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In contrast to nonexperimental studies, true experiments have the potential to

allow strong conclusions about causal relations between independent and dependent

variables.  If the variable manipulated by the experimenter is in fact the only variable that

differs across the levels of the independent variable, then differences on the dependent

variable can be attributed to the treatment or to chance (Type I error), and nondifferences

can be attributed to the failure of the manipulated variable to affect the dependent

measures or to chance (Type II error).  Ensuring that the nominal independent variable is

in fact the only difference between groups is fundamental to sound experimental design,

but can be extremely challenging and difficult to realize in practice.  Inadequate

experimental designs result in independent variables that are correlated with other

confounding variables, and this can make an experimental study a poor basis for drawing

causal inferences.

A simple control vs. treatment group experiment, for example, would be flawed if

any systematic factor (e.g., gender, age, intelligence, enthusiasm, desire to please the

experimenter, time of day) differed for the two groups of subjects.  Any such factors

confounded with the treatment variable could produce an illusory treatment effect or

mask a true treatment effect, just as correlated predictors similarly influence criterion

variables in nonexperimental studies and render conclusions about causality difficult or

impossible.  Similar concerns arise for between-subject experiments with multiple levels

(i.e., k > 2) or for factorial designs in which subjects must be assigned to combinations of

treatments.  

A classic example of confounding in an experimental study occurred many years

ago in an effort to assess the benefits of supplementary milk for disadvantaged children. 

Children given supplemental milk did not differ from children not given supplemental
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milk, but it turned out to have occurred because some of the nurses who were responsible

for assigning children to the two conditions (supposedly by random assignment) assigned

children nonrandomly, with the children receiving supplemental milk being more

disadvantaged when they entered the study.  The nondifference at the end of the

experiment reflected the expected benefits of supplemental milk in that without the

supplement disadvantaged children would have been worse off on the dependent

variable(s).

Confounding also threatens the validity of within-subject experiments in which

subjects are exposed to multiple conditions.  To illustrate, consider a study of memory

for words presented at fast or slow rates of presentation.  Each subject is to study and

recall several lists, some at fast rates and some at slow rates.  Unless the study is carefully

designed, the fast lists could differ in various ways from the slow lists (e.g., occur earlier

or later in the session, contain easier or more difficult words).  Any such correlated

variables could produce illusory differences or mask the true effects of rate.

To reduce the probability of confounding variables and thereby strengthen causal

conclusions, researchers use two related techniques: randomization and

counterbalancing.  We first consider randomization.

RANDOMIZATION

Randomization serves many functions in experimental studies: assigning different

subjects to different levels of treatment factors or to different combinations of conditions,

determining the order in which within-subjects factors are administered to subjects,

selecting and ordering materials for participants (e.g., the order of words in a recall

study), and so on.  At the heart of all procedures is the idea of a random permutation.

Uses of Randomization

One common use of randomization is to assign subjects to experimental

conditions in a between-subjects or independent groups design.  This task can also be

viewed as assigning treatment conditions to subjects.  Imagine a simple study with an
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independent variable having two levels (Treatment vs. Control).  If sufficient numbers of

subjects were assigned randomly to the two conditions, then the researchers could be

reasonably confident that the composition of the two groups was probably equivalent

with respect to a host of individual difference variables that should get allocated

randomly to the two conditions (e.g., age, gender, intelligence, anxiety, and numerous

other factors that could influence the dependent variable).  Such equivalence strengthens

the assumption that any difference in performance between the treatment and control

groups arises from differences in how the experimenter treated the subjects (i.e.,

differences in the independent variable) and not from pre-existing differences between

subjects in the two groups or other accidentally related confounding variables. 

Randomization similarly improves the odds that nondifferences between the groups did

not occur because some confounded variable masked the treatment effect.

A second use of randomization is to randomize the order in which subjects are

exposed to the different levels of a within-subject or repeated-measures manipulation. 

Imagine a memory study in which subjects are going to learn 5 lists of words shown at 5

different rates of presentation (1, 2, 3, 4, or 5 seconds per word).  Experimenters must

decide what order the five conditions will occur for each subject.  One effective way to

determine the order is to randomize the five conditions separately for each subject in the

experiment.  If researchers wanted to ensure that each condition occurred equally often

first, second, and so on across subjects, then additional constraints (i.e.,

counterbalancing) could be used in conjunction with randomization.

Randomization can also be used to guard against secondary variables being

confounded with the primary variable of interest to researchers.  Researchers designing a

between-subjects rate-of-presentation study, for example, might use five different lists so

that the results can be generalized beyond a single set of words.  Each subject would

need to be randomly assigned to one of the five treatment conditions (presentation rates)

and to one of the five word lists.  The researchers may not be particularly interested in



Randomization Ch. 8 - 4

differences between the lists (i.e., lists is a secondary variable), but should nonetheless

ensure that each presentation rate occurred equally often with each of the lists and that

each subject received a list chosen randomly (or by one of the systematic randomization

procedures discussed later).

In some studies, randomization is primarily for "housekeeping."  If lists of words

are going to be shown to subjects, for example, researchers would probably not want to

use the same order of the words for every subject.  If the same order of words was used,

then serial position of items would be confounded with word (i.e., only one specific word

would have occurred at each position).  Positions with easier words would produce

higher levels of recall than positions with more difficult words.  Using different orders

reduces and perhaps eliminates this concern.  Different orders could be determined by

randomizing the words.  The orders may not even be analyzed, but any conclusions about

the variables examined (e.g., serial position) would no longer be tied to a specific order

of the words.

