Obtaining answers to such multiplication questions as 2 x 17, 3 x 200, and even 4 x 592 can be accomplished relatively easily and quickly by using a "repeated addition" algorithm. For example, for 3 x 200, you can do: | |||||||||||||||||||||||||||||||||
200 + 200 + 200 = 600 |
|||||||||||||||||||||||||||||||||
However, once numbers get large or involve multiplication by 2-digit or greater multipliers, using 'repeated addition' to multiply is cumbersome.
Ancient cultures (e.g. Egyptian, Mayan) realized this and figured out a way to do multiplication without using repeated addition. The method involved a mathematical principle now referred to as the distributive principle. Consider 5 x 12. Using the array (rows and columns) model for the 'groups of' meaning of multiplication. |
|||||||||||||||||||||||||||||||||
A 5 x 12 array has 5 rows with 12 in each row: | |||||||||||||||||||||||||||||||||
You can cut up the 5 x 12 array in many ways. Here is one way. Two smaller arrays. The left one is a 5 x 8 and the right one is a 5 x 4.
We can obtain an answer to 5 x 12 by doing: 5 x 8 + 5 x 4. Thus 5 x 12 = 40 + 20 = 60. |
|||||||||||||||||||||||||||||||||
When we cut up the array in the way shown above, the column count (12) was split into two parts. | |||||||||||||||||||||||||||||||||
We can split the row count (5) as well.
This results in a 2 x 12 array and a 3 x 12 array. |
|||||||||||||||||||||||||||||||||
This time the answer to 5 x 12 can be worked out by doing:
5 x 12 = 2 x 12 + 3 x 12 = 24 + 36 = 60 |
|||||||||||||||||||||||||||||||||
We can also cut up both the row count and the column count. This results in the four smaller arrays shown on the right. | |||||||||||||||||||||||||||||||||
For this way of cutting up the 5 x 12 array, the answer to 5 x 12 can be worked out by doing: | 5 x 12 = 3 x 5 + 3 x 7 + 2 x 5 + 2 x 7
5 x 12 = 15 + 21 + 10 + 14 5 x 12 = 60 |
||||||||||||||||||||||||||||||||
All of the previous have been examples of the distributive principle.
If we revisit the three previous ways of cutting up the 5 x 12 array, using brackets, the work would look as follows: |
|||||||||||||||||||||||||||||||||
5 x 12 = 5 x (8 + 4) = 5 x 8 + 5 x 4
5 x 12 = (3 + 2) x 12 = 3 x 12 + 2 x 12 5 x 12 = (3 + 2) x (5 + 7) = 3 x 5 + 3 x 7 + 2 x 5 + 2 x 7 Notice that the third way above looks like the "infamous" FOIL method. |
|||||||||||||||||||||||||||||||||
For a 3 stages example of the distributive principle in action, refer to: | |||||||||||||||||||||||||||||||||
Grade 4 Multiplication Algorithm | |||||||||||||||||||||||||||||||||
Try these: | |||||||||||||||||||||||||||||||||
Make an array for 6 x 13. Split both the number of rows and the number of columns. Obtain the answer to 6 x 13 by adding the subproducts. Also, show the thinking by using brackets. | |||||||||||||||||||||||||||||||||
Now that you have examined the 3 stages example, do the following 1-digit x 3-digit multiplications, using the distributive multiplication algorithm: | |||||||||||||||||||||||||||||||||
7 x 291 | |||||||||||||||||||||||||||||||||
4 x 850 | |||||||||||||||||||||||||||||||||