Combinatorics on Words and Noncommutative Algebra

Narad Rampersad

Department of Mathematics and Statistics University of Winnipeg

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Bounded Burnside Problem

If *G* is a finitely generated group and there is an integer *n* such that $g^n = 1$ for every $g \in G$, then must *G* be finite?

General Burnside Problem

If G is a finitely generated group and every element of G has finite order, then must G be finite?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Counterexamples to Burnside's Problem

- Answer to both questions expected to be "yes"
- Counterexample to the General Burnside Problem given by Golod and Shafarevich (1964)
- Counterexample to the Bounded Burnside Problem given by Novikov and Adjan (1968)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Kurosh's Problem

If *A* is a finitely generated algebra over a field *F* and every element of *A* is nilpotent, then must *A* be finite dimensional over *F*?

- ► An algebra *A* is a vector space that is also a ring.
- A element $a \in A$ is nilpotent if $a^n = 0$ for some n.

The free noncommutative algebra

F a field

- ► Let T = F⟨x₁, x₂,...x_d⟩ be the free noncommutative algebra over F generated by the variables x₁, x₂,..., x_d.
- ► The monomials of *T* are words over the alphabet x_1, x_2, \ldots, x_d .
- T is the set of all F-linear combinations of such monomials:
 e.g.,

$$c_0 x_3 x_2 x_1 x_3 + c_1 x_2 x_2 + c_2 x_3 x_2 x_1.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Homogeneous elements of T

- The degree of a monomial is its length as a word.
- An element of T is homogeneous if its monomials all have the same degree.
- Let S be a set of homogeneous elements, each of degree at least 2.
- Suppose *S* has at most r_i elements of degree *i* for $i \ge 2$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Let *I* be the two-sided ideal of *T* generated by *S*.

Golod–Shafarevich Theorem

If the coefficients in the power series expansion of

$$\left(1 - dz + \sum_{i \ge 2} r_i z^i\right)^{-1}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

are nonnegative, then the quotient algebra T/I is infinite dimensional over *F*.

A particular case of the G–S theorem

- If S consists of monomials (i.e. words) we can rephrase the result in combinatorial terms.
- Let S be a set of words over an d-letter alphabet, each of length at least 2.

(日) (日) (日) (日) (日) (日) (日)

Suppose *S* has at most r_i words of length *i* for $i \ge 2$.

A combinatorial reformulation

Theorem

If the power series expansion of

$$G(z) := \left(1 - dz + \sum_{i \ge 2} r_i z^i\right)^{-1}$$

has non-negative coefficients, then there are least $[z^n]G(z)$ words of length *n* over a *d*-letter alphabet that contain no word of *S* as a factor.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- A square is a word of the form *ww*.
- A word is squarefree if it contains no square as a factor.

Squarefree words using 3 symbols (Thue 1906)

Iterate the substitution $0 \rightarrow 012$; $1 \rightarrow 02$; $2 \rightarrow 1$:

 $0 \rightarrow 012 \rightarrow 012021 \rightarrow 012021012102 \rightarrow \cdots$

(日) (日) (日) (日) (日) (日) (日)

These words are squarefree.

Proposition

For $n \ge 0$ there are at least 5^n squarefree words of length n over an alphabet of size 7.

▶ Let *S* be the set of squares over an alphabet of size 7.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

For $n \ge 1$ the set *S* contains 7^n squares of length 2n.

Applying the G–S theorem

Define

$$G(z) := \left(1 - 7z + \sum_{i \ge 1} 7^i z^{2i}\right)^{-1}$$

= $\left(1 - 7z + \frac{7z^2}{1 - 7z^2}\right)^{-1}$
= $1 + 7z + 42z^2 + 245z^3 + 1372z^4 + 7546z^5 + \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• One shows by induction that $[z^n]G(z) \ge 5^n$ for $n \ge 0$.

Goal

Construct an algebra A over a field F such that:

- A is finitely generated.
- Every element a of A is nilpotent (satisfies aⁿ = 0 for some n).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

► A is infinite dimensional over F.

Constructing A as a quotient of the free algebra

- F a countable field
- Let $T = F\langle x_1, x_2, x_3 \rangle$ be the free algebra over *F*.
- Let T' be the ideal of T consisting of all elements without a constant term.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Want: an ideal I such that A = T'/I.
- Enumerate the elements of T' as t_1, t_2, \ldots

• Choose an integer $m_1 \ge 2$ and write

$$t_1^{m_1} = t_{1,2} + t_{1,3} + \dots + t_{1,k_1},$$

where each $t_{1,j}$ is homogeneous of degree *j*.

Choose another positive integer m₂ so that

$$t_2^{m_2} = t_{2,k_1+1} + t_{2,k_1+2} + \dots + t_{2,k_2}.$$

(日) (日) (日) (日) (日) (日) (日)

- Continue in this way for t_3, t_4, \ldots
- Let I be the ideal generated by the t_{i,j}.

- Each element of T'/I is nilpotent.
- ► An application of the G–S theorem ensures that T'/I is infinite dimensional over F.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• T'/I is a counterexample to Kurosh's Problem.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Goal

Construct a group *G* such that:

- ► *G* is finitely generated.
- Every element of *G* has finite order.
- G is infinite.