Although the preceding examples involve a memory study, randomization is

essential in all areas of psychology.  Social psychologists who want to compare the

effects of different attitude change procedures use randomization to control extraneous

variables that could confound their conclusions.  In between-subject designs, subjects

would be assigned randomly to different treatment conditions (e.g., low, medium, or high

fear conditions).  In within-subject designs, the order of the conditions may be critical

and would be randomized (with or without counterbalancing), as should different

materials used to strengthen the generality of the findings (e.g., different attitudinal

topics).  Housekeeping considerations might include such things as the order in which

subjects complete various rating scales (e.g., anxiety levels, intention to change,...) or the

specific content used with a particular subject in an attitude change study (e.g., quitting

smoking, using condoms).

Whatever the purpose being served by randomization, the underlying procedure
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will depend in essence on the selection of random permutations of digits representing

different aspects of the study.

Random Permutations

A permutation is a sequence or ordering of sequential digits (or other symbols),

with each digit representing some aspect of the research design (e.g., an experimental

condition, a specific representative of words or other kinds of material). Each of the

following sequences of the numbers from 1 to 4 is a permutation: 1234, 3124, and 2413.

For k digits, there are exactly n! (n factorial) permutations, where n! = n x (n - 1) x

(n - 2) ... x 2 x 1.  To illustrate for k = 3, there are 3! = 3 x 2 x 1 = 6 permutations: 123,

132, 213, 231, 312, 321.  One way to conceptualize this is: there are k ways to choose the

first digit (1, 2, ..., k); given the first digit has been used, then there are k - 1 ways to

choose the second digit, and so on until the last (kth) digit.  Such selection involves

random sampling of the digits from 1 to k without replacement (i.e., once a digit is

removed, it is not returned to the sample space).

There are several strategies for actually enumerating the possible sequences.  One

way is to draw (or imagine) a tree diagram

with k branching points.  In the example of

k = 3 there are 3 paths from the origin

representing the digits from 1 to 3.  From

each of those branches, there are two

possibilities (or branches).  There is a single

branch for the 3rd step.  This

conceptualization is illustrated in Box 1.

It is also possible to perform the

generation in Box 1 without drawing or

imagining a tree.  Begin with the ordered sequence of k digits (123), switch the 2nd and

3rd values (132). Then form the sequence beginning with the 2nd digit and the other

         Step
1 2 3 Permutation

2    - 3 123
1   <

3    - 2 132

1    - 3 213
2   <

3    - 1 231

1    - 2 312
3   <

2    - 1 321

Box 1.  Tree Diagram for Permutations.
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digits ordered (213), now switch the 2nd and 3rd values again (231).  Then form the

sequence beginning with the 3rd digit and the other digitss ordered (312), and now again

switch the 2nd and 3rd digits (321).  Here is this generation sequence for the 4! = 24

permutations for k = 4: 1234, 1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314, 2341,

2413, 2431, 3124, 3142, 3214, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.

It should be obvious from these few examples that the number of permutations for

k objects increases quite dramatically as k increases.  Specifically, 2! = 2, 3! = 6, 4! = 24,

5! = 120, 6! = 720, 7! = 5040, and so on.  Complete enumeration of the sequences

becomes increasingly difficult as k increases, a point that has important implications

when we examine the issue of counterbalancing later in the chapter.

A random sequence or permutation is a sequence chosen in such a way that each

of the k! possible permutations has an equal chance of being chosen.  Before computers

became readily available, researchers used various manual or physical procedures to

perform randomization.  Published tables of random numbers can be used to decide

about the orders of treatments and other considerations mentioned above.  When only

two conditions are involved, a coin-toss is reasonably random.  Tossing a regular 6-sided

die or various-sided Dungeons & Dragons dice is another effective way to randomize

under certain conditions.  It is also possible to write condition codes on slips of paper or

chips, shuffle or mix them well, and use the resulting order to determine the random

sequences to use.  Although physical procedures are still useful in some circumstances,

computer-aided methods now do much of the randomization used in experimental

studies.  Initially such methods are more difficult to understand than manual procedures,

but computerized randomization is simpler in the long run and permits more

sophisticated control.

The use of computers to perform various randomization operations requires that

contemporary researchers be familiar with one or more computer methods.  Sometimes

special programs are written in a programming language (e.g., Basic) to perform
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randomization.  Randomization can also be performed using general purpose programs,

such as statistical packages and data base languages.  In this chapter, we examine several

alternative procedures for randomization using Basic, SPSS, and SAS (another statistical

package).  In the case of SPSS and SAS programs, we will only show the parts of the

program and output actually relevant to the randomization procedure.  Other commands

may be necessary to run the commands and obtain output.

RANDOMIZATION WITH SPSS

Statistical packages such as SPSS can be used to perform various types of

randomization, as can spreadsheet and database programs.  Here we examine how SPSS

can be used to perform some of the randomization procedures described above.

Simple Randomization with SPSS

The technique used to perform

randomization is SPSS is quite simple.  We

generate an ordered sequence of the k digits from

1 to k (or modifications of this in later examples)

and then sort the sequence randomly using the

capacity of SPSS to generate random numbers

and to sort cases.  Box 2 shows the initial

commands to generate the sequence of digits

from 1 to k (k = #obs in the program).  The heart

of the procedure is the middle three lines (from

loop o = 1 to #obs to end loop).  This loop is

performed #obs times (6 times in our example), with o being equal to 1, 2, 3, 4, 5, 6 each

successive time.  The 6 was determined in the third line were #obs was set equal to 6.  A

variable beginning with # in SPSS is a hidden variable that does not actually become part

of the data file.  Note in the listing that no #obs variable was created for the cases.  The

data file contains the sequence from 1 to 6 (ordered at the present time).  If we modified

*Generate ordered permutation.
INPUT PROGRAM.
COMPUTE #obs = 6.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
LIST.

