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Sums of three squares

I 7, 15, 23, 28, 31, 39, . . .

I These numbers cannot be written as a sum of three

squares.

I Is there a pattern?



The three-squares theorem

Theorem (Legendre–Gauss 1798)

A number n is the sum of three squares if and only if n is not

of the form 4a(8m+ 7).



A language-theoretic version

Theorem (Legendre–Gauss 1798)

A number n is the sum of three squares if and only if the

binary representation of n is not of the form (0 + 1)∗111(00)∗.



Recognizable sets

I A set X ⊆ N is k-recognizable (or k-automatic) if the

language [X]k consisting of the base-k representations of

the elements of X is accepted by a finite automaton.



The natural numbers

I The set N is k-recognizable for all k.

I [N]k is the regular language

{1, . . . , k − 1}{0, 1, . . . , k − 1}∗ ∪ {ε}.



Examples in base 2

I The Thue–Morse set

{n ∈ N : [n]2 contains an odd number of 1’s}

is 2-recognizable.

I The set of powers of 2 is 2-recognizable.



A “gap” theorem

Theorem (Eilenberg)

Let k ≥ 2 be an integer. A k-recognizable set

X = {x0 < x1 < · · · }

of non-negative integers satisfies either

lim sup
n→∞

(xn+1 − xn) <∞

or

lim sup
n→∞

xn+1

xn
> 1.



The set of squares

I The set {n2 : n ∈ N} of squares is not k-recognizable:

lim sup
n→∞

((n+ 1)2 − n2) =∞

and

lim sup
n→∞

(n+ 1)2

n2
= 1.



The prime numbers

I The set of prime numbers is not k-recognizable for any k.

I There can be arbitrarily large gaps between sucessive

prime numbers.

I If pn is the n-th prime, the Prime Number Theorem

implies that

pn+1/pn → 1.



Changing the base

I Recognizability depends on the base.

I The powers of 2 are not recognizable in base 3.

I Which sets are recognizable in all bases?

I Two numbers k and ` are multiplicatively independent if

km = `n implies m = n = 0.

I A set is ultimately periodic if it is a finite union of

arithmetic progressions.



Sets recognizable in all bases

Cobham’s Theorem 1969

Let k, ` ≥ 2 be two multiplicatively independent integers and

let X ⊆ N. The set X is both k-recognizable and

`-recognizable if and only if it is ultimately periodic.



Determining periodicity

I Given an automaton accepting a k-recognizable set, can

we tell if this set is ultimately periodic?

I Honkala (1986) showed that there is an algorithm to

solve this problem.

I This result was often reproved: Muchnik (1991), Fagnot

(1997), Allouche et al. (2009).

I Leroux (2005) gave a polynomial time algorithm.



The characteristic sequence of the powers of 2

I Iterate the 2-uniform map

a 7→ ab, b 7→ bc, c 7→ cc

to get the infinite sequence

abbcbcccbcccccccbcccccccccccccccbcc · · · .

I Now recode by a, c 7→ 0; b 7→ 1:

01101000100000001000000000000000100 · · · .



Automatic sequences

I A sequence is k-automatic if it is generated by first

iterating a k-uniform map and then renaming some of the

symbols.

I E.g.: the Thue–Morse sequence is generated by the

2-uniform map 0 7→ 01; 1 7→ 10:

0→ 01→ 0110→ 01101001→ 0110100110010110→ · · · .



A morphic characterization of k-recognizability

Theorem (Cobham 1972)

Let k ≥ 2. A set X ⊆ N is k-recognizable if and only if its

characteristic sequence is k-automatic.



A logical characterization of k-recognizability

Theorem (Büchi–Bruyère)

Let Vk(n) be the largest power of k that divides n. A set is

k-recognizable if and only if it is definable in the first order

theory 〈N,+, Vk〉.



Algebraicity of formal power series

Theorem (Christol 1979)

Let p be a prime and let a = (an)n≥0 be a sequence over

{0, 1, . . . , p− 1}. Then ∑
n≥0

anX
n

is algebraic over Fp(X) if and only if a is a p-automatic

sequence.



