Avoiding Approximate Squares

Narad Rampersad

School of Computer Science University of Waterloo

13 June 2007

(Joint work with Dalia Krieger, Pascal Ochem, and Jeffrey Shallit)

ъ

 299

 1.71×1.71

化三分

Repetitions in words

Definition

A square (or 2-power) is a non-empty word of the form ww (or w^2). A word is squarefree if none of its subwords are squares.

Definition

Let α be a rational number, $1 < k < 2$. An α -power is a non-empty word of the form xyx, where $|xyx|/|xy| = \alpha$. A word is α -power-free if none of its subwords are β -powers for $\beta > \alpha$.

Example

- **O** tartar is a square.
- \bullet tent is a 4/3-power.

 $+$ $+$

 $\Omega \propto \Omega$

Avoiding repetitions in words

Theorem (Thue 1906)

There exists an infinite squarefree word

 $\mathbf{x} = 210201210120210...$

over the alphabet $\{0, 1, 2\}$.

Proof (sketch).

The word **x** is obtained by iterating the map $2 \rightarrow 210$, $1 \rightarrow 20$, $0 \rightarrow 1$:

 $2 \rightarrow 210 \rightarrow 210201 \rightarrow 210201210120 \rightarrow \cdots$

Morphisms

Definition

A map h like the one used to prove Thue's theorem (h sends $2 \rightarrow 210$, $1 \rightarrow 20, 0 \rightarrow 1$) is called a morphism.

Definition

If, for some symbol a, the sequence of iterates

 $h(a), h^2(a), h^3(a), \ldots$

converges to an infinite word **x**, we say that **x** is an infinite fixed point of h, and we write $\mathbf{x} = h^{\omega}(\mathbf{a})$.

Avoiding repetitions in words

```
Theorem (Dejean 1972)
```
Over the alphabet $\{0, 1, 2\}$ there exists an infinite word

y = 01202120121021202101201020120210201021 · · ·

that is k-power-free for all $k > 7/4$.

Proof (sketch).

The word **y** is obtained by iterating the morphism 0 → 0120212012102120210, 1 → 1201020120210201021, $2 \rightarrow 2012101201021012102$

 $0 \rightarrow 0120212012102120210 \cdots$

 \blacksquare

Measuring similarity of words

Definition

For words x, x' of the same length, the Hamming distance $d(x, x')$ is the number of positions in which x and x' differ.

Example

 d (cammino, mattino) = 3.

 $+$ $+$

Measuring similarity of words

Definition

Given two words x, x' of the same length, their similarity $s(x, x')$ is the fraction of the number of positions in which x and x' agree. Formally,

$$
s(x,x') := \frac{|x|-d(x,x')}{|x|}.
$$

Example

•
$$
s(lontana, ventura) = 3/7.
$$

 \bullet s(quelle, stelle) = 2/3.

 $+$ $+$

Similarity in finite words

Definition

The similarity of a finite word z is defined to be

$$
\alpha = \max_{\mathbf{x} \mathbf{x}' \text{ a subword of } z} \mathbf{s}(\mathbf{x}, \mathbf{x}')
$$

we say such a word is α -similar.

Example

● 21020121 is 1/2-similar.

 $+$ $+$

Similarity in infinite words

Definition

We say an infinite word **z** is α -similar if

$$
\alpha = \sup_{\substack{xx'a \text{ subword of } z \\ |x| = |x'|}} s(x, x')
$$

and there exists at least one subword xx' with $\vert x \vert = \vert x' \vert$ and $s(x, x') = \alpha$. Otherwise, if

$$
\alpha = \sup_{\substack{xx'a \text{ subword of } z \\ |x| = |x'|}} s(x, x'),
$$

but α is not attained by any subword xx' of **z**, then we say **z** is α^- -similar.

 \leftarrow m \rightarrow

An example

Example

Recall the squarefree word constructed earlier:

x = 2102012101202102012021012102012 · · ·

Since **x** is squarefree it is not 1-similar. But **x** contains arbitrarily large subwords xx' where x differs from x' in only 1 position, so x is 1 [−]-similar.

