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Words

A word is a sequence of symbols from an alphabet .

Words may be finite, like the word finite or infinite, like the word

abaabaaabaaaab · · ·

In 1906, Norwegian mathematician Axel Thue constructed an
infinite word over a three letter alphabet that contained no
repetitions.

Here is how to contruct such a word using the symbols 0, 1, and 2.

First, define a substitution rule (or morphism )

0 → 1, 1 → 20, 2 → 210.

This means for every 0 substitute a 1, for every 1 substitute 20,
and for every 2 substitute 210.
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Avoiding Repetitions in Words

Now, starting with 0, repeatedly apply this rule, obtaining the
words

0 ⇒ 1 ⇒ 20 ⇒ 2101 ⇒ 21020120 ⇒
2102012101202101 ⇒ · · ·

In the limit we obtain the infinite word

21020121012021020120210121020120 · · ·

This word contains no repetitions (to prove this takes a little more
work).

Narad Rampersad (University of Winnipeg) Combinatorics on Words 9 May 2008 3 / 30



Avoiding Repetitions in Words

This result has been independently rediscovered numerous times
in the last century, for instance by Arshon in 1937 and Morse and
Hedlund in 1944.

The existence of such a word was used in 1968 by Novikov and
Adian to solve a longstanding open problem in group theory
posed by Burnside in 1902.

The repetitions discussed so far have been words of the form xx .

We may write this algebraically as x2 and call it a square .

Analogously, we may define other types of repetitions, such of
those of the form xxx = x3, called a cube , and so on.
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Avoiding Cubes

In 1912, Axel Thue showed that the word

t = 01101001100101101001011001101001 · · ·

obtained by repeatedly applying the morphism 0 → 01, 1 → 10
contains no cubes.

This result was rediscovered by Morse in 1921, and so this word is
usually referred to as the Thue–Morse word.

In fact, The Thue–Morse contains no overlap : i.e., no occurrence
of xxa, where x is a word and a is the first letter of x .

In 1929, chess grandmaster Max Euwe used this word to show
that under a certain (plausible) set of rules it was possible to play
an infinite game of chess.
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The Thue–Morse Word

The Thue–Morse word can be defined in several other ways.

Let ti denote the i-th symbol of t.

Then ti is the number of 1’s mod 2 in the binary expansion of i .

We thus have the recursive definition t2i = ti and t2i+1 = 1 − ti .

Narad Rampersad (University of Winnipeg) Combinatorics on Words 9 May 2008 6 / 30



The Thue–Morse Word in Number Theory

Let β be an irrational real number between 1 and 2. Let us write
the expansion of 1 in base-β:

1 =

∞∑

n=1

anβ
−n,

where an ∈ {0, 1}.

β-expansions are not always unique!

Let ϕ = (1 +
√

5)/2 be the golden ratio.

Then 1 = ϕ−1 + ϕ−2 and 1 =
∑

n≥2 ϕ−n, so .11 and .01111 · · · are
both ϕ-expansions of 1.
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The Thue–Morse Word in Number Theory

Curiously, there are certain β for which 1 has a unique
β-expansion.

Moreover, there is a least β between 1 and 2 with this property.

This β is the unique solution (≈ 1.78723) to

1 =
∞∑

n=1

tnβ−n,

where t0t1t2 · · · is the Thue–Morse word!

This β is called the Komornik–Loreti constant, and was discovered
in 1998.

It was proved to be transcendental by Allouche and Cosnard,
using a result of Mahler.
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The Thue–Morse Word in Number Theory

Consider the power series F (z) =
∑

n≥0 tnz−n, where t0t1t2 · · · is
the Thue–Morse word.

Using standard results from analysis, one can show that F is a
transcendental function.

Using the identities t2i = ti and t2i+1 = 1 − ti , one can easily show
(exercise!) that F satisfies the functional equation
F (z) = (1 − z)F (z2).

In 1929, Mahler showed that a transcendental function satisfying a
functional equation of this sort takes transcendental values at
every non-zero algebraic point in its disc of convergence.
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The Thue–Morse Word in Number Theory

We deduce the transcendence of the Komornik–Loreti constant as
follows.

If β is the Komornik–Loreti constant, then F (β) = 1.

If β were algebraic, then F (β) = 1 would be transcendental by
Mahler’s argument.

This contradiction implies that β is transcendental.

Consider now the real number F (2) =
∑

n≥0 tn2−n, the so-called
Thue–Morse constant, whose binary expansion

0.1101001100101101001011001101001 · · ·

is given by the Thue–Morse word.