Positional numeration systems

I A positional numeration system is an increasing sequence

of integers U = (Un)n≥0 such that

I U0 = 1 and

I CU := sup
n≥0
dUn+1/Une <∞.



The Fibonacci numeration system

I Let U = (Un)n≥0 be the sequence of Fibonacci numbers.

I I.e., Un+2 = Un+1 + Un and U0 = 1, U1 = 2.

I The greedy representation of 13 is 100000, since

13 = 1 · 13 + 0 · 8 + 0 · 5 + 0 · 3 + 0 · 2 + 0 · 1.

I 13 also has the non-greedy representation 11000.

I The language of greedy representations is

1{0, 01}∗ ∪ {ε}.



Linear numeration systems

I A set X of integers is U -recognizable if the language

[X]U of greedy representations is accepted by a finite

automaton.

I A numeration system U = (Un)n≥0 is linear if it satisfies a

linear recurrence over Z.

I Introduced and studied by Fraenkel (1985).

I If N is U -recognizable, then U is linear (Shallit).



A system where N is not recognizable

I Let U be defined by Un = (n+ 1)2 for n ≥ 0.

I Then U satisfies the linear recurrence

Un+3 = 3Un+2 − 3Un+1 + Un.

I Suppose [N]U regular. Then

[N]U ∩ 10∗10∗ = {10a10b ∈ {0, 1}∗ : b2 < 2a+ 4}

would also be regular, which is easily shown to be false.



Bertrand numeration systems

I A numeration system U = (Un)n≥0 is a Bertrand

numeration system if it has the following property:

a word w is in [N]U if and only if w0 is in [N]U .



Examples of Bertrand systems

I the integer base-k numeration systems

I the Fibonacci numeration system



A non-Bertrand numeration system

I Change the initial conditions of the Fibonacci recurrence

Un+2 = Un+1 + Un to U0 = 1, U1 = 3:

I the greedy representation of the number 2 is the word 2

I the greedy representation of the number 6 is the word

102, not the word 20.



β-expansions

I Bertrand systems are linked with β-expansions.

I Let β > 1 be a real number.

I The β-expansion of x ∈ [0, 1], denoted dβ(x) = (ti)i≥1, is

the lexicographically largest sequence of non-negative

integers such that

x =
∞∑
i=1

tiβ
−i.



Parry numbers

I If

dβ(1) = t1 · · · tm0ω,

with tm 6= 0, then we say that dβ(1) is finite.

I In this case we define

d∗β(1) = (t1 · · · tm−1(tm − 1))ω.

I Otherwise, we define d∗β(1) = dβ(1).

I If d∗β(1) is ultimately periodic, then β is called a Parry

number.



Systems with a dominant root

I Let U be a linear numeration system.

I If

lim
n→∞

Un+1

Un
= β

for some real β > 1, then U satisfies the dominant root

condition.

I β is the dominant root.



A necessary condition for recognizability

Theorem (Hollander 1998)

Let U be a linear numeration system with dominant root β. If

N is U -recognizable, then β is a Parry number.

I Hollander also gave a much stronger result.



A characterization of the Bertrand systems

Theorem (Bertrand 1989)

Let U = (Un)n≥0 be a numeration system. Let Fact(Dβ)

denote the set of factors occurring in the β-expansions of the

real numbers in [0, 1). There exists a real number β > 1 such

that 0∗[N]U = Fact(Dβ) if and only if U is a Bertrand

numeration system. In this case, if d∗β(1) = (ti)i≥1, then

Un = t1Un−1 + · · ·+ tnU0 + 1.



Obtaining a Bertrand system from a Parry number

I If β is a Parry number, then U is a linear recurrence

sequence and β is a root of its characteristic polynomial.

I Every Parry number β has an associated canonical

numeration system.

I The language of the canonical numeration system

associated with β is Fact(Dβ).

I It is a regular language.

