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Repetitions in words

Definition

A square (or 2-power) is a non-empty word of the form ww (or w2). A
word is squarefree if none of its subwords are squares.

Definition
Let α be a rational number, 1 < k < 2. An α-power is a non-empty
word of the form xyx , where |xyx |/|xy | = α. A word is α-power-free if
none of its subwords are β-powers for β ≥ α.

Example
tartar is a square.

tent is a 4/3-power.
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Avoiding repetitions in words

Theorem (Thue 1906)
There exists an infinite squarefree word

x = 210201210120210 · · ·

over the alphabet {0, 1, 2}.

Proof (sketch).
The word x is obtained by iterating the map 2 → 210, 1 → 20, 0 → 1:

2 → 210 → 210201 → 210201210120 → · · ·
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Morphisms

Definition
A map h like the one used to prove Thue’s theorem (h sends 2 → 210,
1 → 20, 0 → 1) is called a morphism.

Definition
If, for some symbol a, the sequence of iterates

h(a), h2(a), h3(a), . . .

converges to an infinite word x, we say that x is an infinite fixed point of
h, and we write x = hω(a).
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Avoiding repetitions in words

Theorem (Dejean 1972)
Over the alphabet {0, 1, 2} there exists an infinite word

y = 01202120121021202101201020120210201021 · · ·

that is k-power-free for all k > 7/4.

Proof (sketch).
The word y is obtained by iterating the morphism
0 → 0120212012102120210, 1 → 1201020120210201021,
2 → 2012101201021012102:

0 → 0120212012102120210 · · ·
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Measuring similarity of words

Definition
For words x , x ′ of the same length, the Hamming distance d(x , x ′) is
the number of positions in which x and x ′ differ.

Example
d(cammino,mattino) = 3.
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Measuring similarity of words

Definition
Given two words x , x ′ of the same length, their similarity s(x , x ′) is the
fraction of the number of positions in which x and x ′ agree. Formally,

s(x , x ′) :=
|x | − d(x , x ′)

|x |
.

Example
s(lontana,ventura) = 3/7.

s(quelle,stelle) = 2/3.
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Similarity in finite words

Definition
The similarity of a finite word z is defined to be

α = max
xx′a subword of z

|x|=|x′|

s(x , x ′);

we say such a word is α-similar.

Example
21020121 is 1/2-similar.
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Similarity in infinite words

Definition
We say an infinite word z is α-similar if

α = sup
xx′a subword of z

|x|=|x′|

s(x , x ′)

and there exists at least one subword xx ′ with |x | = |x ′| and
s(x , x ′) = α. Otherwise, if

α = sup
xx′a subword of z

|x|=|x′|

s(x , x ′),

but α is not attained by any subword xx ′ of z, then we say z is
α−-similar.
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An example

Example
Recall the squarefree word constructed earlier:

x = 2102012101202102012021012102012 · · ·

Since x is squarefree it is not 1-similar. But x contains arbitrarily large
subwords xx ′ where x differs from x ′ in only 1 position, so x is
1−-similar.
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Computational results

The following computational results give some idea as to what the
minimum similarity should be over a k-letter alphabet.

Similarity Height Number Number of
Alphabet Coefficient of of Maximal
Size k α Tree Leaves Words
2 1 3 4 1
3 3/4 41 2475 36
4 1/2 9 382 6
5 2/5 75 3902869 48
6 1/3 17 342356 480
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Minimum similarity over a 3-letter alphabet

Theorem

There exists an infinite 3/4-similar word w over {0,1,2}.

Let h be the 24-uniform morphism defined by

0 → 012021201021012102120210

1 → 120102012102120210201021

2 → 201210120210201021012102.

We claim that the fixed point w = hω(0) is 3/4-similar.
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Minimum similarity over a 3-letter alphabet

We begin by checking (with a computer) that the following lemma
holds.

Lemma

Let a, b, c ∈ {0,1,2}, a 6= b. Let w be any subword of length 24 of
h(ab). If w is neither a prefix nor a suffix of h(ab), then h(c) and w
mismatch in at least 9 positions.

To prove our result we argue by contradiction.

