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Burnside’s Problem

Bounded Burnside Problem

If G is afinitely generated group and there is an integer n such
that ¢g" = 1 for every g € G, then must G be finite?

General Burnside Problem

If G is a finitely generated group and every element of G has
finite order, then must G be finite?



Counterexamples to Burnside’s Problem

» Answer to both questions expected to be “yes”

» Counterexample to the General Burnside Problem given by
Golod and Shafarevich (1964)

» Counterexample to the Bounded Burnside Problem given
by Novikov and Adjan (1968)



Kurosh’s Problem

Kurosh’s Problem

If A is a finitely generated algebra over a field F and every
element of A is nilpotent, then must A be finite dimensional over

F?

» An algebra A is a vector space that is also a ring.

» A element a € A is nilpotent if a” = 0 for some n.



The free noncommutative algebra

» F afield

» Let T = F(x;,x2,...x4) be the free noncommutative algebra
over F generated by the variables xi, xz, ..., x4.

» The monomials of T are words over the alphabet
X1,X2, .. ,X4-

» T is the set of all F-linear combinations of such monomials:
e.g.,

COX3X2X1X3 + C1X2X2 + C2X3X2X] .



Homogeneous elements of T

v

The degree of a monomial is its length as a word.

v

An element of T is homogeneous if its monomials all have
the same degree.

v

Let S be a set of homogeneous elements, each of degree
at least 2.

v

Suppose S has at most r; elements of degree i for i > 2.

v

Let 7 be the two-sided ideal of T generated by S.



The Golod—Shafarevich construction

Golod—Shafarevich Theorem

If the coefficients in the power series expansion of

-1
1 —dz+ Z riZ
i>2

are nonnegative, then the quotient algebra 7/I is infinite
dimensional over F.



A particular case of the G—S theorem

» If S consists of monomials (i.e. words) we can rephrase the
result in combinatorial terms.

» Let S be a set of words over an d-letter alphabet, each of
length at least 2.

» Suppose S has at most r; words of length i for i > 2.



A combinatorial reformulation

Theorem

If the power series expansion of

—1
G(z):=|1—dz+ Z riz
i>2
has non-negative coefficients, then there are least [z"]G(z)
words of length n over a d-letter alphabet that contain no word
of § as a factor.



Squarefree words

» A square is a word of the form ww.

» A word is squarefree if it contains no square as a factor.

Squarefree words using 3 symbols (Thue 1906)

lterate the substitution 0 — 012; 1 — 02; 2 — 1:
0— 012 — 012021 — 012021012102 — - - -

These words are squarefree.



Enumeration of squarefree words

Proposition
For n > 0 there are at least 5" squarefree words of length n over

an alphabet of size 7.

» Let S be the set of squares over an alphabet of size 7.

» Forn > 1the set S contains 7" squares of length 2n.



Applying the G—S theorem

» Define

-1
G(z) = (1 —Tz+ Z7i22i)

i>1

722\
p— 1 _ ———
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» One shows by induction that ["]G(z) > 5" for n > 0.

= 147744277 +2457 +13727% + 75467 + - - -



Counterexample to Kurosh’s Problem

Goal

Construct an algebra A over a field F such that:
» A is finitely generated.
» Every element a of A is nilpotent (satisfies " = 0 for some

» A is infinite dimensional over F.



Constructing A as a quotient of the free algebra

F a countable field

v

v

Let T = F(x1,x2,x3) be the free algebra over F.

v

Let 7’ be the ideal of T consisting of all elements without a
constant term.

v

Want: an ideal 7 such that A = 77/1.

v

Enumerate the elements of 7" as 11, 15, . . ..



Defining the ideal 1

» Choose an integer m; > 2 and write

A =tip+n3+- 4,

where each 1, j is homogeneous of degree ;.

» Choose another positive integer m; so that

my

L™ =bik+1 T2+ -+ k-

» Continue in this way for 3,14, . . ..

» Let I be the ideal generated by the 7;;.



The quotient 7'/1

» Each element of T'/I is nilpotent.

» An application of the G—S theorem ensures that 7/1 is
infinite dimensional over F.

» T'/I is a counterexample to Kurosh’s Problem.



Counterexample to the General Burnside Problem

Goal

Construct a group G such that:
» G is finitely generated.
» Every element of G has finite order.

» G is infinite.