 \blacksquare

 $\Omega \propto \Omega$

Computational results

The following computational results give some idea as to what the minimum similarity should be over a k -letter alphabet.

 \leftarrow m \rightarrow

Theorem

There exists an infinite $3/4$ -similar word **w** over $\{0, 1, 2\}$.

Let h be the 24-uniform morphism defined by

- 012021201021012102120210
- $1 \rightarrow 120102012102120210201021$
- $2 \rightarrow 201210120210201021012102$

We claim that the fixed point $\mathbf{w} = h^{\omega}(0)$ is 3/4-similar.

nar

We begin by checking (with a computer) that the following lemma holds.

Lemma

Let a, b, $c \in \{0, 1, 2\}$, $a \neq b$. Let w be any subword of length 24 of $h(ab)$. If w is neither a prefix nor a suffix of $h(ab)$, then $h(c)$ and w mismatch in at least 9 positions.

- To prove our result we argue by contradiction.
- Suppose that **w** contains a minimal subword yy' with $|y| = |y'|$, and y and y' match in more than $3/4 \cdot |y|$ positions.
- We check by computer that there cannot be such a minimal counterexample with $|y| < 72$, so we assume that $|y| > 72$.

 \leftarrow \Box .

∽ດ

- Let $w = a_1 a_2 \cdots a_n$ be a word of minimal length such that $h(w) = xyy'z$ for some x, z.
- Let us take a pictorial look at how the word xyy'z decomposes into the "blocks" of the morphism h . Each A_i is a block of the morphism.

 $\Omega \propto \Omega$

If $|A''_1|>|A''_j|$, then the picture looks like this.

$$
y = \begin{array}{|c|c|c|c|c|} \hline A_1^{\prime\prime} & A_2 & \cdots & A_{j-1} & A_j^{\prime} \\ \hline A_j^{\prime\prime} & A_{j+1} & A_{j+2}^{\prime} & \cdots & A_{n-1} & A_n^{\prime} \\ \hline \end{array}
$$

- Now we look at the misaligned blocks.
- For instance, A_{j+2} in y' "straddles" A_2 and A_3 in y .
- But by the lemma, this creates at least 9 out of 24 mismatching positions between y and y' .
- This argument applies to all the misaligned blocks, and implies that y and y' mismatch in more than $1/4 \cdot |y|$ positions.
- But this contradicts our assumption that y and y' match in more than $3/4 \cdot |y|$ positions.

- The same argument rules out the possibility that $|A''_1|>|A''_j|.$
- The only option left is that $|{\mathcal A}_1''|=|{\mathcal A}_j''|.$ That is, the A_i 's in y all "line up" with the A_i 's in y'.
- A bit of case analysis shows that for y and y' to match in more than 3/4 of their positions, the words $A_1A_2 \cdots A_{i-1}$ and $A_iA_{i+1}\cdots A_{n-1}$ must match in more than 3/4 of their positions.
- **Consider the inverse images of** $A_1A_2 \cdots A_{i-1}$ **and** $A_iA_{i+1} \cdots A_{n-1}$ under h.
- Let

$$
h(a_1a_2\cdots a_{j-1})=A_1A_2\cdots A_{j-1},
$$

and let

$$
h(a_ja_{j+1}\cdots a_{n-1})=A_jA_{j+1}\cdots A_{n-1}.
$$

∽ດ

- A quick inspection shows that any two distinct blocks mismatch in every position. Thus, a single matching position between A_1 and A_j forces $A_1=A_j$ and $\boldsymbol{a}_1=\boldsymbol{a}_j.$ Similarly, a single mismatch between A_1 and A_j forces $A_1\neq A_j$ and $\boldsymbol{a}_1\neq \boldsymbol{a}_j.$
- **•** But this implies that $a_1a_2 \cdots a_{i-1}$ and $a_ia_{i+1} \cdots a_{n-1}$ match in at least 3/4 of their positions.
- **•** But $a_1 a_2 \cdots a_{n-1}$ is also a subword of **w**, and is thus a smaller counterexample than yy′ , contradicting minimality.
- This contradiction implies that no such counterexample exists and completes the proof.