      O
 1.0000
 2.0000
 3.0000
 4.0000
 5.0000
 6.0000

Box 2.  Generation of Sequence in SPSS.
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the third line to compute #obs = 100, then the file would contain 100 cases, with their

respective scores being 1, 2, 3, and so on up to 100.

Now we need to scramble the sequential cases so that we get one of the 720 (i.e.,

6!) random permutations of the digits from

1 to 6.  Box 3 shows how to do exactly that

(new commands are italicized).  The first

step is to add COMPUTE rand =

UNIFORM(1) to the commands.  This

creates a new variable RAND that contains

pseudorandom values generated by SPSS. 

UNIFORM(1) generates random numbers

between 0 and 1, with the specific values

depending on the SET SEED = command

added at the top of the file.  The random

values are shown in the first listing.  The

values are called pseudo-random because

computers generate so-called random

numbers in a non-random manner, but with

virtually all of the properties of random

numbers.  The second step is to sort the file

on the random values, which is what SORT

CASES BY rand does.  The second listing shows that the cases have been sorted on rand,

which produces a random permutation of o (i.e., the digits from 1 to 6).  This is a random

permutation selected randomly out of the 720 possible permutations.

This is the basis for much of what follows below, and would indeed be enough

program to do many aspects of randomization.  To assign multiple participants to four

different conditions, for example, we could repeatedly run the program in Box 3 with

*Generate random permutation.
*Use seed=RANDOM in practice.
SET SEED = 1234567.
INPUT PROGRAM.
COMP #obs = 6.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
COMPUTE rand = UNIFORM(1).
FORMAT rand (F6.4).
LIST.

      O   RAND
 1.0000  .6849
 2.0000  .5154
 3.0000  .8941
 4.0000  .0074
 5.0000  .1297
 6.0000  .8299

SORT CASES BY rand.
LIST.

      O   RAND
 4.0000  .0074
 5.0000  .1297
 2.0000  .5154
 1.0000  .6849
 6.0000  .8299
 3.0000  .8941

Box 3.  Random Permutation.



Randomization Ch. 8 - 9

#obs = 4 (and SET SEED = RANDOM).  As each subject appeared for the experiment,

the experimenter would assign the participant to the next condition in the random

sequence.  As each random sequence was completed, a new sequence would be started. 

This form of random assignment would produce block randomization, and is discussed

below.

Or imagine that the researcher had to

randomize the order of 48 words for each of

12 participants.  The program in Box 3

could be run 12 times with #obs = 48. Each

of the numbers would denote a word (or,

equivalently, the position in which a word

should occur).   Rather than run the

program multiple times, however, the

program can be modified to accommodate

multiple repetitions.

Random Permutations with Replication

In the preceding example, each digit

occurred only once.  Most experiments

would require that condition codes be

produced a multiple number of times,

depending on the number of participants

desired in each condition.  To assign 24

subjects to 6 conditions, for example, we

would require 4 1s, 4 2s, and so on, ideally

in a random (or constrained random) order. 

Box 4 shows one way to achieve this in

SPSS.  Now #obs represents the total

*Randomization with replication.
SET SEED = 1234567.
INPUT PROGRAM.
COMP #obs = 12.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
COMPUTE cond = MOD(o - 1, 6) + 1.
COMPUTE rand = UNIFORM(1).
FORMAT rand (F6.4).
*  # above is number of conditions.
LIST.

      O    COND   RAND
 1.0000  1.0000  .6849
 2.0000  2.0000  .5154
 3.0000  3.0000  .8941
 4.0000  4.0000  .0074
 5.0000  5.0000  .1297
 6.0000  6.0000  .8299
 7.0000  1.0000  .1689
 8.0000  2.0000  .0552
 9.0000  3.0000  .0616
10.0000  4.0000  .8679
11.0000  5.0000  .6697
12.0000  6.0000  .2581

SORT CASES by rand.
LIST.

      O    COND   RAND
 4.0000  4.0000  .0074
 8.0000  2.0000  .0552
 9.0000  3.0000  .0616
 5.0000  5.0000  .1297
 7.0000  1.0000  .1689
12.0000  6.0000  .2581
 2.0000  2.0000  .5154
11.0000  5.0000  .6697
 1.0000  1.0000  .6849
 6.0000  6.0000  .8299
10.0000  4.0000  .8679
 3.0000  3.0000  .8941

Box 4.  Randomization with Replications.
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number of observations that we want to generate (12 in the example in Box 4).  The

actual condition code (COND) is generated by COMPUTE cond = MOD(o-1, 6) + 1,

where 6 now represents the number of conditions and MOD represents the modulus

operator in SPSS.  The modulus of a number is the remainder when one number (o - 1 in

our example) is divided by another number

(6); for example, 8 - 1 modulus 6 = 1 (to

which 1 is added to produce COND = 2. 

The first listing shows that this line

produces the numbers from 1 to 6 in

sequence, then repeats the numbers in

sequence again.  In fact, this line would

repeatedly do this no matter how large we

made #obs.  Hence, we have 2 1s, 2 2s, and

so one, which is what we wanted.  Sorting

on RAND produces the desired random

sequence.  If we changed #obs to 24, then

we would have each code four times.

Box 5 shows a second way in which

this same end could have been achieved. 

Rather than generating the sequence 1 to 6

twice, the COMPUTE cond = TRUNC((o-

1)/2)+1 line produces 2 1s, 2 2s, and so on,

as shown in the first listing.  Sorting the

cases on rand again produces the desired

outcome of a random order containing each

of our 6 condition codes twice.  If we

changed #obs to 24 and the divisor for

*Randomization with replication #2.
SET SEED = 1234567.
INPUT PROGRAM.
COMP #obs = 12.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
COMPUTE rand = UNIFORM(1).
FORMAT rand (F6.4).
COMPUTE cond = TRUNC((O-1)/2) + 1.
* 2 above=number of replications.
LIST.