Constructing G from T/1

v

Let F be the field with p elements.

Let T and I be as defined above.

v

v

Let a;, az, a3 be the elements x; + I, x; + 1, x3 + 1 of T/I.

v

Let G be the multiplicative semigroup in 7/I generated by
1+a,1+a,and 1+ as.



Showing G is a group

v

An element of G has the form 1 + a for some a € T'/I.

v

a is nilpotent, so for sufficiently large n, we have a”" = 0.

v

In characteristic p we have (1 +a)”" =1+d”" = 1.

v

Thus 1 + a has an inverse and G is a group.

v

Every element 1 + a of G has finite order (a power of p).



Showing G is infinite

» Suppose G finite.

» F-linear combinations of elements of G form a finite
dimensional algebra B.

» land1+aq;arein G,so (1 +a;) — 1 =a;isin B.

» 1,a;,az,a3 generate T /I, which was previously shown to be
infinite dimensional.

» B is thus infinite dimensional, a contradiction.

» We conclude G is infinite.



Growth of algebras

» A an algebra over a field F with generators x;, xs, ..., x4
» V the vector space spanned by x;, x>, ..., x4
» V" the vector space spanned by monomials of degree n

> Ay =F+V4+Vig. . V"

>A:UAn

n>0



Types of growth

» growth function of A: dy(n) := dimp(4,).
» A has exponential growth: dy(n) > ¢ for some ¢ > 1.

» A has polynomial growth: dy(n) < cn" for some
non-negative integers c, r.



Growth of the free algebra

Example
» The free noncommutative algebra F(xi, ..., x4):
Zdl d"t' — 1 (exponential).

» The free commutative algebra Flxi, ..., x4]:

dy(n) = Z (d i 1) _ (d * ”) <2n  (polynomial).

; l n
i=0



Gelfand—Kirillov dimension

» Gelfand—Kirillov dimension of an algebra A:

GKdim(A) := limsup log,, dy(n)
» If dy(n) is exponential, then GKdim(A) = oo.
> If dy(n) < cn”, then GKdim(A) < r.
» If A is finite dimensional, then GKdim(A) = 0; otherwise,
GKdim(A) > 1.



Possible values for GK dimension

Bergman’s Gap Theorem

There is no algebra A with 1 < GKdim(A) < 2.

Borho—Kraft; Warfield

For every real number r > 2, there is an algebra A with
GKdim(A) = r.



Monomial algebras

» [ a two-sided ideal generated by monomials
» monomial algebra: an algebra A := F(xy,...,xqz)/1

» The monomials of A of degree n are simply the words of
length n that do not contain a generator of I as a factor.

Fact

For any finitely generated algebra A there is a monomial
algebra B with the same growth function (hence the same GK
dimension).



Complexity of sets of words

» A set L of words is factorial if whenever x is a word in L,
every factor of x is also in L.

» The complexity function of L is the function f(n) that counts
the number of words of length » in L.

Theorem

Let L be a factorial set of words. If for some length ny we have
f(no) = ng, then there is a constant C such that f(n) < C for all
n > 2ng. Moreover, C < (ny + 1)?/4, and this bound is tight.



The complexity function

» Due independently to Kobayashi and Kobayashi (1993);
Ellingsen and Farkas (1994); Balogh and Bollobas (2005).

» Either f(n) bounded by a constant, or f(n) > n + 1 for all n.

» Bergman’s gap theorem a consequence of this
observation.



Complexity of infinite words

» w an infinite word

» L the set of finite factors of w

» f(n) the complexity function of L

» If f(n) < C, then w is eventually periodic.

» If f(n) = n+ 1 for all n, the word w is called Sturmian.

» Sturmian words are aperiodic words of minimal complexity.

» First studied in depth by Morse and Hedlund (1940)



An example of a Sturmian word

The Fibonacci word

lterate the substitution 0 — 01; 1 — O:
0 — 01 — 010 — 01001 — 01001010 — 0100101001001 — - - -

The infinite word obtained in the limit has » + 1 factors of length
n for all n.



Summary

We have seen applications of word combinatorics to:
» Burnside’s Problem in group theory
» Kurosh’s Problem in ring theory
» Growths of algebras
Other applications:
» Pl-algebras (algebras satisfying a polynomial identity)
» Shirshov’s Theorem

> etc.



The End