Suppose that w contains a minimal subword yy ′ with |y | = |y ′|,
and y and y ′ match in more than 3/4 · |y | positions.

We check by computer that there cannot be such a minimal
counterexample with |y | ≤ 72, so we assume that |y | > 72.
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Minimum similarity over a 3-letter alphabet

Let w = a1a2 · · · an be a word of minimal length such that
h(w) = xyy ′z for some x , z.

Let us take a pictorial look at how the word xyy ′z decomposes
into the “blocks” of the morphism h. Each Ai is a block of the
morphism.

A1 A2 Aj−1 Aj+1 An−1

A′
1 A′′

1 A′
j A′′

j A′
n A′′

n

· · ·· · ·

y y ′

Aj An

zx

Narad Rampersad (University of Waterloo) Approximate Squares 13 June 2007 14 / 37



Minimum similarity over a 3-letter alphabet

If |A′′
1| > |A′′

j |, then the picture looks like this.

· · ·

· · · A′
n

A′
j

An−1A′
j+2Aj+1A′′

j

A2A′′
1

y ′ =

y = Aj−1

Now we look at the misaligned blocks.

For instance, Aj+2 in y ′ “straddles” A2 and A3 in y .

But by the lemma, this creates at least 9 out of 24 mismatching
positions between y and y ′.

This argument applies to all the misaligned blocks, and implies
that y and y ′ mismatch in more than 1/4 · |y | positions.

But this contradicts our assumption that y and y ′ match in more
than 3/4 · |y | positions.
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Minimum similarity over a 3-letter alphabet

The same argument rules out the possibility that |A′′
1| > |A′′

j |.

The only option left is that |A′′
1| = |A′′

j |. That is, the Ai ’s in y all “line
up” with the Ai ’s in y ′.

A bit of case analysis shows that for y and y ′ to match in more
than 3/4 of their positions, the words A1A2 · · ·Aj−1 and
AjAj+1 · · ·An−1 must match in more than 3/4 of their positions.

Consider the inverse images of A1A2 · · ·Aj−1 and AjAj+1 · · ·An−1

under h.

Let
h(a1a2 · · · aj−1) = A1A2 · · ·Aj−1,

and let
h(ajaj+1 · · · an−1) = AjAj+1 · · ·An−1.
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Minimum similarity over a 3-letter alphabet

A quick inspection shows that any two distinct blocks mismatch in
every position. Thus, a single matching position between A1 and
Aj forces A1 = Aj and a1 = aj . Similarly, a single mismatch
between A1 and Aj forces A1 6= Aj and a1 6= aj .

But this implies that a1a2 · · · aj−1 and ajaj+1 · · · an−1 match in at
least 3/4 of their positions.

But a1a2 · · · an−1 is also a subword of w, and is thus a smaller
counterexample than yy ′, contradicting minimality.

This contradiction implies that no such counterexample exists and
completes the proof.
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Minimum similarity over a 4-letter alphabet

Theorem
There exists an infinite 1/2-similar word x over {0,1,2,3}.

Let g be the 36-uniform morphism defined by

0 → 012132303202321020123021203020121310

1 → 123203010313032131230132310131232021

2 → 230310121020103202301203021202303132

3 → 301021232131210313012310132313010203.

Then x = gω(0) has the desired property.
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Minimum similarity over a 4-letter alphabet

The proof is similar to that of the previous result, with the following
lemma used instead.

Lemma

Let a, b, c ∈ {0,1,2,3}, a 6= b. Let w be any subword of length 36 of
g(ab). If w is neither a prefix nor a suffix of g(ab), then g(c) and w
mismatch in at least 21 positions.

We only have constructive (and optimal) results for alphabets of size 3
and 4. To say something about larger alphabets, we turn to
probabilistic techniques.
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The probabilistic method

Let A1, A2, . . . , An be events in a probability space.

We want to show Pr[∩Ai ] > 0.

If the Ai ’s are mutually independent, all we need is Pr[Ai ] < 1.

What do we do if the Ai ’s are not mutually independent?