      O    COND   RAND
 1.000  1.00000  .6849
 2.000  1.00000  .5154
 3.000  2.00000  .8941
 4.000  2.00000  .0074
 5.000  3.00000  .1297
 6.000  3.00000  .8299
 7.000  4.00000  .1689
 8.000  4.00000  .0552
 9.000  5.00000  .0616
10.000  5.00000  .8679
11.000  6.00000  .6697
12.000  6.00000  .2581

SORT CASES BY rand.
LIST.

      O    COND   RAND
 4.0000  2.0000  .0074
 8.0000  4.0000  .0552
 9.0000  5.0000  .0616
 5.0000  3.0000  .1297
 7.0000  4.0000  .1689
12.0000  6.0000  .2581
 2.0000  1.0000  .5154
11.0000  6.0000  .6697
 1.0000  1.0000  .6849
 6.0000  3.0000  .8299
10.0000  5.0000  .8679
 3.0000  2.0000  .8941

Box 5.  Randomization with Replication #2.
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computing cond to 4, then we would have each condition code four times, randomly

scrambled.

Note an important difference between the actual sequences generated in Boxes 4

and 5, a difference that is solely due to chance.  Box 4 actually produced a better

outcome (although it was purely fortuitous) in that each of the 6 condition codes

occurred once in the first 6 subjects and once in the last 6 subjects.  This is often a

desirable outcome. Note in Box 5, on the other hand, that the two occurrences of

condition 4 both occurred in the first 6 rows (subjects), and the two occurrences of

condition 1 occurred in the last 6 rows (subjects).  This could introduce some bias into

the conditions if the first 6 and last 6 subjects differ from one another in some systematic

way (e.g., gender, motivation).  It may be desirable to randomize in such a way as to

ensure the equal distribution of conditions obtained accidentally in Box 4.

Block Randomization

Because of potential problems with simple randomization as done above, many

researchers prefer to use a method called block randomization.  Block randomization

randomly orders the condition codes, but ensures that each condition occurs the same

number of times within each block of observations.  SPSS can easily do this, because we

can sort cases on more than one variable.
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Box 6 shows one way to do block randomization in SPSS.  In essence, the

modulus operator is used to generate condition codes and the truncate operator to

generate block codes.  These are shown ordered in the first listing.  The cases are then

sorted on both block and rand to produce

the blocks of the 6 codes in a random order

within each block.  Notice in Box 6, for

example, that each condition code occurs

once in the first 6 cases (i.e., block = 1) and

once in the last 6 cases (block = 2).  This

will always occur with this procedure

(whereas it occurred just by chance in Box

4).  Using this procedure, researchers can

be quite confident that experimental

condition is independent of any subject

characteristics associated with the order in

which participants are allocated to

conditions.

In Box 6, the block size was equal to

the number of conditions so that each

condition occurred exactly once per block. 

Sometimes, researchers will want or find

acceptable replications of conditions within

blocks.  The program in Box 7 allows for

replications within blocks.  The number of

conditions is reduced to 4 simply to shorten

the output.  We have two blocks of size 8,

each containing the four condition codes

*Block randomization.
SET SEED = 1234567.
INPUT PROGRAM.
COMP #obs = 12.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
COMPUTE rand = UNIFORM(1).
FORMAT rand (F6.4).
COMPUTE block = TRUNC((O-1)/6) + 1.
*  6 above is size of block.
COMPUTE cond = MOD(O-1, 6) + 1.
*  6 above is number of conditions.
LIST.

      O   BLOCK    COND  RAND
 1.0000  1.0000  1.0000  .6849
 2.0000  1.0000  2.0000  .5154
 3.0000  1.0000  3.0000  .8941
 4.0000  1.0000  4.0000  .0074
 5.0000  1.0000  5.0000  .1297
 6.0000  1.0000  6.0000  .8299
 7.0000  2.0000  1.0000  .1689
 8.0000  2.0000  2.0000  .0552
 9.0000  2.0000  3.0000  .0616
10.0000  2.0000  4.0000  .8679
11.0000  2.0000  5.0000  .6697
12.0000  2.0000  6.0000  .2581

SORT CASES BY block rand.
LIST.

      O   BLOCK    COND   RAND
 4.0000  1.0000  4.0000  .0074
 5.0000  1.0000  5.0000  .1297
 2.0000  1.0000  2.0000  .5154
 1.0000  1.0000  1.0000  .6849
 6.0000  1.0000  6.0000  .8299
 3.0000  1.0000  3.0000  .8941
 8.0000  2.0000  2.0000  .0552
 9.0000  2.0000  3.0000  .0616
 7.0000  2.0000  1.0000  .1689
12.0000  2.0000  6.0000  .2581
11.0000  2.0000  5.0000  .6697
10.0000  2.0000  4.0000  .8679

Box 6.  Block Randomization.
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twice.

The program used in Boxes 6 and

7 is quite general.  Some care is needed in

determining the values for the number of

observations (#obs), the block size (the

divisor in the compute block = line, and

the number of conditions specified in the

comp cond = line.  The block size should

allow each condition to occur the same

number of times; specifically, block size =

number of conditions x number of

repetitions per block.  With 4 conditions

and 2 replications in our example, our

block size is 8.  If we wanted 3

replications per block, block size would

be 12, and so on.  Given the block size,

the total number of observations should

be a multiple of the block size.  In our

example of 8 observations per block, the

total number of observations could be 8,

16 (as in Box 7), 32, 48, and so on,

depending on the total number of subjects

desired, and available.  If the block size

was 12, then the total number of

observations could be 12, 24, 36, and so

on.