つのへ

Theorem

There exists an infinite 1/2-similar word **x** over {0, 1, 2, 3}.

Let q be the 36-uniform morphism defined by

- $0 \rightarrow 012132303202321020123021203020121310$
- $1 \rightarrow 123203010313032131230132310131232021$
- $2 \rightarrow 230310121020103202301203021202303132$
- $3 \rightarrow 301021232131210313012310132313010203.$

Then $\mathbf{x} = g^\omega(0)$ has the desired property.

nar

The proof is similar to that of the previous result, with the following lemma used instead.

Lemma

Let a, b, $c \in \{0, 1, 2, 3\}$, $a \neq b$. Let w be any subword of length 36 of $q(ab)$. If w is neither a prefix nor a suffix of $q(ab)$, then $q(c)$ and w mismatch in at least 21 positions.

We only have constructive (and optimal) results for alphabets of size 3 and 4. To say something about larger alphabets, we turn to probabilistic techniques.

The probabilistic method

- Let A_1, A_2, \ldots, A_n be events in a probability space.
- We want to show $Pr[\cap A_i] > 0$.
- If the A_i 's are mutually independent, all we need is $\mathsf{Pr}[A_i] < 1.$
- What do we do if the A_i 's are not mutually independent?

Definition

A dependency graph on events A_1, A_2, \ldots, A_n is a graph $G = \langle V, E \rangle$, where $V = \{1, 2, ..., n\}$, with the following property: A_i should be mutually independent of all the events A_j for which $(i,j)\not\in E.$

∽ດ

The Lovász Local Lemma

Lemma (Lovász Local Lemma; symmetric version)

Let G be a dependency graph on events A_1, A_2, \ldots, A_n . Let d be the maximum degree of G. Suppose $Pr(A_i) \leq p$ for all i. If $4pd \leq 1$, then

$$
\Pr\left(\bigcap_{i=1}^n \overline{A_i}\right) > 0.
$$

- This version is applicable when the A_i 's all have equal probabilities.
- When the A_i 's were mutually independent, we asked that $p < 1.$
- Now we ask that $4pd \le 1$. As long as there are not too many dependencies (i.e., d is small), this is not too much to ask.

The Lovász Local Lemma

Lemma (Lovász Local Lemma; asymmetric version)

Let G be a dependency graph on events A_1, A_2, \ldots, A_n . Suppose there exist real numbers x_1, \ldots, x_n , $0 \le x_i < 1$, such that for all i,

$$
Pr(A_i) \leq x_i \prod_{(i,j)\in E} (1-x_j).
$$

Then

$$
\Pr\left(\bigcap_{i=1}^n \overline{A_i}\right) > 0.
$$

Words with arbitrarily low similarity

Theorem

Let $c > 1$ be an integer. There exists an infinite $1/c$ -similar word.

- \bullet Let Σ be a *k*-letter alphabet and let N be a positive integer.
- Let $w = w_1w_2 \cdots w_N$ be a random word of length N over Σ .
- \bullet Each letter of w is chosen uniformly and independently at random from Σ.
- \bullet We now specify the "bad" events A_1, \ldots, A_n .
- A bad event $A_{t,r}$ is the event that two adjacent subwords y and y^{\prime} of w, each of length r, beginning at positions t and $t + r$ have similarity greater than $1/c$.
- We have such events $A_{t,r}$ for all valid choices of t and r .