- ▶ Let *F* be the field with *p* elements.
- ▶ Let *T* and *I* be as defined above.
- Let a_1, a_2, a_3 be the elements $x_1 + I, x_2 + I, x_3 + I$ of T/I.
- Let *G* be the multiplicative semigroup in T/I generated by $1 + a_1$, $1 + a_2$, and $1 + a_3$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- An element of *G* has the form 1 + a for some $a \in T'/I$.
- ▶ *a* is nilpotent, so for sufficiently large *n*, we have $a^{p^n} = 0$.
- ▶ In characteristic *p* we have $(1 + a)^{p^n} = 1 + a^{p^n} = 1$.
- Thus 1 + a has an inverse and G is a group.
- Every element 1 + a of G has finite order (a power of p).

- ▶ Suppose *G* finite.
- F-linear combinations of elements of G form a finite dimensional algebra B.
- ▶ 1 and $1 + a_i$ are in *G*, so $(1 + a_i) 1 = a_i$ is in *B*.
- ► 1, a₁, a₂, a₃ generate T/I, which was previously shown to be infinite dimensional.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ▶ *B* is thus infinite dimensional, a contradiction.
- We conclude *G* is infinite.

- A an algebra over a field F with generators x_1, x_2, \ldots, x_d
- ▶ *V* the vector space spanned by *x*₁, *x*₂, ..., *x*_d
- ▶ *Vⁿ* the vector space spanned by monomials of degree *n*

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$$\bullet A_n := F + V + V^2 + \dots + V^n$$

$$\blacktriangleright A = \bigcup_{n \ge 0} A_n$$

- growth function of A: $d_V(n) := \dim_F(A_n)$.
- ► A has exponential growth: $d_V(n) \ge t^n$ for some t > 1.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

► A has polynomial growth: d_V(n) ≤ cn^r for some non-negative integers c, r.

Growth of the free algebra

Example

• The free noncommutative algebra $F\langle x_1, \ldots, x_d \rangle$:

$$d_V(n) = \sum_{i=0}^n d^i = d^{n+1} - 1$$
 (exponential).

• The free commutative algebra $F[x_1, \ldots, x_d]$:

$$d_V(n) = \sum_{i=0}^n {d+i-1 \choose i} = {d+n \choose n} \le 2n^d$$
 (polynomial).

Gelfand–Kirillov dimension of an algebra A:

$$\operatorname{GKdim}(A) := \limsup_{n \to \infty} \log_n d_V(n)$$

- ▶ If $d_V(n)$ is exponential, then $\operatorname{GKdim}(A) = \infty$.
- ▶ If $d_V(n) \le cn^r$, then $\operatorname{GKdim}(A) \le r$.
- If A is finite dimensional, then GKdim(A) = 0; otherwise, GKdim(A) ≥ 1.

Bergman's Gap Theorem

There is no algebra A with $1 < \operatorname{GKdim}(A) < 2$.

Borho-Kraft; Warfield

For every real number $r \ge 2$, there is an algebra *A* with $\operatorname{GKdim}(A) = r$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- I a two-sided ideal generated by monomials
- monomial algebra: an algebra $A := F\langle x_1, \ldots, x_d \rangle / I$
- ► The monomials of A of degree n are simply the words of length n that do not contain a generator of I as a factor.

Fact

For any finitely generated algebra *A* there is a monomial algebra *B* with the same growth function (hence the same GK dimension).

(日) (日) (日) (日) (日) (日) (日)

Complexity of sets of words

- A set L of words is factorial if whenever x is a word in L, every factor of x is also in L.
- ► The complexity function of *L* is the function *f*(*n*) that counts the number of words of length *n* in *L*.

Theorem

Let *L* be a factorial set of words. If for some length n_0 we have $f(n_0) = n_0$, then there is a constant *C* such that $f(n) \le C$ for all $n \ge 2n_0$. Moreover, $C \le (n_0 + 1)^2/4$, and this bound is tight.

- Due independently to Kobayashi and Kobayashi (1993);
 Ellingsen and Farkas (1994); Balogh and Bollobás (2005).
- Either f(n) bounded by a constant, or $f(n) \ge n + 1$ for all n.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 Bergman's gap theorem a consequence of this observation.

Complexity of infinite words

- w an infinite word
- L the set of finite factors of w
- f(n) the complexity function of L
- If $f(n) \leq C$, then w is eventually periodic.
- If f(n) = n + 1 for all *n*, the word **w** is called Sturmian.
- Sturmian words are aperiodic words of minimal complexity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

First studied in depth by Morse and Hedlund (1940)

The Fibonacci word

Iterate the substitution $0 \rightarrow 01$; $1 \rightarrow 0$:

 $0 \rightarrow 01 \rightarrow 010 \rightarrow 01001 \rightarrow 01001010 \rightarrow 0100101001001 \rightarrow \cdots$

The infinite word obtained in the limit has n + 1 factors of length n for all n.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We have seen applications of word combinatorics to:

- Burnside's Problem in group theory
- Kurosh's Problem in ring theory
- Growths of algebras

Other applications:

PI-algebras (algebras satisfying a polynomial identity)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Shirshov's Theorem
- etc.

The End

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●