*Block randomization with.
*  replications per block.
SET SEED = 1234567.
INPUT PROGRAM.
COMP #obs = 16.
LOOP o = 1 TO #obs.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
COMPUTE block = TRUNC((O-1)/8) + 1.
*  8 = size of block.
COMPUTE cond = MOD(O-1, 4) + 1.
*  4 = number of conditions.
COMPUTE rand = UNIFORM(1).
FORMAT rand (F6.4).
LIST.

      O   BLOCK    COND   RAND
 1.0000  1.0000  1.0000   .6849
 2.0000  1.0000  2.0000   .5154
 3.0000  1.0000  3.0000   .8941
 4.0000  1.0000  4.0000   .0074
 5.0000  1.0000  1.0000   .1297
 6.0000  1.0000  2.0000   .8299
 7.0000  1.0000  3.0000   .1689
 8.0000  1.0000  4.0000   .0552
 9.0000  2.0000  1.0000   .0616
10.0000  2.0000  2.0000   .8679
11.0000  2.0000  3.0000   .6697
12.0000  2.0000  4.0000   .2581
13.0000  2.0000  1.0000   .4542
14.0000  2.0000  2.0000   .8614
15.0000  2.0000  3.0000   .0728
16.0000  2.0000  4.0000   .8607

SORT CASES BY block rand.
LIST.

      O   BLOCK    COND   RAND
 4.0000  1.0000  4.0000  .0074
 8.0000  1.0000  4.0000  .0552
 5.0000  1.0000  1.0000  .1297
 7.0000  1.0000  3.0000  .1689
 2.0000  1.0000  2.0000  .5154
 1.0000  1.0000  1.0000  .6849
 6.0000  1.0000  2.0000  .8299
 3.0000  1.0000  3.0000  .8941
 9.0000  2.0000  1.0000  .0616
15.0000  2.0000  3.0000  .0728
12.0000  2.0000  4.0000  .2581
13.0000  2.0000  1.0000  .4542
11.0000  2.0000  3.0000  .6697
16.0000  2.0000  4.0000  .8607
14.0000  2.0000  2.0000  .8614
10.0000  2.0000  2.0000  .8679

Box 7.  Replications within Blocks.
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COUNTERBALANCING

Counterbalancing methods ensure that all conditions occur equally often at

different stages of testing and hence provide more precise control over practice and

fatigue effects than does randomization.  Systematic counterbalancing of conditions is

often required for within-subject designs, and is generally used in conjunction with the

randomization methods described above.  Consider a within-studies design to test the

effects of three different drugs; that is, each animal will be tested with drug A, drug B,

and drug C.  The order in which drugs are administered to the animals could easily affect

performance, so careful control of this factor is required.  Using block randomization to

determine the order of the three drugs for each animal does not guarantee that every drug

will occur first, second, and third equally often.  It is possible that by chance one drug

would occur first or last more often than the other drugs and this difference could

contaminate the effects of the drugs on performance.

Programs to perform counterbalancing tend to be more complex than those we

have used to this point.  Therefore, programs are not presented here for some of the

techniques discussed. The concepts themselves can be understood without detailed

knowledge of the programming mechanics.  In its simplest form, counterbalancing

ensures that every condition occurs equally often at each stage of the study.  We first

examine a simple method that works under certain limited conditions and then more

sophisticated procedures for counterbalancing conditions.

Simple (or Complete) Counterbalancing

One simple method that works well with relatively small numbers of conditions is

to use all-possible permutations of conditions.  In the case of three conditions, there are

3! = 3 × 2 × 1 = 6 different orders (i.e., 123, 132, 213, 231, 312, and 321).  Each of these

6 orders could be used with the same number of subjects, ensuring that position and

order effects do not contribute unequally to the various conditions.  In practice each

permutation would be assigned a number from 1 to 6 and block randomization of these



Randomization Ch. 8 - 15

digits could be used to decide which order to assign to each subject.  The combination of

counterbalancing and randomization provides an elegant solution to possible

confounding between independent variables and order of administration of conditions. 

There are also occasions when counterbalancing may be desirable for independent

groups designs.  Consider a study in which individual subjects are being tested at one of

three different time periods (e.g., 9am, 11:30am, and 2:30pm) and there are three

different conditions.  Randomized counterbalancing of the conditions would ensure that

each condition occurred equally often at each time interval.

Boxes 8 and 9 present

an SPSS program that

enumerates all permutations for

k = 3 and randomizes them. 

The program has been

separated into sections with

intervening listings to better

demonstrate the logic.  Box 8

shows commands to generate

all possible combinations of

the three condition codes,

labelled i1, i2, and i3,

including not only

permutations, but also

combinations with repeated

values (e.g., 133 for o = 9 and

333 for o = 27).  These

repetitions will later be deleted.  The program works by first calculating the total number

of trials required, which is k raised to the kth power.  Briefly, this is because there are k

*Method to generate random permutations.
*Generate initial sequence of k**k trials.
INPUT PROGRAM.
COMPUTE #k = 3.
LOOP o = 1 to #k**#k.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
*Generate the k variables.
DO REPEAT i = i1 i2 i3 /power = 2 1 0.
COMPUTE i = MODULUS(TRUNC((o - 1)/#k**power), #k) + 1.
END REPEAT.
FORMAT o i1 i2 i3 (f3.0).
LIST.

  o  i1  i2  i3
  1   1   1   1
  2   1   1   2
  3   1   1   3
  4   1   2   1
  5   1   2   2
  6   1   2   3
  7   1   3   1
  8   1   3   2
  9   1   3   3
 10   2   1   1
 11   2   1   2
 12   2   1   3
 13   2   2   1
 14   2   2   2
 15   2   2   3
 16   2   3   1
 17   2   3   2
 18   2   3   3
 19   3   1   1
 20   3   1   2
 21   3   1   3
 22   3   2   1
 23   3   2   2
 24   3   2   3
 25   3   3   1
 26   3   3   2
 27   3   3   3

Box 8.  Initial parts of SPSS Permutation Program.
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possibilities on each of the k trials. The first section of the program in Box 8 generates

the 27 cases required for k = 3.  The second section uses a somewhat impenetrable

algorithm to generate the 9 repeated 1s, 2s, and 3s for i1, the 3 repeated 1s, 2s, and 3s for

i2 (with the cycle repeated 3 times), and the single 1s, 2s, and 3s for i3 (with the cycle

repeated 9 times).  This generates all possible combinations of the three condition codes.