Bounding $Pr(A_{t,r})$

- We need to bound from above the probability of $\mathcal{A}_{t,r}.$
- Let us consider a subword xx' , $|x| = |x'| = r$.
- We need x and x' to match in more than r/c positions.
- We will overcount the number of such words xx'.
- Let us choose $|r/c| + 1$ positions to match.
- We can do this in $\binom{r}{r}$ $\binom{r}{\lfloor r/c \rfloor + 1}$ ways.
- Now we can chose the values for these positions in $k^{\lfloor r/c \rfloor + 1}$ ways.
- \bullet With $|r/c| + 1$ positions now fixed, we have $2r 2(|r/c| + 1)$ positions of xx' left to determine.
- We can choose the values for these positions in $k^{2r-2(\lfloor r/c\rfloor+1)}$ ways.

∽ດ

Bounding $Pr(A_i)$

- We have actually overcounted the number of possible words xx['] with more than r/c positions matching.
- An overestimate of $\text{Prob}(A_i)$ is thus

$$
\begin{array}{rcl}\n\text{Prob}(A_i) & \leq & \frac{\binom{r}{\lfloor r/c \rfloor + 1} k^{\lfloor r/c \rfloor + 1} k^{2r - 2\lfloor \lfloor r/c \rfloor + 1)}}{k^{2r}} \\
& \leq & \binom{r}{\lfloor r/2 \rfloor} k^{-r/c} \\
& \leq & 2^r k^{-r/c}.\n\end{array}
$$

 $+$ $+$

Choosing the weights x_i

- Now we must choose the x_i 's.
- For all positive integers r, define $\xi_r = 2^{-2r}$.
- Note that for any real number $\alpha \le 1/2$, we have $(1-\alpha) \ge \mathsf{e}^{-2\alpha}.$
- Hence, $(1 \xi_r) \ge e^{-2\xi_r}$.
- \bullet Each event $A_{t,r}$ was associated with a pair of subwords of length r.
- We thus set $\mathsf{x}_{\mathsf{i}}=\mathsf{\xi}_{\mathsf{r}}$ for all such $\mathsf{A}_{t,r}.$
- \bullet Let E be as in the local lemma.
- Two events share a dependency only when the corresponding subwords overlap.
- Note that a subword of length 2r of w overlaps with at most $2r + 2s - 1$ subwords of length 2s.

Estimating the RHS of the local lemma

We thus have

$$
x_{i} \prod_{(i,j)\in E} (1-x_{j}) \geq \xi_{r} \prod_{s=1}^{\lfloor N/2 \rfloor} (1-\xi_{s})^{2r+2s-1}
$$

\n
$$
\geq \xi_{r} \prod_{s=1}^{\infty} (1-\xi_{s})^{2r+2s-1}
$$

\n
$$
\geq \xi_{r} \prod_{s=1}^{\infty} e^{-2\xi_{s}(2r+2s-1)}
$$

\n
$$
\geq 2^{-2r} \prod_{s=1}^{\infty} e^{-2(2^{-2s})(2r+2s-1)}
$$

Narad Rampersad (University of Waterloo) [Approximate Squares](#page-0-0) 13 June 2007 27/37

 299

 1.71×1.71

Estimating the RHS of the local lemma

$$
x_{i} \prod_{(i,j)\in E} (1-x_{j}) \geq 2^{-2r} \exp \left[-2\left(2r \sum_{s=1}^{\infty} \frac{1}{2^{2s}} + \sum_{s=1}^{\infty} \frac{2s-1}{2^{2s}}\right)\right]
$$

$$
\geq 2^{-2r} \exp \left[-2\left(2r\left(\frac{1}{3}\right) + \frac{5}{9}\right)\right]
$$

$$
\geq 2^{-2r} \exp \left(-\frac{4}{3}r - \frac{10}{9}\right).
$$

The hypotheses of the local lemma are met if

$$
2^r k^{-r/c} \leq 2^{-2r} \exp\left(-\frac{4}{3}r - \frac{10}{9}\right).
$$

 \leftarrow \Box \rightarrow - ⊜1

Applying the local lemma

• Taking logarithms, we require

$$
r \log 2 - \frac{r}{c} \log k \le -2r \log 2 - \frac{4}{3}r - \frac{10}{9}.
$$

Rearranging terms, we require \bullet

$$
c\left(3\log 2+\frac{4}{3}+\frac{10}{9r}\right)\leq \log k.
$$

• The left side of this inequality is largest when $r = 1$, so we define

$$
d_1 = 3\log 2 + 4/3 + 10/9,
$$

and insist that $c \cdot d_1 < \log k$.