Again, Mahler’s method shows that F (2) is transcendental.
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A Combinatorial Criterion for Transcendence

Look at the squares in the Thue–Morse word:

01101001100101101001011001101001 · · ·

We have:
◮ 11 at position 1;
◮ 1010 at position 2;
◮ 10011001 at position 4;
◮ 1001011010010110 at position 8; etc.

In general, there are larger and larger squares occurring not too
far from the beginning of the sequence.

This property turns out to be a sufficient condition for
transcendence.
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A Combinatorial Criterion for Transcendence

Truncate the binary expansion of the Thue–Morse constant after
the square 11, and append 11111111 · · · to get the rational
number 0.1111111111 · · · .
Now truncate after the square 1010, and append 10101010 · · · to
get the rational number 0.1101010101010 · · · .
Truncate after the square 10011001, and append 10011001 · · · to
get the rational number 0.1101001100110011001 · · · , and so on.

This gives a sequence of very good rational approximations to the
Thue–Morse constant.

Recall that if an irrational number is approximated too well by
rationals, it cannot be algebraic.

It is possible to use standard (but deep!) results in Diophantine
approximation to show that these rational numbers approximate
the Thue–Morse constant too well.
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A Combinatorial Criterion for Transcendence

The following criterion for transcendence, due to Adamczewski,
Bugeaud, and Luca, formalizes the above observations.

Let b > 1 be an integer and let a = a0a1 · · · be an infinite word
over {0, 1, . . . , b − 1}.

Let w > 1 be a real number. Suppose there exist two sequences
of finite words (Un)n≥1, (Vn)n≥1 such that:

(i) For any n ≥ 1, the word UnV w
n is a prefix of the word a;

(ii) The sequence (|Un|/|Vn|)n≥1 is bounded from above;
(iii) The sequence (|Vn|)n≥1 is increasing.

Then the real number ∑

n≥0

an

bn

is either rational or transcendental.
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The Thue–Morse Word in Number Theory

Recall that the Thue–Morse word is overlap-free: it has no
occurrence of xxa, where a is the first symbol of x .

Is is possible that all real numbers whose binary expansions are
overlap-free are transcendental?

Stated another way, must the binary expansion of any algebraic
number contain infinitely many occurrences of overlaps?

Binary overlap-free words in general have much the same
structure as the Thue–Morse word.

They thus also satisfy the Adamczewski–Bugeaud–Luca criterion
for transcendence.
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Applications to Transcendental Number Theory

Theorem (Adamczewski and R. 2007)
The binary expansion of an algebraic number contains infinitely many
occurrences of overlaps (even 7/3-powers).

Theorem (Adamczewski and R. 2007)
The ternary expansion of an algebraic number contains either infinitely
many occurrences of squares or infinitely many occurrences of one of
the blocks 010 or 02120.
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Words as Colourings

An infinite word over a finite alphabet A is a map w from N to A.

A infinite word can be thus be viewed as a “colouring” of the
natural numbers using the set A of “colours”.

An infinite word avoiding repetitions is thus a non-repetitive
colouring of the natural numbers.
We may also consider non-repetitive colourings of other
mathematical structures such as:

◮ the real line;
◮ the d-dimensional integer lattice;
◮ graphs, etc.
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Nonrepetitive Colourings of the Real Line

Theorem (Rote, see Grytczuk and Śliwa 2003)
There exists a colouring f of R, f : R → {0, 1}, such that no two line
segments are coloured alike with respect to translations. Formally, for
every ǫ > 0 and every pair of real numbers x < y, there exists
0 ≤ t < ǫ such that f (x + t) 6= f (y + t).

Define f (x) = 0 if log |x | is rational and f (x) = 1 otherwise.

Consider two points 0 ≤ x < y .

If f (x) = f (y), then let x + t1 = eq1 , where 0 ≤ t1 < ǫ and q1 is
rational.
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Nonrepetitive Colourings of the Real Line

Now f (x + t1) = 0. If f (x + t1) = f (y + t1) = 0, then y + t1 = eq2 for
some rational number q2 6= q1.

Let x + t2 = eq3 , where t1 < t2 < ǫ and q3 is rational.

If again f (y + t2) = 0, then y + t2 = eq4 for some rational number
q4.

Now x − y = eq1 − eq2 = eq3 − eq4 , where the qi ’s are all distinct
rational integers.

But the classical Lindemann–Weierstrass theorem asserts the
linear independence of algebraic powers of e over the algebraic
numbers.