Definition
A dependency graph on events A1, A2, . . . , An is a graph G = 〈V , E〉,
where V = {1, 2, . . . , n}, with the following property: Ai should be
mutually independent of all the events Aj for which (i , j) 6∈ E .
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The Lovász Local Lemma

Lemma (Lovász Local Lemma; symmetric version)
Let G be a dependency graph on events A1, A2, . . . , An. Let d be the
maximum degree of G. Suppose Pr(Ai) ≤ p for all i . If 4pd ≤ 1, then

Pr

(

n
⋂

i=1

Ai

)

> 0.

This version is applicable when the Ai ’s all have equal
probabilities.

When the Ai ’s were mutually independent, we asked that p < 1.

Now we ask that 4pd ≤ 1. As long as there are not too many
dependencies (i.e., d is small), this is not too much to ask.
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The Lovász Local Lemma

Lemma (Lovász Local Lemma; asymmetric version)
Let G be a dependency graph on events A1, A2, . . . , An. Suppose there
exist real numbers x1, . . . , xn, 0 ≤ xi < 1, such that for all i ,

Pr(Ai) ≤ xi

∏

(i ,j)∈E

(1 − xj).

Then

Pr

(

n
⋂

i=1

Ai

)

> 0.
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Words with arbitrarily low similarity

Theorem
Let c > 1 be an integer. There exists an infinite 1/c-similar word.

Let Σ be a k-letter alphabet and let N be a positive integer.

Let w = w1w2 · · ·wN be a random word of length N over Σ.

Each letter of w is chosen uniformly and independently at random
from Σ.

We now specify the “bad” events A1, . . . , An.

A bad event At,r is the event that two adjacent subwords y and y ′

of w , each of length r , beginning at positions t and t + r have
similarity greater than 1/c.

We have such events At,r for all valid choices of t and r .
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Bounding Pr(At ,r)

We need to bound from above the probability of At,r .

Let us consider a subword xx ′, |x | = |x ′| = r .

We need x and x ′ to match in more than r/c positions.

We will overcount the number of such words xx ′.

Let us choose ⌊r/c⌋ + 1 positions to match.

We can do this in
( r
⌊r/c⌋+1

)

ways.

Now we can chose the values for these positions in k⌊r/c⌋+1 ways.

With ⌊r/c⌋ + 1 positions now fixed, we have 2r − 2 (⌊r/c⌋ + 1)
positions of xx ′ left to determine.

We can choose the values for these positions in k2r−2(⌊r/c⌋+1)

ways.
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Bounding Pr(Ai)

We have actually overcounted the number of possible words xx ′

with more than r/c positions matching.

An overestimate of Prob(Ai) is thus

Prob(Ai) ≤

( r
⌊r/c⌋+1

)

k⌊r/c⌋+1k2r−2(⌊r/c⌋+1)

k2r

≤

(

r
⌊r/2⌋

)

k−r/c

≤ 2rk−r/c .
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Choosing the weights xi

Now we must choose the xi ’s.

For all positive integers r , define ξr = 2−2r .

Note that for any real number α ≤ 1/2, we have (1 − α) ≥ e−2α.

Hence, (1 − ξr ) ≥ e−2ξr .

Each event At,r was associated with a pair of subwords of length r .

We thus set xi = ξr for all such At,r .

Let E be as in the local lemma.

Two events share a dependency only when the corresponding
subwords overlap.

Note that a subword of length 2r of w overlaps with at most
2r + 2s − 1 subwords of length 2s.
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Estimating the RHS of the local lemma

We thus have

xi

∏

(i ,j)∈E

(1 − xj) ≥ ξr

⌊N/2⌋
∏

s=1

(1 − ξs)
2r+2s−1

≥ ξr

∞
∏

s=1

(1 − ξs)
2r+2s−1

≥ ξr

∞
∏

s=1

e−2ξs(2r+2s−1)

≥ 2−2r
∞
∏

s=1

e−2(2−2s)(2r+2s−1)

Narad Rampersad (University of Waterloo) Approximate Squares 13 June 2007 27 / 37



Estimating the RHS of the local lemma

xi

∏

(i ,j)∈E

(1 − xj) ≥ 2−2r exp

[

−2

(

2r
∞
∑

s=1

1
22s +

∞
∑

s=1

2s − 1
22s

)]

≥ 2−2r exp
[

−2
(

2r
(

1
3

)

+
5
9

)]

≥ 2−2r exp
(

−
4
3

r −
10
9

)

.