I I.e., N is U -recognizable.



Pisot systems

I A Pisot number is a real algebraic integer greater than

one such that all of its algebraic conjugates have absolute

value less than one.

I A Pisot system is a linear numeration system whose

characteristic polynomial is the minimal polynomial of a

Pisot number.

Theorem (Frougny–Solomyak; Bruyère–Hansel)

Let U be a Pisot system. Then N is U -recognizable.



Determining periodicity

I Given a linear numeration system U and an automaton

accepting a U -recognizable set, can we tell if this set is

ultimately periodic?

I For Pisot systems, yes. The proof of Allouche et al.

(2009) for the integer bases can be applied here (because

in Pisot systems, addition is “recognizable”).

I The problem is open in general.

I Partial results due to Bell et al. (2009).



A more general class of numeration systems

I Previously, we considered positional systems and then

restricted our attention to those that give rise to a regular

numeration language.

I Now we consider an arbitrary regular language and use it

to define a numeration system (Lecomte and Rigo 2001).



Abstract numeration systems

I An abstract numeration system is a triple S = (L,Σ, <):

I (Σ, <) is a totally ordered alphabet.

I The numeration language L is an infinite regular language

over Σ.

I [·]S : N→ L is a bijection mapping n ∈ N to the

(n+ 1)-th word of L in the genealogical order.

I X ⊆ N is S-recognizable if [X]S = {[n]S : n ∈ X} is

regular.



A general framework

I The base-k system is an abstract numeration system with

numeration language

{1, . . . , k − 1}{0, 1, . . . , k − 1}∗ ∪ {ε}.

I The Fibonacci system is an abstract numeration system

with numeration language

1{0, 01}∗ ∪ {ε}.



Another abstract numeration system

I Recall: the set {n2 : n ∈ N} of squares is not

k-recognizable for any k.

I The set of squares is S-recognizable for the abstract

numeration system

S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c).

I The language of representations of the squares is the

regular language a∗.



Polynomial sequences

Theorem (Rigo; Strogalov)

For any polynomial P ∈ Q[x] such that P (N) ⊆ N, there

exists S such that P is S-recognizable.



Recgonizability of periodic sets

Theorem (Lecomte and Rigo 2001)

Let S be an abstract numeration system. Every ultimately

periodic set is S-recognizable.



The characteristic sequence of the squares

I Recall: the set of squares is recognizable in the system

S = (a∗b∗ ∪ a∗c∗, {a, b, c}, a < b < c).

I Its characteristic sequence can be generated using the

non-uniform morphism

h : a 7→ abcc, b 7→ bcc, c 7→ c

and a coding

g : a, b 7→ 1, c 7→ 0.



The characteristic sequence of the squares

I We have

a→ abcc→ abccbcccc→ abccbcccccc→ · · ·

and when we recode we obtain the sequence

1100100001000000100000000 · · · .

I A sequence is morphic if it is generated by first iterating a

morphism and then renaming some of the symbols.



A morphic characterization of S-recognizability

Theorem (Rigo and Maes 2002)

Let X ⊆ N. Then there exists an abstract numeration system

S such that X is S-recognizable if and only if the

characteristic sequence of X is morphic.



Determining periodicity

I Given an abstract numeration system S and an

automaton accepting a S-recognizable set, can we tell if

this set is ultimately periodic?

I The problem is open for the restricted case of linear

numeration systems, so it is open here as well.

I In view of the equivalence of S-recognizable sets and

morphic sequences, the periodicity question is equivalent

to the analogous problem for morphic sequences.

I This is the HD0L periodicity problem, a longstanding

open problem in combinatorics on words.



Conclusion

I Abstract numerations generalize the integer base systems

and the linear numeration systems.

I They include these systems as special cases.

I In the general case, certain interesting properties are

preserved (e.g., recognizability of periodic sets).

I Certain properties are (possibly) lost (e.g., a logical

characterization of recognizability).

I A generalization of S-recognizable sets to higher

dimensions has also been studied.



The End