Only 6 of the 27 sequences are actually permutations: sequences 6, 8, 12, 16, 20,

and 22.  The next step is to pick out those sequences from all of the sequences.  Note that

these are the only sequences in which each of the condition codes occurs exactly once;

that is, there are no repetitions of 1, 2, or 3.

Box 9 shows the

remaining commands.  The first

command, COMPUTE perm =

results in a new variable that will

have the value of 1 if i1 does not

equal (<>) i2, AND i1 does not

equal i3, AND i2 does not equal

i3; that is, perm = 1 if there are

no repetitions (i.e., if the

sequence is a permutation).  The

program then computes a new

value for 0, numbering the

permutations from 1 to 6.  It does this using a built-in SPSS variable $CASENUM, which

is a system variable indicating to which case each row of data belongs.

The next block of commands in Box 9 randomly sets the seed value, and then

shuffles the sequences using methods that we have used before (i.e., COMPUTE rand

and SORT CASES BY).  Only a few changes would be necessary to use this program to

randomize permutations for other values of k.  Appendix A shows the commands

*Delete records with repetitions of conditions.
*  and number resulting sequences.
COMPUTE perm = (i1 <> i2) and (i1<> i3) and (i2<>i3).
SELECT IF perm = 1.
EXECUTE.
DELETE VARI perm.
COMPUTE o = $CASENUM.
LIST.

  o  i1  i2  i3
  1   1   2   3
  2   1   3   2
  3   2   1   3
  4   2   3   1
  5   3   1   2
  6   3   2   1

*Randomize sequences.
SET SEED = RANDOM.
COMPUTE rand = UNIFORM(1).
SORT CASES BY rand.
DELETE VARI rand.
LIST.

  o  i1  i2  i3
  5   3   1   2
  3   2   1   3
  2   1   3   2
  6   3   2   1
  4   2   3   1
  1   1   2   3

Box 9.  Select and Randomize the Permutations.
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  Columns
1 2 3 4 5

Rows
1 1 2 3 4 5
2 2 3 4 5 1
3 3 4 5 1 2
4 4 5 1 2 3
5 5 1 2 3 4

Box 10.  Latin Square of Order 5.

necessary to produce random permutations for k = 4.  The number of resulting

permutations is 4 x 3 x 2 x 1 = 24.  The modified lines are italicized in Appendix A. The

trickiest element is probably the computation of perm, which requires that all possible

pairs of variables be included in the calculation.  Note in Appendix A that cases have

been listed two to a line to allow the output to appear on a single page.

Complete counterbalancing is limited to variables with few levels because of the

very large numbers of orders once more than a few conditions are involved.  As just

noted, 4 conditions involve 24 permutations.  And it was earlier noted in the section on

randomization that 5 conditions entail 120 permutations, 6 conditions entail 720

permutations, and so on.  Clearly complete counterbalancing would be impractical in

many experimental situations.  The solution is to control order effects using certain

carefully chosen permutations rather than every possible permutation.  One common

approach involves latin squares.

Latin Squares and Counterbalancing

Latin squares are k sequences of the digits from 1 to k such that each digit occurs

exactly once in each row and once in each column (i.e., in each cell); no digits are

repeated in any row or column.

A simple latin square of 5 digits is

shown in Box 10.  Each of the rows

represents a subject and each of the

columns a position or stage of testing.  The

entries in the cells would generally

correspond to experimental conditions.  Note that each condition code from 1 to 5 occurs

once in each row and column.  Although 720 orders would be required to completely

counterbalance the 5 conditions, only 5 well-selected orders are required to ensure that

each condition occurs exactly once at each stage of testing.

The square in Box 10 is a systematic one and was generated by cyclical rotation of
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Row Permutation: 3 4 1 5 2
Col Permutation: 5 1 3 2 4
Trt Permutation: 3 2 5 4 1

              Column
Row 1(5) 2(1) 3(3) 4(2) 5(4)
1(3) 2(2) 5(3) 1(5) 4(4) 3(1)
2(4) 5(3) 4(4) 3(1) 1(5) 2(2)
3(1) 1(5) 3(1) 5(3) 2(2) 4(4)
4(5) 4(4) 1(5) 2(2) 3(1) 5(3)
5(2) 3(1) 2(2) 4(4) 5(3) 1(5)

Box 11.  Randomized Latin Square of Order 5.

the cell entries in the first row.  All numbers were shifted once to the left and the leftmost

number was cycled around to the last position.  This technique can be used to create the

initial square (with some caution because every possible latin square will not occur), but

randomization is required before the square can be used.  Note in Box 10, for example,

that each condition follows exactly the same other condition for every subject (i.e., row). 

This would be undesirable if there were any possibility of carryover effects from one

condition to another (e.g., fatigue from a particularly demanding condition).

To randomize Latin squares such as that in Box 10, three variables need to be

randomized: the rows, the columns, and the treatment numbers.  This could be done for

the square in Box 10 by generating three permutations of the digits 1 to 5 using the

procedures described in the Randomization section (e.g., SPSS).  One permutation would

be used to shuffle the rows.  A second permutation would be used to shuffle the columns. 

The third permutation would be used to shuffle the treatment numbers.

Box 11 shows the result of

randomizing the square in Box 10 using

the three permutations shown at the top. 