The hypotheses of the local lemma are met if

2r k−r/c ≤ 2−2r exp
(

−
4
3

r −
10
9

)

.
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Applying the local lemma

Taking logarithms, we require

r log 2 −
r
c

log k ≤ −2r log 2 −
4
3

r −
10
9

.

Rearranging terms, we require

c
(

3 log 2 +
4
3

+
10
9r

)

≤ log k .

The left side of this inequality is largest when r = 1, so we define

d1 = 3 log 2 + 4/3 + 10/9,

and insist that c · d1 ≤ log k .

For k ≥ ec·d1 , the local lemma implies that with positive probability,
w is 1/c-similar.
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The Infinity Lemma

Since N = |w | is arbitrary, there must exists arbitrarily large such
w .

The Local Lemma only applies to finitely many events.

We can only use it to show the existence of finite (but arbitrarily
large) words with a given property.

To show the existence of an infinite word with the desired property
we use König’s Infinity Lemma.

Lemma (König)
Let A be any infinite set of finite words. There exists an infinite word w
such that every prefix of w is a prefix of some word in A.

It now follows that there exists an infinite 1/c-similar word.
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Avoiding approximate repetitions

Definition
A word xx ′ with |x | = |x ′| is a c-approximate square if d(x , x ′) ≤ c.

Example
riffraff is a 1-approximate square.

murmur is a 0-approximate square (i.e., a square).

In the biological sequence analysis literature, a c-approximate
square is called a “c-approximate tandem repeat”.

They are typically studied from an algorithmic point of view: i.e.,
how to efficiently find c-approximate repeats in a string.

We will consider questions of avoidability.
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Avoiding approximate squares

Definition
A word z avoids c-approximate squares if for all its subwords xx ′

where |x | = |x ′| we have d(x , x ′) ≥ min(c + 1, |x |).

We can prove the following over 4 letters.

Theorem
There is an infinite word over a 4-letter alphabet that avoids
1-approximate squares, and the 1 is best possible.
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Avoiding approximate squares

Proof (sketch).
Let c be any squarefree word over {0,1,2}, and consider the image
under the morphism h defined by

0 → 012031023120321031201321032013021320123013203123

1 → 012031023120321023103213021032013210312013203123

2 → 012031023012310213023103210231203210312013203123

The resulting word d = h(c) avoids 1-approximate squares. The rest of
the argument is similar to that for the earlier result.
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Summary of results regarding additive similarity

We have the following results over larger alphabets.

Alphabet c Morphism
Size k
6 2 0 → 012345

1 → 012453
2 → 012345

7 3 0 → 01234056132465
1 → 01234065214356
2 → 01234510624356

8 4 0 → 0123456071326547
1 → 0123456072154367
2 → 0123456710324765
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Generalizing the construction

In fact it is possible to prove a general result.

Theorem
For all integers n ≥ 3, there is an infinite word over an alphabet of 2n
letters that avoids (n − 1)-approximate squares.

Proof (sketch).
Consider the morphism h defined as follows:

0 → 012 · · · (n − 1)n · · · (2n − 1)

1 → 012 · · · (n − 1)(n + 1)(n + 2) · · · (2n − 1)n

2 → 012 · · · (n − 1)(n + 2)(n + 3) · · · (2n − 1)n(n + 1)

If w is any squarefree word over {0, 1, 2}, then h(w) has the desired
properties. The proof is a generalization of previous arguments.
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Other similarity measures

Definition
The edit distance between two words u and v is the smallest number
of insertions, deletions, or substitutions needed to transform u into v .

Theorem
There is an infinite word over 5 letters such that all subwords x with
|x | ≥ 3 are neither squares, nor within edit distance 1 of any square.

Proof (sketch).
A computer search shows that there is no such word over 4 letters.
Over 5 letters we may apply the morphism

0 → 01234 1 → 02142 2 → 03143.

to any square-free word to obtain the desired result.
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Thank you.

Narad Rampersad (University of Waterloo) Approximate Squares 13 June 2007 37 / 37