This contradiction proves the theorem.
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van der Waerden’s Theorem

van der Waerden’s theorem asserts that if the natural numbers are
partitioned into finitely many sets, then one set contains arbitrarily
large arithmetic progressions.

Rephrased as a theorem regarding words, it asserts that for any
infinite word w over a finite alphabet A, there exists a ∈ A such
that for all m ≥ 1, w contains am in a subsequence indexed by an
arithmetic progression.

We thus cannot avoid repetitions in arithemetic progressions.

Suppose we only try to avoid repetitions in certain types of
arithmetic progressions: e.g. arithmetic progressions of odd
difference.
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Repetitions in Arithmetic Progressions

Theorem (Carpi 1988)
For every integer n ≥ 2, there exists an infinite word over a finite
alphabet that contains no squares in any arithmetic progression except
those whose difference is a multiple of n.
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Folding a Piece of Paper
Take an ordinary 8.5 × 11 piece of paper and fold it in half.

Now unfold the paper and record the pattern of hills and valleys
created, writing 0 for a hill and 1 for a valley.

0

Now fold the paper twice, unfold, and record the pattern of hills
and valleys.

0 0 1

Now fold three times, unfold, and record the pattern.

0 0 1 0 0 1 1

Now fold infinitely (!) many times. After unfolding, you get the
following infinite sequence, called the paperfolding sequence .

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 · · ·
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A Recursive Definition

A paperfolding word f = f0f1f2 · · · over the alphabet {0, 1}
satisfies the following recursive definition: there exists a ∈ {0, 1}
such that

f4n = a, n ≥ 0

f4n+2 = a, n ≥ 0

(f2n+1)n≥0 is a paperfolding word.

The ordinary paperfolding word

0010011000110110 · · ·

is the paperfolding word uniquely characterized by f2m−1 = 0 for all
m ≥ 0.
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Repetitions in the Paperfolding Words

Allouche and Bousquet-Mélou (1994) showed that for any
paperfolding word f, if ww is a non-empty subword of f, then
|w | ∈ {1, 3, 5}.

Let us now see how to establish the following specific case of
Carpi’s result: There exists an infinite word over a four letter
alphabet that avoids squares in all arithmetic progressions of odd
difference.

Let f = f0f1f2 · · · be any paperfolding word over {1, 4}. Define
v = v0v1v2 · · · by

v4n = 2

v4n+2 = 3

v2n+1 = f2n+1,

for all n ≥ 0.
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Repetitions in the Paperfolding Words

For example, if
f = 1141144111441441 · · ·

is the ordinary paperfolding word over {1, 4}, then

v = 2131243121342431 · · · .

Theorem (Kao, R., Shallit, and Silva 2008)
Let v be any word obtained from a paperfolding word f by the
construction described above. Then the word v contains no squares in
any arithmetic progression of odd difference.
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Repetitions in the Paperfolding Words

Recall that any square ww in f has |w | ∈ {1, 3, 5}.

Recoding the even indexed positions of f by mapping 1 → 2 and
4 → 3 destroys all these squares with odd periods.

Thus v is squarefree.

The recursive, self-similar nature of v ensures that when we look
at subsequences of v in odd difference arithmetic progressions we
get nothing that wasn’t already in v to begin with.

So v avoids squares in any arithmetic progression of odd
difference.
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Higher Dimensions

A 2-dimensional word is a map w from N
2 to A, where we write

wm,n for w(m, n).

A word x is a line of w if there exists i1, i2, j1, j2, such that
gcd(j1, j2) = 1 and for t ≥ 0

xt = wi1+j1t ,i2+j2t .
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Higher Dimensions

a b
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a b

b b

a a
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Figure: Here x = dcc · · · is a line.
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Higher Dimensions

Theorem (Carpi 1988)
There exists a 2-dimensional word w over a 16-letter alphabet such
that every line of w is squarefree.

Let u = u0u1u2 · · · and v = v0v1v2 · · · be any infinite words over
the alphabet A = {1, 2, 3, 4} that avoid squares in all arithmetic
progressions of odd difference.

We define w over the alphabet A × A by

wm,n = (um, vn).
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Proof of Carpi’s 2D construction

Consider an arbitrary line

x = (wi1+j1t ,i2+j2t)t≥0,

= (ui1+j1t , vi2+j2t)t≥0,

for some i1, i2, j1, j2, with gcd(j1, j2) = 1.

Without loss of generality, we may assume j1 is odd.

Then the word (ui1+j1t)t≥0 is an arithmetic subsequence of odd
difference of u and hence is squarefree.

The line x is therefore also squarefree.
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Thank you!
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