The final latin square is shown in bold. 

The original row, column, and treatment

numbers are shown in parentheses to

demonstrate the randomization process

more clearly.  This latin square might be used, for example, to determine the order

(Columns) in which 5 presentation rates (Treatments) are to be administered to 5 subjects

(Rows).  Subject 1 would receive the rates in the order 2, 5, 1, 4, and 3, and so on.  The

square could also represent the order (Columns) in which 5 subjects (Rows) are asked to

perform 5 tasks (Treatments).
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1 2 3
1 11 22 33
2 23 31 12
3 32 13 21

Box 12.  Orthogonal Latin
Squares.

Mutally Orthogonal Latin Squares

There are occasions when researchers have to counterbalance several factors and

several orthogonal latin squares are required.  Mutally orthogonal latin squares (MOLS)

are multiple latin squares of the same size in which every combination of the condition

numbers is unique.

Box 12 shows two orthogonal latin squares of size 3. 

The first digit in each cell corresponds to the entry for one

latin square and the second digit corresponds to the entry

for the second latin square.  Note that combinations of the

two latin squares occur exactly once (i.e., 11, 12, 13, ..., 33).  If the 9 combinations of 4

numbers in Box 12 were entered as 4 scores (i.e., 1 1 1 1, 1 2 2 2, 1 3 3 3, 2 1 2 3, 2 2 3

1, 2 3 1 2, 3 1 3 2, 3 2 1 3, 3 3 2 1) the four variables would correlate 0 with one another;

that is they are orthogonal or independent.

The MOLs in Box 12 could be used in a variety of ways.  For example, a social

psychology researcher interested in the effect of three different kinds of messages (1 =

Negative, 2 = Neutral, or  3 = Positive) on attitudes toward minorities might design a

study as follows.  Three different ethnic groups would be selected (e.g., 1 = Norwegians,

2 = Spaniards, or 3 = Australians).  Subjects would receive a single message about each

of the three groups.  One message would be positive, one neutral, and one negative. 

Subjects would rate the ethnic groups immediately after receiving each message.  It

would be important to control the combinations of group, message, and position so that

the message variable was independent of (i.e., orthogonal to) the other factors.  Complete

counterbalancing would require 3 × 3 × 3 = 27 combinations of the different levels of the

variables (negative Norwegians 1st, negative Norwegians 2nd, ..., positive Australians

3d).  The number of subjects required for the experiment would have to be some multiple

of 27 if every combination was to be used equally often.

Alternatively, the MOLs in Box 12 would control for position and ethnic group
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within groups of just three subjects (vs. 27).  The first subject would receive the

conditions 11 = negative + Norwegian, 22 = neutral + Spaniard, 33 = positive +

Australian in that order.  A second subject would receive 23 = neutral + Australian, 31 =

positive + Norwegian, and 12 = negative + Spaniard in that order.  A third subject would

receive 32 = positive + Spaniard, 13 = negative + Australian, and 21 = neutral +

Norwegian in that order.  Note that each message and each ethnic group occurs once in

each position (1st, 2nd, or 3rd) and that each message occurs once with each ethnic

group.  Any effect of message type would be independent of position and ethnic group

differences.

In practice, the MOLs in Box 12 would be randomized prior to use.  Rows,

columns, and both treatment codes would be randomized independently to produce the

final square.

Limitations on MOLS.  A number of factors complicate the use of MOLs.  There

are some cases in which orthogonal latin squares have not been found or have been

demonstrated to not exist.  For example, there are no orthogonal latin squares of size 6. 

A researcher must consider such factors in designing any study.

A second complication is that automated construction of orthogonal latin squares

is possible only for certain numbers of conditions.  It is known that there are t-1 mutually

orthogonal latin squares for numbers that are primes (i.e., divisible only by themselves

and one) or products of primes.  It is also relatively straightforward to write a program to

generate the t - 1 MOLs for prime-number designs using modulus arithmetic.

To illustrate the use of higher order MOLS, imagine that an

industrial/organizational (I/O) or human factors psychologist is interested in

characteristics that affect the readability of text on computer screens.  The researcher

wants to examine four factors that each have 5 levels to them: text color (white, red,

green, blue, or black), background (one of five shades of grey), font style (A, B, C, D, or

E), and font size (6, 8, 10, 12, or 14 points).  Five highly-trained subjects are available to
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Number of conditions (Prime!!) ? 5
Randomize (1) or Not (2)       ? 1
Matrix (m) or Column (c) output? m
COL    1    2    3    4    5
ROW
  1 5441 4135 1214 2522 3353
  2 4324 2251 5533 3415 1142
  3 3232 1423 2345 5154 4511
  4 1555 5312 3121 4243 2434
  5 2113 3544 4452 1331 5225

Permutations used.
  5   1   3   4   2
  3   4   2   5   1
  1   5   4   2   3
  3   1   2   5   4
  3   5   4   2   1
  1   4   3   2   5

Box 13.  MOLs of Size Five.

rate readability, but each subject can only rate 5 conditions because of eye-strain and

fluctuations in standards across multiple trials and it is impractical to test every possible

combination of conditions.

A Basic program produced

the MOLs shown in Box 18.  The

initial commands are also shown,

as well as the permutations

generated by the program.  Each

row corresponds to one subject

and each column to one trial.  The

5441 entry for subject 1 and trial 1

indicates black text on a level 4

grey background in font style D

and 6-point size.  The 5225 for

trial 5 of subject 5 indicates black text on level 2 background in font style B and font size

14.  Careful examination of the squares will reveal that each condition occurs exactly

once for each subject, for each trial, and for each level of all other factors.  If the 6 scores

for each of the 25 cells were analyzed (i.e., 1 1 5 4 4 1, 1 2 4 1 3 5, ...), the six variables

would all correlate 0 with one another.