For $k \ge e^{c \cdot d_1}$, the local lemma implies that with positive probability, w is $1/c$ -similar.

The Infinity Lemma

- \bullet Since $N = |w|$ is arbitrary, there must exists arbitrarily large such w.
- **•** The Local Lemma only applies to finitely many events.
- We can only use it to show the existence of finite (but arbitrarily large) words with a given property.
- To show the existence of an infinite word with the desired property we use König's Infinity Lemma.

Lemma (König)

Let A be any infinite set of finite words. There exists an infinite word **w** such that every prefix of **w** is a prefix of some word in A.

 \bullet It now follows that there exists an infinite 1/c-similar word.

 \leftarrow m \rightarrow

∽ດ

Avoiding approximate repetitions

Definition

A word xx' with $|x|=|x'|$ is a c -approximate square if $d(x,x')\leq c.$

Example

- **O** riffraff is a 1-approximate square.
- murmur is a 0-approximate square (i.e., a square). \bullet
- \bullet In the biological sequence analysis literature, a c-approximate square is called a "c-approximate tandem repeat".
- They are typically studied from an algorithmic point of view: i.e., how to efficiently find c-approximate repeats in a string.
- We will consider questions of avoidability.

Avoiding approximate squares

Definition

A word z avoids c-approximate squares if for all its subwords xx' where $|x|=|x'|$ we have $d(x,x')\geq \mathsf{min}(c+1,|x|).$

We can prove the following over 4 letters.

Theorem

There is an infinite word over a 4-letter alphabet that avoids 1-approximate squares, and the 1 is best possible.

Avoiding approximate squares

Proof (sketch).

Let **c** be any squarefree word over $\{0, 1, 2\}$, and consider the image under the morphism h defined by

- $0 \rightarrow 012031023120321031201321032013021320123013203123$
- 1 → 012031023120321023103213021032013210312013203123
- $2 \rightarrow 012031023012310213023103210231203210312013203123$

The resulting word $\mathbf{d} = h(\mathbf{c})$ avoids 1-approximate squares. The rest of the argument is similar to that for the earlier result.

Summary of results regarding additive similarity

We have the following results over larger alphabets.

 \leftarrow \Box \rightarrow

Generalizing the construction

In fact it is possible to prove a general result.

Theorem

For all integers $n > 3$, there is an infinite word over an alphabet of 2n letters that avoids $(n - 1)$ -approximate squares.

Proof (sketch).

Consider the morphism h defined as follows:

$$
0 \rightarrow 012 \cdots (n-1)n \cdots (2n-1) \n1 \rightarrow 012 \cdots (n-1)(n+1)(n+2) \cdots (2n-1)n \n2 \rightarrow 012 \cdots (n-1)(n+2)(n+3) \cdots (2n-1)n(n+1)
$$

If **w** is any squarefree word over $\{0, 1, 2\}$, then $h(\mathbf{w})$ has the desired properties. The proof is a generalization of previous arguments.

 \Box

Other similarity measures

Definition

The edit distance between two words μ and ν is the smallest number of insertions, deletions, or substitutions needed to transform u into v .

Theorem

There is an infinite word over 5 letters such that all subwords x with $|x| > 3$ are neither squares, nor within edit distance 1 of any square.

Proof (sketch).

A computer search shows that there is no such word over 4 letters. Over 5 letters we may apply the morphism

$$
0\rightarrow 01234 \qquad \quad 1\rightarrow 02142 \qquad \quad 2\rightarrow 03143.
$$

to any square-free word to obtain the desired result.

Thank you.

Narad Rampersad (University of Waterloo) [Approximate Squares](#page-0-0) 13 June 2007 37/37

 \leftarrow \Box \overline{a}

∍

 299