∑

i=0

di = dn+1 − 1 (exponential).

I The free commutative algebra F[x1, . . . , xd]:

dV(n) =
n∑

i=0

(
d + i− 1

i

)
=
(

d + n
n

)
≤ 2nd (polynomial).



Gelfand–Kirillov dimension

I Gelfand–Kirillov dimension of an algebra A:

GKdim(A) := lim sup
n→∞

logn dV(n)

I If dV(n) is exponential, then GKdim(A) =∞.

I If dV(n) ≤ cnr, then GKdim(A) ≤ r.

I If A is finite dimensional, then GKdim(A) = 0; otherwise,

GKdim(A) ≥ 1.



Possible values for GK dimension

Bergman’s Gap Theorem

There is no algebra A with 1 < GKdim(A) < 2.

Borho–Kraft; Warfield

For every real number r ≥ 2, there is an algebra A with

GKdim(A) = r.



Monomial algebras

I I a two-sided ideal generated by monomials

I monomial algebra: an algebra A := F〈x1, . . . , xd〉/I

I The monomials of A of degree n are simply the words of

length n that do not contain a generator of I as a factor.

Fact

For any finitely generated algebra A there is a monomial

algebra B with the same growth function (hence the same GK

dimension).



Complexity of sets of words

I A set L of words is factorial if whenever x is a word in L,

every factor of x is also in L.

I The complexity function of L is the function f (n) that counts

the number of words of length n in L.

Theorem

Let L be a factorial set of words. If for some length n0 we have

f (n0) = n0, then there is a constant C such that f (n) ≤ C for all

n ≥ 2n0. Moreover, C ≤ (n0 + 1)2/4, and this bound is tight.



The complexity function

I Due independently to Kobayashi and Kobayashi (1993);

Ellingsen and Farkas (1994); Balogh and Bollobás (2005).

I Either f (n) bounded by a constant, or f (n) ≥ n + 1 for all n.

I Bergman’s gap theorem a consequence of this

observation.



Complexity of infinite words

I w an infinite word

I L the set of finite factors of w

I f (n) the complexity function of L

I If f (n) ≤ C, then w is eventually periodic.

I If f (n) = n + 1 for all n, the word w is called Sturmian.

I Sturmian words are aperiodic words of minimal complexity.

I First studied in depth by Morse and Hedlund (1940)



An example of a Sturmian word

The Fibonacci word

Iterate the substitution 0→ 01; 1→ 0:

0→ 01→ 010→ 01001→ 01001010→ 0100101001001→ · · ·

The infinite word obtained in the limit has n + 1 factors of length

n for all n.



Summary

We have seen applications of word combinatorics to:

I Burnside’s Problem in group theory

I Kurosh’s Problem in ring theory

I Growths of algebras

Other applications:

I PI-algebras (algebras satisfying a polynomial identity)

I Shirshov’s Theorem

I etc.



The End