The efficiency of the latin square design can be appreciated by considering the

full-factorial alternative to the latin square design.  Five factors (including trial) each

having 5 levels would require 5 × 5 × 5 × 5 × 5 = 55 = 3,125 cells for a full factorial

design.  Even without trial, 625 cells are required.  The MOLs require only 25 cells to

provide information about the main effects of each factor.  Latin squares are examples of

partial or fractional replication designs.  The cost of this efficiency is loss of information

about interactions between the factors, especially the higher-order interactions.  That is,

we will not have information for certain combinations of conditions that might be
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111 222 334 443
244 133 421 312
323 414 142 231
432 341 213 124

Box 14.  MOLs for Four
Conditions.

Four Conditions
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
Six Conditions
1 2 3 4 5 6
2 4 1 6 3 5
3 1 5 2 6 4
4 6 2 5 1 3
5 3 6 1 4 2
6 5 4 3 2 1

Box 15.  Balanced Latin Squares.

particularly good (or bad).

Although squares are not as easily generated for

non-prime designs, they are possible and are published

in a number of sources.  Box 14 shows MOLs for four

conditions.  The square would be randomized before

being used in a study.  A psychologist doing marketing

research, for example, might examine sales in four stores (rows) across four successive

weeks (columns) for four products (1st treatment) packaged in four differently colored

boxes (2nd treatment) and with four differently sized displays (3d treatment).

Balanced Latin Squares

All latin squares do not ensure that every condition follows every other condition

exactly once.  Indeed, it is possible even in a randomized square that conditions will

always follow the same condition.  Examine several of the squares discussed previously

to see which other conditions a particular condition tends to follow.  The more different

squares generated and used, the less likely this possibility.

Squares in which every condition

follows every other condition exactly

once are called balanced latin squares. 

Box 15 shows examples of balanced latin

squares for designs with 4 or 6 conditions. 

Note in the top square that condition 4

follows condition 3 in row 1, condition 2

in row 2, condition 1 in row 3, and no

prior condition in row 4.  Balanced latin squares are used when researchers are concerned

that conditions will have robust carryover effects, either positive or negative, such that

performance in one condition will depend on the preceding condition to which subjects

were exposed.
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As with MOLs, there are some restrictions on balanced latin squares.  There are

no balanced latin squares for odd numbers, for example, which means that researchers

who are particularly concerned about carryover or transfer effects will plan studies with

even numbers of conditions.

CONCLUSION

This chapter has introduced some of the basic ideas that underlie randomization

and counterbalancing in experimental design.  The primary purpose of these techniques

is to increase the probability and ideally ensure that treatment variables are independent

of one another and of other nuisance variables that could influence performance on the

dependent variable.  Not all aspects of this problem have been addressed here.  For

instance, cognitive researchers often must ensure that across subjects different materials

are used in every possible condition.  Each item in a priming study, for example, might

have to occur with a neutral prime, a strong prime, and a weak prime, although for

different subjects.  Good counterbalancing provides the required control, in essence by

generalizing the principles described here for counterbalancing treatments and order.

The identification of relevant confounding variables and the design of studies

independent of those variables involve mastery of some challenging and subtle cognitive

skills.  As you read the research literature in different areas of psychology, attend to the

kinds of confounding variables common in the area and to the ways in which

experimenters identify or control the effects of confounding variables.  Having such

knowledge will help you to design studies that avoid the well-known errors in your

chosen area of research, increasing the likelihood that your study will further our

understanding of the phenomena being studied.
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APPENDIX A

SPSS PROGRAM TO GENERATE PERMUTATIONS FOR K = 4

INPUT PROGRAM.
COMP #k = 4.
LOOP o = 1 TO #k**#k.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
DO REPEAT i = i1 i2 i3 i4 /power = 3 2 1 0.
COMP i = MODULUS(TRUNC((O - 1)/#k**power), #k) + 1.
END REPEAT.
COMPUTE perm = (i1 <> i2) AND (i1<> i3) AND (i1<> i4) AND (i2<>i3) AND (i2<>i4) AND (i3<>i4).
SELECT IF perm = 1.
EXEC.
DELETE VARI perm.
COMPUTE o = $CASENUM.
FORMAT o i1 i2 i3 i4 (F3.0).
LIST.
  O  I1  I2  I3  I4
  1   1   2   3   4   2   1   2   4   3
  3   1   3   2   4   4   1   3   4   2
  5   1   4   2   3   6   1   4   3   2
  7   2   1   3   4   8   2   1   4   3
  9   2   3   1   4  10   2   3   4   1
 11   2   4   1   3  12   2   4   3   1
 13   3   1   2   4  14   3   1   4   2
 15   3   2   1   4  16   3   2   4   1
 17   3   4   1   2  18   3   4   2   1
 19   4   1   2   3  20   4   1   3   2
 21   4   2   1   3  22   4   2   3   1
 23   4   3   1   2  24   4   3   2   1

SET SEED = RANDOM.
COMP rand = UNIFORM(1).
SORT CASES BY rand.
DELETE VARI rand.
LIST.
  O  I1  I2  I3  I4
  1   1   2   3   4  12   2   4   3   1
  5   1   4   2   3  14   3   1   4   2
 15   3   2   1   4   3   1   3   2   4
  2   1   2   4   3  13   3   1   2   4
  9   2   3   1   4  23   4   3   1   2
 20   4   1   3   2  11   2   4   1   3
  7   2   1   3   4   8   2   1   4   3
 24   4   3   2   1  17   3   4   1   2
 21   4   2   1   3  22   4   2   3   1
  6   1   4   3   2   4   1   3   4   2
 18   3   4   2   1  19   4   1   2   3
 16   3   2   4   1  10   2   3   4   1


